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Abstract

Data-driven models are subject to model errors due to limited and noisy training
data. Key to the application of such models in safety-critical domains is the
quantification of their model error. Gaussian processes provide such a measure
and uniform error bounds have been derived, which allow safe control based on
these models. However, existing error bounds require restrictive assumptions. In
this paper, we employ the Gaussian process distribution and continuity arguments
to derive a novel uniform error bound under weaker assumptions. Furthermore,
we demonstrate how this distribution can be used to derive probabilistic Lipschitz
constants and analyze the asymptotic behavior of our bound. Finally, we derive
safety conditions for the control of unknown dynamical systems based on Gaussian
process models and evaluate them in simulations of a robotic manipulator.

1 Introduction

The application of machine learning techniques in control tasks bears significant promises. The
identification of highly nonlinear systems through supervised learning techniques [1] and the auto-
mated policy search in reinforcement learning [2] enables the control of complex unknown systems.
Nevertheless, the application in safety-critical domains, like autonomous driving, robotics or aviation
is rare. Even though the data-efficiency and performance of self-learning controllers is impressive,
engineers still hesitate to rely on learning approaches if the physical integrity of systems is at risk,
in particular, if humans are involved. Empirical evaluations, e.g. for autonomous driving [3], are
available, however, this might not be sufficient to reach the desired level of reliability and autonomy.

Limited and noisy training data lead to imperfections in data-driven models [4]. This makes the
quantification of the uncertainty in the model and the knowledge about a model’s ignorance key for the
utilization of learning approaches in safety-critical applications. Gaussian process models provide this
measure for their own imprecision and therefore gained attention in the control community [5, 6, 7].
These approaches heavily rely on error bounds of Gaussian process regression and are therefore
limited by the strict assumptions made in previous works on GP uniform error bounds [8, 9, 10, 11].

The main contribution of this paper is therefore the derivation of a novel GP uniform error bound,
which requires less prior knowledge and assumptions than previous approaches and is therefore
applicable to a wider range of problems. Furthermore, we derive a Lipschitz constant for the samples
of GPs and investigate the asymptotic behavior in order to demonstrate that arbitrarily small error
bounds can be guaranteed with sufficient computational resources and data. The proposed GP bounds
are employed to derive safety guarantees for unknown dynamical systems which are controlled based
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on a GP model. By employing Lyapunov theory [12], we prove that the closed-loop system - here
we take a robotic manipulator as example - converges to a small fraction of the state space and can
therefore be considered as safe.

The remainder of this paper is structured as follows: We briefly introduce Gaussian process regression
and discuss related error bounds in Section 2. The novel proposed GP uniform error bound, the
probabilistic Lipschitz constant and the asymptotic analysis are presented in Section 3. In Section 4
we show safety of a GP model based controller and evaluate it on a robotic manipulator in Section 5.

2 Background

2.1 Gaussian Process Regression and Uniform Error Bounds

Gaussian process regression is a Bayesian machine learning method based on the assumption that
any finite collection of random variables1 yi ∈ R follows a joint Gaussian distribution with prior
mean 0 and covariance kernel k : Rd × Rd → R+ [13]. Therefore, the variables yi are observations
of a sample function f : X ⊂ Rd → R of the GP distribution perturbed by zero mean Gaussian
noise with variance σ2

n ∈ R+,0. By concatenating N input data points xi in a matrix XN the
elements of the GP kernel matrix K(XN ,XN ) are defined as Kij = k(xi,xj), i, j = 1, . . . ,N
and k(XN ,x) denotes the kernel vector, which is defined accordingly. The probability distribution
of the GP at a point x conditioned on the training data concatenated in XN and yN is then given
as a normal distribution with mean νN (x) = k(x,XN )(K(XN ,XN ) + σ2

nIN )−1yN and variance
σ2
N (x,x′) = k(x,x′)− k(x,XN )(K(XN ,XN ) + σ2

nIN )−1k(XN ,x′).

A major reason for the popularity of GPs and related approaches in safety critical applications is the
existence of uniform error bounds for the regression error, which is defined as follows.

Definition 2.1. Gaussian process regression exhibits a uniformly bounded error on a compact
set X ⊂ Rd if there exists a function η(x) such that

|νN (x)− f(x)| ≤ η(x) ∀x ∈ X. (1)

If this bound holds with probability of at least 1− δ for some δ ∈ (0, 1), it is called a probabilistic
uniform error bound.

2.2 Related Work

For many methods closely related to Gaussian process regression, uniform error bounds are very
common. When dealing with noise-free data, i.e. in interpolation of multivariate functions, results
from the field of scattered data approximation with radial basis functions can be applied [14]. In fact,
many of the results from interpolation with radial basis functions can be directly applied to noise-free
GP regression with stationary kernels. The classical result in [15] employs Fourier transform methods
to derive an error bound for functions in the reproducing kernel Hilbert space (RKHS) attached to
the interpolation kernel. By additionally exploiting properties of the RKHS a uniform error bound
with increased convergence rate is derived in [16]. Typically, this form of bound crucially depends
on the so called power function, which corresponds to the posterior standard deviation of Gaussian
process regression under certain conditions [17]. In [18], a Lp error bound for data distributed on
a sphere is developed, while the bound in [19] extends existing approaches to functions from Sobolev
spaces. Bounds for anisotropic kernels and the derivatives of the interpolant are developed in [20].
A Sobolev type error bound for interpolation with Matérn kernels is derived in [21]. Moreover, it is
shown that convergence of the interpolation error implies convergence of the GP posterior variance.

Regularized kernel regression is a method which extends many ideas from scattered data interpolation
to noisy observations and it is highly related to Gaussian process regression as pointed out in [17].
In fact, the GP posterior mean function is identical to kernel ridge regression with squared cost

1Notation: Lower/upper case bold symbols denote vectors/matrices and R+/R+,0 all real positive/non-
negative numbers. N denotes all natural numbers, In the n× n identity matrix, the dot in ẋ the derivative of x
with respect to time and ‖ · ‖ the Euclidean norm. A function f(x) is said to admit a modulus of continuity
ω : R+ → R+ if and only if |f(x) − f(x′)| ≤ ω(‖x − x′‖). The τ -covering number M(τ ,X) of a set X
(with respect to the Euclidean metric) is defined as the minimum number of spherical balls with radius τ which
is required to completely cover X. Big O notation is used to describe the asymptotic behavior of functions.
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function [13]. Many error bounds such as [22] depend on the empirical L2 covering number and the
norm of the unknown function in the RKHS attached to the regression kernel. In [23], the effective
dimension of the feature space, in which regression is performed, is employed to derive a probabilistic
uniform error bound. The effect of approximations of the kernel, e.g. with the Nyström method, on
the regression error is analyzed in [24]. Tight error bounds using empirical L2 covering numbers are
derived under mild assumptions in [25]. Finally, error bounds for general regularization are developed
in [26], which depend on regularization and the RKHS norm of the function.

Using similar RKHS-based methods for Gaussian process regression, probabilistic uniform error
bounds depending on the maximal information gain and the RKHS norm have been developed in [8].
These constants pose a high hurdle which has prevented the rigorous application of this work in
control and typically heuristic constants without theoretical foundations are applied, see e.g. [27].
While regularized kernel regression allows a wide range of observation noise distributions, the bound
in [8] only holds for bounded sub-Gaussian noise. Based on this work an improved bound is derived
in [9] in order to analyze the regret of an upper confidence bound algorithm in multi-armed bandit
problems. Although these bounds are frequently used in safe reinforcement learning and control,
they suffer from several issues. On the one hand, they depend on constants which are very difficult
to calculate. While this is no problem for theoretical analysis, it prohibits the integration of these
bounds into algorithms and often estimates of the constants must be used. On the other hand, they
suffer from the general problem of RKHS approaches: The space of functions, for which the bounds
hold, becomes smaller the smoother the kernel is [19]. In fact, the RKHS attached to a covariance
kernel is usually small compared to the support of the prior distribution of a Gaussian process [28].

The latter issue has been addressed by considering the support of the prior distribution of the Gaussian
process as belief space. Based on bounds for the suprema of GPs [29] and existing error bounds for
interpolation with radial basis functions, a probabilistic uniform error bound for Kriging (alternative
term for GP regression for noise-free training data) is derived in [30]. However, the uniform error of
Gaussian process regression with noisy observations has not been analyzed with the help of the prior
GP distribution to the best of our knowledge.

3 Probabilistic Uniform Error Bound

While probabilistic uniform error bounds for the cases of noise-free observations and the restriction
to subspaces of a RKHS are widely used, they often rely on constants which are hard to determine
and are typically limited to unnecessarily small function spaces. The inherent probability distribution
of GPs, which is the largest possible function space for regression with a certain GP, has not been
exploited to derive uniform error bounds for Gaussian process regression with noisy observations.
Under the weak assumption of Lipschitz continuity of the covariance kernel and the unknown function,
a directly computable probabilistic uniform error bound is derived in Section 3.1. We demonstrate
how Lipschitz constants for unknown functions directly follow from the assumed distribution over the
function space in Section 3.2. Finally, we show that an arbitrarily small error bound can be reached
with sufficiently many and well-distributed training data in Section 3.3.

3.1 Exploiting Lipschitz Continuity of the Unknown Function

In contrast to the RKHS based approaches in [8, 9], we make use of the inherent probability
distribution over the function space defined by Gaussian processes. We achieve this through the
following assumption.
Assumption 3.1. The unknown function f(·) is a sample from a Gaussian process GP(0, k(x,x′))
and observations y = f(x) + ε are perturbed by zero mean i.i.d. Gaussian noise ε with variance σ2

n.

This assumption includes abundant information about the regression problem. The space of sample
functions F is limited through the choice of the kernel k(·, ·) of the Gaussian process. Using
Mercer’s decomposition [31] φi(x), i = 1, . . . ,∞ of the kernel k(·, ·), this space is defined through

F =

{
f(x) : ∃λi, i = 1, . . . ,∞ such that f(x) =

∞∑
i=1

λiφi(x)

}
, (2)

which contains all functions that can be represented in terms of the kernel k(·, ·). By choosing
a suitable class of covariance functions k(·, ·), this space can be designed in order to incorporate
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prior knowledge of the unknown function f(·). For example, for covariance kernels k(·, ·) which
are universal in the sense of [32], continuous functions can be learned with arbitrary precision.
Moreover, for the squared exponential kernel, the space of sample functions corresponds to the space
of continuous functions on X, while its RKHS is limited to analytic functions [28]. Furthermore,
Assumption 3.1 defines a prior GP distribution over the sample space F which is the basis for
the calculation of the posterior probability. The prior distribution is typically shaped by the
hyperparameters of the covariance kernel k(·, ·), e.g. slowly varying functions can be assigned a
higher probability than functions with high derivatives. Finally, Assumption 3.1 allows Gaussian
observation noise which is in contrast to the bounded noise required e.g. in [8, 9].

In addition to Assumption 3.1, we need Lipschitz continuity of the kernel k(·, ·) and the unknown
function f(·). We define the Lipschitz constant of a differentiable covariance kernel k(·, ·) as

Lk := max
x,x′∈X

∥∥∥∥[∂k(x,x′)
∂x1

. . . ∂k(x,x′)
∂xd

]T∥∥∥∥ . (3)

Since most of the practically used covariance kernels k(·, ·), such as squared exponential and Matérn
kernels, are Lipschitz continuous [13], this is a weak restriction on covariance kernels. However,
it allows us to prove continuity of the posterior mean function νN (·) and the posterior standard
deviation σN (·), which is exploited to derive a probabilistic uniform error bound in the following
theorem. The proofs for all following theorems can be found in the supplementary material.
Theorem 3.1. Consider a zero mean Gaussian process defined through the continuous covariance
kernel k(·, ·) with Lipschitz constant Lk on the compact set X. Furthermore, consider a continuous
unknown function f : X → R with Lipschitz constant Lf and N ∈ N observations yi satisfying
Assumption 3.1. Then, the posterior mean function νN (·) and standard deviation σN (·) of a Gaussian
process conditioned on the training data {(xi, yi)}Ni=1 are continuous with Lipschitz constant LνN
and modulus of continuity ωσN

(·) on X such that

LνN ≤ Lk
√
N
∥∥(K(XN ,XN ) + σ2

nIN )−1yN
∥∥ (4)

ωσN
(τ) ≤

√
2τLk

(
1 +N‖(K(XN ,XN ) + σ2

nIN )−1‖ max
x,x′∈X

k(x,x′)

)
. (5)

Moreover, pick δ ∈ (0, 1), τ ∈ R+ and set

β(τ) = 2 log

(
M(τ ,X)

δ

)
(6)

γ(τ) = (LνN + Lf ) τ +
√
β(τ)ωσN

(τ). (7)

Then, it holds that

P
(
|f(x)− νN (x)| ≤

√
β(τ)σN (x) + γ(τ), ∀x ∈ X

)
≥ 1− δ. (8)

The parameter τ is in fact the grid constant of a grid used in the derivation of the theorem. The error
on the grid can be bounded by exploiting properties of the Gaussian distribution [8] resulting in a
dependency on the number of grid points. Eventually, this leads to the constant β(τ) defined in (6)
since the covering number M(τ ,X) is the minimum number of points in a grid over X with grid
constant τ . By employing the Lipschitz constant LνN and the modulus of continuity ωσN

(·), which
are trivially obtained due Lipschitz continuity of the covariance kernel k(·, ·), as well as the Lipschitz
constant Lf , the error bound is extended to the complete set X, which results in (8).

Note, that most of the equations in Theorem 3.1 can be directly evaluated. Although our expression
for β(τ) depends on the covering number of X, which is in general difficult to calculate, upper bounds
can be computed trivially. For example, for a hypercubic set X ⊂ Rd the covering number can be
bounded by

M(τ ,X) ≤
(

1 +
r

τ

)d
, (9)

where r is the edge length of the hypercube. Furthermore, (4) and (5) depend only on the training
data and kernel expressions, which can be calculated analytically in general. Therefore, (8) can
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be computed for fixed τ and δ if an upper bound for the Lipschitz constant Lf of the unknown
function f(·) is known. Prior bounds on the Lipschitz constant Lf are often available for control
systems, e.g. based on simplified first order physical models. However, we demonstrate a method to
obtain probabilistic Lipschitz constants from Assumption 3.1 in Section 3.2. Therefore, it is trivial
to compute all expressions in Theorem 3.1 or upper bounds thereof, which emphasizes the high
applicability of Theorem 3.1 in safe control of unknown systems.

Moreover, it should be noted that τ can be chosen arbitrarily small such that the effect of the
constant γ(τ) can always be reduced to an amount which is negligible compared to

√
β(τ)σN (x).

Even conservative approximations of the Lipschitz constants LνN and Lf and a loose modulus of
continuity ωσN

(τ) do not affect the error bound (8) much since (6) grows merely logarithmically with
diminishing τ . In fact, even the bounds (4) and (5), which grow in the order of O(N) and O(N

1
2 ),

respectively, as shown in the proof of Theorem 3.3 and thus are unbounded, can be compensated
such that a vanishing uniform error bound can be proven under weak assumptions in Section 3.3.

3.2 Probabilistic Lipschitz Constants for Gaussian Processes

If little prior knowledge of the unknown function f(·) is given, it might not be possible to directly
derive a Lipschitz constant Lf on X. However, we indirectly assume a certain distribution of the
derivatives of f(·) with Assumption 3.1. Therefore, it is possible to derive a probabilistic Lipschitz
constant Lf from this assumption, which is described in the following theorem.
Theorem 3.2. Consider a zero mean Gaussian process defined through the covariance kernel k(·, ·)
with continuous partial derivatives up to the fourth order and partial derivative kernels

k∂i(x,x′) =
∂2

∂xi∂x′i
k(x,x′) ∀i = 1, . . . , d. (10)

Let L∂ik denote the Lipschitz constants of the partial derivative kernels k∂i(·, ·) on the set X with
maximal extension r = maxx,x′∈X ‖x− x′‖. Then, a sample function f(·) of the Gaussian process
is almost surely continuous on X and with probability of at least 1− δL, it holds that

Lf =

∥∥∥∥∥∥∥∥∥∥∥



√
2 log

(
2d
δL

)
max
x∈X

√
k∂1(x,x) + 12

√
6dmax

{
max
x∈X

√
k∂1(x,x),

√
rL∂1k

}
...√

2 log
(

2d
δL

)
max
x∈X

√
k∂d(x,x) + 12

√
6dmax

{
max
x∈X

√
k∂d(x,x),

√
rL∂dk

}


∥∥∥∥∥∥∥∥∥∥∥
(11)

is a Lipschitz constant of f(·) on X.

Note that a higher differentiability of the covariance kernel k(·, ·) is required compared to Theorem 3.1.
The reason for this is that the proof of Theorem 3.2 exploits the fact that the partial derivative
k∂i(·, ·) of a differentiable kernel is again a covariance function, which defines a derivative Gaussian
process [33]. In order to obtain continuity of the samples of these derivative processes, the derivative
kernels k∂i(·, ·) must be continuously differentiable [34]. Using the metric entropy criterion [34]
and the Borell-TIS inequality [35], we exploit the continuity of sample functions and bound their
maximum value, which directly translates into the probabilistic Lipschitz constant (11).

Note that all the values required in (11) can be directly computed. The maximum of the derivative ker-
nels k∂i(·, ·) as well as their Lipschitz constants L∂ik can be calculated analytically for many kernels.
Therefore, the Lipschitz constant obtained with Theorem 3.2 can be directly used in Theorem 3.1
through application of the union bound. Since the Lipschitz constant Lf has only a logarithmic depen-
dence on the probability δL, small error probabilities for the Lipschitz constant can easily be achieved.
Remark 3.1. The work in [36] derives also estimates for the Lipschitz constants. However, they only
take the Lipschitz constant of the posterior mean function, which neglects the probabilistic nature of
the GP and thereby underestimates the Lipschitz constants of samples of the GP.

3.3 Analysis of Asymptotic Behavior

In safe reinforcement learning and control of unknown systems an important question regards
the existence of lower bounds for the learning error because they limit the achievable control
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performance. It is clear that the available data and constraints on the computational resources pose
such lower bounds in practice. However, it is not clear under which conditions, e.g. requirements of
computational power, an arbitrarily low uniform error can be guaranteed. The asymptotic analysis of
the error bound, i.e. investigation of the bound (8) in the limit N →∞ can clarify this question. The
following theorem is the result of this analysis.

Theorem 3.3. Consider a zero mean Gaussian process defined through the continuous covariance
kernel k(·, ·) with Lipschitz constant Lk on the set X. Furthermore, consider an infinite data stream
of observations (xi, yi) of an unknown function f : X→ R with Lipschitz constant Lf and maximum
absolute value f̄ ∈ R+ on X which satisfies Assumption 3.1. Let νN (·) and σN (·) denote the mean
and standard deviation of the Gaussian process conditioned on the first N observations. If there
exists a ε > 0 such that the standard deviation satisfies σN (x) ∈ O

(
log(N)−

1
2−ε
)

, ∀x ∈ X, then it

holds for every δ ∈ (0, 1) that

P

(
sup
x∈X
‖νN (x)− f(x)‖ ∈ O(log(N)−ε)

)
≥ 1− δ. (12)

In addition to the conditions of Theorem 3.1 the absolute value of the unknown function is required
to be bounded by a value f̄ . This is necessary to bound the Lipschitz constant LνN of the posterior
mean function νN (·) in the limit of infinite training data. Even if no such constant is known, it
can be derived from properties of the GP under weak conditions similarly to Theorem 3.2. Based
on this restriction, it can be shown that the bound of the Lipschitz constant LνN grows at most
with rate O(N) using the triangle inequality and the fact that the squared norm of the observation
noise ‖ε‖2 follows a χ2

N distribution with probabilistically bounded maximum value [37]. Therefore,
we pick τ(N) ∈ O(N−2) such that γ(τ(N)) ∈ O(N−1) and β(τ(N)) ∈ O(log(N)) which
implies (12).

The condition on the convergence rate of the posterior standard deviation σN (·) in Theorem 3.3
can be seen as a condition for the distribution of the training data, which depends on the structure
of the covariance kernel. In [38, Corollary 3.2], the condition is formulated as follows: Let Bρ(x)
denote a set of training points around x with radius ρ > 0, then the posterior variance converges
to zero if there exists a function ρ(N) for which ρ(N) ≤ k(x,x)/Lk ∀N , limN→∞ ρ(N) = 0
and limN→∞

∣∣Bρ(N)(x)
∣∣ = ∞ holds. This is achieved, e.g. if a constant fraction of all samples

lies on the point x. In fact, it is straightforward to derive a similar condition for the uniform
error bounds in [8, 9]. However, due to their dependence on the maximal information gain, the
required decrease rates depend on the covariance kernel k(·, ·) and are typically higher. For example,
the posterior standard deviation of a Gaussian process with a squared exponential kernel must
satisfy σN (·) ∈ O

(
log(N)−

d
2−2
)

for [8] and σN (·) ∈ O
(

log(N)−
d+1
2

)
for [9].

4 Safety Guarantees for Control of Unknown Dynamical Systems

Safety guarantees for dynamical systems, in terms of upper bounds for the tracking error, are
becoming more and more relevant as learning controllers are applied in safety-critical applications
like autonomous driving or robots working in close proximity to humans [39, 40, 4]. We therefore
show how the results in Theorem 3.1 can be applied to control safely unknown dynamical systems. In
Section 4.1 we propose a tracking control law for systems which are learned with GPs. The stability
of the resulting controller is analyzed in Section 4.2.

4.1 Tracking Control Design

Consider the nonlinear control affine dynamical system

ẋ1 = x2, ẋ2 = f(x) + u, (13)

with state x = [x1 x2]ᵀ ∈ X ⊂ R2 and control input u ∈ U ⊆ R. While the structure of the
dynamics (13) is known, the function f(·) is not. However, we assume that it is a sample from a GP
with kernel k(·, ·). Systems of the form (13) cover a large range of applications including Lagrangian
dynamics and many physical systems.
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The task is to define a policy π : X→ U for which the output x1 tracks the desired trajectory xd(t)
such that the tracking error e = [e1 e2]ᵀ = x − xd with xd = [xd ẋd]

ᵀ vanishes over time,
i.e. limt→∞‖e‖ = 0. For notational simplicity, we introduce the filtered state r = λe1 + e2, λ ∈ R+.

A well-known method for tracking of control affine systems is feedback linearization [12], which
aims for a model-based compensation of the non-linearity f(·) using an estimate f̂(·) and then applies
linear control principles for the tracking. The feedback linearizing policy reads as

u = π(x) = −f̂(x) + ν, (14)

where the linear control law ν is the PD-controller

ν = ẍd − kcr − λe2, (15)

with control gain kc ∈ R+. This results in the dynamics of the filtered state

ṙ = f(x)− f̂(x)− kcr. (16)

Assuming training data of the real system yi = f(xi) + ε, i = 1, . . . ,N , ε ∼ N (0,σ2
n) are

available, we utilize the posterior mean function νN (·) for the model estimate f̂(·). This implies,
that observations of ẋ2 are corrupted by noise, while x is measured free of noise. This is of course
debatable, but in practice measuring the time derivative is usually realized with finite difference
approximations, which injects significantly more noise than a direct measurement.

4.2 Stability Analysis

Due to safety constraints, e.g. for robots interacting with humans, it is usually necessary to verify that
the model f̂(·) is sufficiently precise and the parameters of the controller kc,λ are chosen properly.
These safety certificates can be achieved if there exists an upper bound for the tracking error as
defined in the following.
Definition 4.1 (Ultimate Boundedness). The trajectory x(t) of a dynamical system ẋ = f(x,u) is
globally ultimately bounded, if there exist a positive constants b ∈ R+ such that for every a ∈ R+,
there is a T = T (a, b) ∈ R+ such that

‖x(t0)‖ ≤ a ⇒ ‖x(t)‖ ≤ b, ∀t ≥ t0 + T .

Since the solutions x(t) cannot be computed analytically, a stability analysis is necessary, which
allows conclusions regarding the closed-loop behavior without running the policy on the real
system [12].
Theorem 4.1. Consider a control affine system (13), where f(·) admits a Lipschitz constant Lf
on X ⊂ Rd. Assume that f(·) and the observations yi, i = 1, . . . ,N , satisfy the conditions of
Assumption 3.1. Then, the feedback linearizing controller (14) with f̂(·) = νN (·) guarantees with
probability 1− δ that the tracking error e converges to

B =

{
x ∈ X

∣∣∣∣∣‖e‖ ≤
√
β(τ)σN (x) + γ(τ)

kc
√
λ2 + 1

}
, (17)

with β(τ) and γ(τ) defined in Theorem 3.1.

Based on Lyapunov theory, it can be shown that the tracking error converges if the feedback
term |kcr| dominates the model error |f(·) − f̂(·)|. As Theorem 3.1 bounds the model error, the
set for which holds |kcr| >

√
β(τ)σN (x) + γ(τ) can be computed. It can directly be seen, that

the ultimate bound can be made arbitrarily small, by increasing the gains λ, kc or with more training
points to decrease σN (·). Computing the set B allows to check whether the controller (14) adheres
to the safety requirements.

5 Numerical Evaluation

We evaluate our theoretical results in two simulations.2 In Section 5.1, we investigate the effect of
applying Theorem 3.2 to determine a probabilistic Lipschitz constant for an unknown synthetic

2Matlab code is online available: https://gitlab.lrz.de/ga68car/GPerrorbounds4safecontrol
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Figure 1: Snapshots of the state trajectory (blue) as it approaches the desired trajectory (green). In low
uncertainty areas (yellow background), the set B (red) is significantly smaller then in high uncertainty
areas (blue background).
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Figure 2: Higher uncertainty in the model leads to a larger ultimate bound (red). Similarly, the
tracking error (blue) increases in areas with a less precise model.

system. Furthermore, we analyze the effect of unevenly distributed training samples on the tracking
error bound from Theorem 4.1. In Section 5.2, we apply the feedback linearizing controller (14) to a
tracking problem with a robotic manipulator.

5.1 Synthetic System with Unknown Lipschitz Constant Lf

As an example for a system of form (13), we consider f(x) = 1− sin(x1) + 1
1+exp(−x2)

. Based on a
uniform grid over [0 3]× [−3 3] the training set is formed of 81 points with σ2

n = 0.01. The reference
trajectory is a circle xd(t) = 2 sin(t) and the controller gains are kc = 2 and λ = 1. We choose a
probability of failure δ = 0.01, δL = 0.01 and set τ = 10−8. The state space is the rectangle X =
[−6 4]× [−4 4]. A squared exponential kernel with automatic relevance determination is utilized,
for which Lk and maxx,x′∈X k(x,x′) is derived analytically for the optimized hyperparameters. We
make use of Theorem 3.2 to estimate the Lipschitz constant Lf , and it turns out to be a conservative
bound (factor 10 ∼ 100). However, this is not crucial, because τ can be chosen arbitrarily small
and γ(τ) is dominated by

√
β(τ)ωσN

(τ). As Theorems 3.1 and 3.2 are subsequently utilized in this
example, a union bound approximation can be applied to combine δ and δL.

The results are shown in Figs. 1 and 2. Both plots show, that the safety bound here is rather
conservative, which also results from the fact that the violation probability was set to 1%.

5.2 Robotic Manipulator with 2 Degrees of Freedom

We consider a planar robotic manipulator in the z1-z2-plane with 2 degrees of freedom (DoFs), with
unit length and unit masses / inertia for all links. For this example, we consider Lf to be known and
extend Theorem 3.1 to the multidimensional case using the union bound. The state space is here
four dimensional [q1 q̇1 q2 q̇2] and we consider X = [−π π]4. The 81 training points are distributed
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Figure 3: The task space of the robot (left) shows the robot is guaranteed to remain in B (red) after a
transient phase. Hence, the remaining state space X \ B (green) can be considered as safe. The joint
angles and velocities (right) converge to the desired trajectories (dashed lines) over time.

in [−1 1]4 and the control gain is kc = 7, while other constants remain the same as in Section 5.1.
The desired trajectories for both joints are again sinusoidal as shown in Fig. 3 on the right side. The
robot dynamics are derived according to [41, Chapter 4].

Theorem 3.1 allows to derive an error bound in the joint space of the robot according to Theorem 4.1,
which can be transformed into the task space as shown in Fig. 3 on the left. Thus, based on the
learned (initially unknown) dynamics, it can be guaranteed, that the robot will not leave the depicted
area and can thereby be considered as safe.

Previous error bounds for GPs are not applicable to this practical setting, because they i) do not allow
the observation noise on the training data to be Gaussian [8], which is a common assumption in
robotics, ii) utilize constants which cannot be computed efficiently (e.g. maximal information gain
in [42]) or iii) make assumptions difficult to verify in practice (e.g. the RKHS norm of the unknown
dynamical system [6]).

6 Conclusion

This paper presents a novel uniform error bound for Gaussian process regression. By exploiting
the inherent probability distribution of Gaussian processes instead of the reproducing kernel Hilbert
space attached to the covariance kernel, a wider class of functions can be considered. Furthermore,
we demonstrate how probabilistic Lipschitz constants can be estimated from the GP distribution and
derive sufficient conditions to reach arbitrarily small uniform error bounds. We employ the derived
results to show safety bounds for a tracking control algorithm and evaluate them in simulation for a
robotic manipulator.
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