
Concerns regarding Theorem 3.3 Thank you for raising the interesting question on the conditions for asymptotic1

convergence to which an answer is provided in [1]. There it read as follows: Let Bρ(x) denote a set of training2

points around x with radius ρ > 0, then the posterior variance converges to zero if there exists a function ρ(N) for3

which ρ(N)≤k(x,x)/Lk ∀N , limN→∞ρ(N)=0, limN→∞
∣∣Bρ(N)(x)

∣∣=∞ holds (Lk: Lipschitz constant of k(·, ·)).4

This is achieved e.g. if a constant fraction of all samples lies on the point x. We will add the reference [1] and a5

discussion on the conditions in the paper. In order to address the concerns of Reviewer #2, we will improve the clarity of6

Theorem 3.3 by reformulating lines 190-191 as follows: "Furthermore, consider an infinite data stream of observations7

(xi, yi) of an unknown function f : X→R with . . . ". Making Theorem 3.3 quantitative as suggested by Reviewer #28

follows directly from its proof and we will substitute (11) by P (supx∈X ‖νN (x)− f(x)‖∈O(log(N)−ε)) ≥ 1− δ.9

Boundedness of (3) and (4) As expected by Reviewer #2, (3) and (4) grow with the order of N
1
2 (see supplementary10

material (42), (43)). Although unbounded, they grow slow enough to allow the proof of Theorem 3.3 such that the main11

contribution of these bounds lies in the asymptotic analysis. However, in practical applications there are various ways to12

estimate tighter constants such as e.g. global optimization. We will add a brief discussion on this in the updated paper.13

Noise on input data Reviewer #1 pointed out, that Assumption 3.1. might be violated in the control example due to14

noise on input data . However, in the presented setup, there is no noise on the input because f(·) does not map from15

current state to next state, but from the state x to the time derivative of state x2. Thus input data x and output data16

ẋ2 are measured with two different sensors. Here we made the assumption, that observations of ẋ2 are corrupted by17

noise, while x is measured noise free, which is of course debatable. But in practice, measuring the time derivative is18

usually realized with finite difference approximations, which injects significantly more noise than a direct measurement.19

Therefore, Assumption 3.1 is valid for our experimental setup. We will include the given reasoning in the updated paper.20

Relation to existing approaches We disagree with Reviewer #2 regarding the originality and significance of our21

contribution. Even though the bounds in Theorem 3.1 and [2, Theorem 6] look similar, their practical applicability is22

very different. Once the prior is fixed, all parameters for (7) can be easily computed such that a reliable error bound can23

be determined. In contrast, [2, Theorem 6] requires the information gain and a bound on the RKHS norm, which is24

assumed to be known (belonging to an RKHS does not suffice to compute the uniform error bound). In practice, we25

have observed that these parameters pose a high hurdle which has prevented the rigorous application of this theorem in26

control applications and typically heuristic constants without theoretical foundations are applied, see e.g. [3]. Therefore,27

even though both approaches have limits regarding their assumptions, Theorem 3.1 can be rigorously applied in practice,28

whereas this has been an issue with [2, Theorem 6]. We thank Reviewer #3 for pointing out the previous work [4] which29

derives a Lipschitz bound approximation for GPs. Although we think this work suggests a valuable estimator for the30

Lipschitz constant, it does not provide any theoretical guarantees. We will discuss this difference in the updated paper.31

Previous work require bounded observation noise Reviewer # 2 argues, that previous work, e.g. [2] are capable of32

dealing with unbounded noise. Even though [2] generally uses Gaussian noise, the (for this work) most relevant result33

in [2, Theorem 6] mentions the condition that ”the noise variables εt are uniformly bounded by σ”.34

Minor comments Thanks for pointing out various typos, we will fix all of them. As suggested by Reviewer #1, we35

will add a definition of a uniform error bound, extend the proof sketch for Theorem 3.2 and add sketches in the same36

style for Theorem 3.1, 3.3 and 4.1. Furthermore, reviewer #3 asked to consider a more complex control example:37

Generally, this is possible within this framework, where (12) becomes ẋ1 = x2, ẋ2 = ẋ3, · · · ẋd = f(x) + u,38

with x = [x1 x2 · · · xd]ᵀ using a definition r = [λᵀ 1]e where the coefficients in λ ∈ Rd−1 are Hurwitz. The robotic39

example can also directly be extended to arbitrary degrees of freedoms, however, for the sake of focus on the main40

results on the error bounds, we would keep the current control examples.41
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