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Abstract

Variational Bayes (VB) is a scalable alternative to Markov chain Monte Carlo
(MCMC) for Bayesian posterior inference. Though popular, VB comes with few
theoretical guarantees, most of which focus on well-specified models. However,
models are rarely well-specified in practice. In this work, we study VB under
model misspecification. We prove the VB posterior is asymptotically normal and
centers at the value that minimizes the Kullback-Leibler (KL) divergence to the true
data-generating distribution. Moreover, the VB posterior mean centers at the same
value and is also asymptotically normal. These results generalize the variational
Bernstein–von Mises theorem [31] to misspecified models. As a consequence of
these results, we find that the model misspecification error dominates the variational
approximation error in VB posterior predictive distributions. It explains the widely
observed phenomenon that VB achieves comparable predictive accuracy with
MCMC even though VB uses an approximating family. As illustrations, we study
VB under three forms of model misspecification, ranging from model over-/under-
dispersion to latent dimensionality misspecification. We conduct two simulation
studies that demonstrate the theoretical results.

1 Introduction

Bayesian modeling uses posterior inference to discover patterns in data. Begin by positing a proba-
bilistic model that describes the generative process; it is a joint distribution of latent variables and the
data. The goal is to infer the posterior, the conditional distribution of the latent variables given the data.
The inferred posterior reveals hidden patterns of the data and helps form predictions about new data.

For many models, however, the posterior is computationally difficult—it involves a marginal proba-
bility that takes the form of an integral. Unless that integral admits a closed-form expression (or the
latent variables are low-dimensional) it is intractable to compute.

To circumvent this intractability, investigators rely on approximate inference strategies such as varia-
tional Bayes (VB). VB approximates the posterior by solving an optimization problem. First propose
an approximating family of distributions that contains all factorizable densities; then find the member
of this family that minimizes the KL divergence to the (computationally intractable) exact posterior.
Take this minimizer as a substitute for the posterior and carry out downstream data analysis.

VB scales to large datasets and works empirically in many difficult models. However, it comes with
few theoretical guarantees, most of which focus on well-specified models. For example, Wang & Blei
[31] establish the consistency and asymptotic normality of the VB posterior, assuming the data is gen-
erated by the probabilistic model. Under a similar assumption of a well-specified model, Zhang & Gao
[36] derive the convergence rate of the VB posterior in settings with high-dimensional latent variables.

But as George Box famously quipped, “all models are wrong.” Probabilistic models are rarely well-
specified in practice. Does VB still enjoy good theoretical properties under model misspecification?
What about the VB posterior predictive distributions? These are the questions we study in this paper.
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Figure 1: Why does the VB posterior converge to a point mass at θ∗? The intuition behind this figure
is described in § 1. In the figure, q∗(x) is the optimal VB posterior given x1:1000.

Main idea. We study VB under model misspecification. Under suitable conditions, we show that (1)
the VB posterior is asymptotically normal, centering at the value that minimizes the KL divergence
from the true distribution; (2) the VB posterior mean centers at the same value and is asymptotically
normal; (3) in the variational posterior predictive, the error due to model misspecification dominates
the error due to the variational approximation.

Concretely, consider n data points x1:n independently and identically distributed with a true density∏n
i=1 p0(xi). Further consider a parametric probabilistic model with a d-dimensional latent variable

θ = θ1:d; its density belongs to the family {∏n
i=1 p(xi | θ) : θ ∈ Rd}.1 When the model is

misspecified, it does not contain the true density, p0(x) /∈ {p(x | θ) : θ ∈ Θ}.
Placing a prior p(θ) on the latent variable θ, we infer its posterior p(θ |x1:n) using VB. Mean-field
VB considers an approximating family Q that includes all factorizable densities

Q =
{
q(θ) : q(θ) =

∏d
i=1 qi(θi)

}
.

It then finds the member that minimizes the KL divergence to the exact posterior p(θ |x1:n),
q∗(θ) = arg min

q∈Q
KL(q(θ)||p(θ |x1:n)). (1)

The global minimizer q∗(θ) is called the VB posterior. (Here we focus on mean-field VB. The results
below apply to VB with more general approximating families as well.)

We first study the asymptotic properties of the VB posterior and its mean. Denote θ∗ as the value of θ
that minimizes the KL divergence to the true distribution,

θ∗ = arg min
θ

KL(p0(x)||p(x | θ)). (2)

Note this KL divergence is different from the variational objective (Eq. 1); it is a property of the model
class’s relationship to the true density. We show that, under standard conditions, the VB posterior q∗(θ)
converges in distribution to a point mass at θ∗. Moreover, the VB posterior of the rescaled and cen-
tered latent variable θ̃ =

√
n(θ − θ∗) is asymptotically normal. Similar asymptotics hold for the VB

posterior mean θ̂VB =
∫
θ · q∗(θ) dθ: it converges almost surely to θ∗ and is asymptotically normal.

Why does the VB posterior converge to a point mass at θ∗? The reason rests on three observations.
(1) The classical Bernstein–von Mises theorem under model misspecification [18] says that the exact
posterior p(θ |x1:n) converges to a point mass at θ∗. (2) Because point masses are factorizable,
this limiting exact posterior belongs to the approximating family Q: if θ∗ = (θ∗1 , θ

∗
2 , θ
∗
3), then

δθ∗(θ) = δθ∗1 (θ1) · δθ∗2 (θ2) · δθ∗3 (θ3). (3) VB seeks the member in Q that is closest to the exact
posterior (which also belongs to Q, in the limit). Therefore, the VB posterior also converges to a
point mass at θ∗. Figure 1 illustrates this intuition—as we see more data, the posterior gets closer to
the variational family. We make this argument rigorous in § 2.

The asymptotic characterization of the VB posterior leads to an interesting result about the VB
approximation of the posterior predictive. Consider two posterior predictive distributions under the
misspecified model. The VB predictive density is formed with the VB posterior,

ppred
VB (xnew |x1:n) =

∫
p(xnew | θ) · q∗(θ) dθ. (3)

1A parametric probabilistic model means the dimensionality of the latent variables do not grow with the
number of data points. We extend these results to more general probabilistic models in § 2.3.
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The exact posterior predictive density is formed with the exact posterior,

ppred
exact(xnew |x1:n) =

∫
p(xnew | θ) · p(θ |x1:n) dθ. (4)

Now define the model misspecification error to be the total variation (TV) distance between the exact
posterior predictive and the true density p0(x). (When the model is well-specified, it converges to zero
[27].) Further define the variational approximation error is the TV distance between the variational
predictive and the exact predictive; it measures the price of the approximation when using the VB
posterior to form the predictive. Below we prove that the model misspecification error dominates
the variational approximation error—the variational approximation error vanishes as the number of
data points increases. This result explains a widely observed phenomenon: VB achieves comparable
predictive accuracy as MCMC even though VB uses an approximating family [4, 5, 7, 20].

The contributions of this work are to generalize the variational Bernstein–von Mises theorem [31]
to misspecified models and to further study the VB posterior predictive distribution. § 2.1 and 2.2
details the results around VB in parametric probabilistic models. § 2.3 generalizes the results to
probabilistic models where the dimensionality of latent variables can grow with the number of data
points. § 2.4 illustrates the results in three forms of model misspecification, including underdispersion
and misspecification of the latent dimensionality. § 3 corroborates the theoretical findings with
simulation studies on generalized linear mixed model (GLMM) and latent Dirichlet allocation (LDA).

Related work. This work draws on two themes around VB and model misspecification.

The first theme is a body of work on the theoretical guarantees of VB. Many researchers have studied
the properties of VB posteriors on particular Bayesian models, including linear models [23, 34],
exponential family models [28, 29], generalized linear mixed models [14, 15, 22], nonparametric
regression [10], mixture models [30, 32], stochastic block models [3, 35], latent Gaussian models
[25], and latent Dirichlet allocation [13]. Most of these works assume well-specified models, with a
few exceptions including [23, 25, 26].

In another line of work, Wang & Blei [31] establish the consistency and asymptotic normality of VB
posteriors; Zhang & Gao [36] derive their convergence rate; and Pati et al. [24] provide risk bounds
of VB point estimates. Further, Alquier & Ridgway [1], Alquier et al. [2], Yang et al. [33] study
risk bounds for variational approximations of Gibbs posteriors and fractional posteriors, Chérief-
Abdellatif et al. [9] study VB for model selection in mixtures, Jaiswal et al. [17] study α-Rényi-
approximate posteriors, and Fan et al. [11] and Ghorbani et al. [13] study generalizations of VB via
TAP free energy. Again, most of these works focus on well-specified models. In contrast, we focus
on VB in general misspecified Bayesian models and characterize the asymptotic properties of the
VB posterior and the VB posterior predictive. Note, when the model is well-specified, our results
recover the variational Bernstein–von Mises theorem of [31], but we further generalize their theory
and extend it to analyzing the posterior predictive distribution.

The second theme is about characterizing posterior distributions under model misspecification.
Allowing for model misspecification, Kleijn et al. [18] establishes consistency and asymptotic
normality of the exact posterior in parametric Bayesian models; Kleijn et al. [19] studies exact
posteriors in infinite-dimensional Bayesian models. We leverage these results around exact posteriors
to characterize VB posteriors and VB posterior predictive distributions under model misspecification.

2 Variational Bayes (VB) under model misspecification

§ 2.1 and 2.2 examine the asymptotic properties of VB under model misspecification and for paramet-
ric models. § 2.3 extends these results to more general models, where the dimension of the latent
variables grows with the data. § 2.4 illustrates the results with three types of model misspecification.

2.1 The VB posterior and the VB posterior mean

We first study the VB posterior q∗(θ) and its mean θ̂VB. Assume iid data from a density xi ∼ p0 and
a parametric model p(x | θ), i.e., a model where the dimension of the latent variables does not grow
with the data. We show that the optimal variational distribution q∗(θ) (Eq. 1) is asymptotically normal
and centers at θ∗ (Eq. 2), which minimizes the KL between the model pθ and the true data generating
distribution p0. The VB posterior mean θ̂VB also converges to θ∗ and is asymptotically normal.
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Before stating these asymptotic results, we make a few assumptions about the prior p(θ) and the
probabilistic model {p(x | θ) : θ ∈ Θ}. These assumptions resemble the classical assumptions in the
Bernstein–von Mises theorems [18, 27].
Assumption 1 (Prior mass). The prior density p(θ) is continuous and positive in a neighborhood of
θ∗. There exists a constant Mp > 0 such that |(log p(θ))′′| ≤Mpe

|θ|2 .

Assumption 1 roughly requires that the prior has some mass around the optimal θ∗. It is a necessary
assumption: if θ∗ does not lie in the prior support then the posterior cannot be centered there.
Assumption 1 also requires a tail condition on log p(θ): the second derivative of log p(θ) can not
grow faster than exp(|θ|2). This is a technical condition that many common priors satisfy.
Assumption 2 (Consistent testability). For every ε > 0 there exists a sequence of tests φn such that∫

φn(x1:n)

n∏
i=1

p0(xi) dx1:n → 0, (5)

sup
{θ:||θ−θ∗||≥ε}

∫
(1− φn(x1:n)) ·

[
n∏
i=1

p(xi | θ)
p(xi | θ∗)

p0(xi)

]
dx1:n → 0. (6)

Assumption 2 roughly requires θ∗ to be the unique optimum of the KL divergence to the truth (Eq. 2).
In other words, θ∗ is identifiable from fitting the probabilistic model p(x | θ) to the data drawn
from p0(x). To satisfy this condition, it suffices to have the likelihood ratio p(x | θ1)/p(x | θ2) be a
continuous function of x for all θ1, θ2 ∈ Θ (Theorem 3.2 of [18]).

Assumption 1 and Assumption 2 are classical conditions required for the asymptotic normality of the
exact posterior Kleijn et al. [18]. They ensure that, for every sequence Mn →∞,∫

Θ

1(||θ − θ∗|| > δnMn) · p(θ |x1:n) dθ
P0→ 0, (7)

for some constant sequence δn → 0. In other words, the exact posterior p(θ |x) occupies vanishing
mass outside of the δnMn-sized neighborhood of θ∗. We note that the sequence δn also plays a role
in the following local asymptotic normality (LAN) assumption.
Assumption 3 (Local asymptotic normality (LAN)). For every compact set K ⊂ Rd, there exist
random vectors ∆n,θ∗ bounded in probability and nonsingular matrices Vθ∗ such that

sup
h∈K

∣∣∣∣log
p(x | θ∗ + δnh)

p(x | θ∗) − h>Vθ∗∆n,θ∗ +
1

2
h>Vθ∗h

∣∣∣∣ P0→ 0, (8)

where δn is a d × d diagonal matrix that describes how fast each dimension of the θ posterior
converges to a point mass. We note that δn → 0 as n→∞.

This is a key assumption that characterizes the limiting normal distribution of the VB posterior. The
quantities ∆n,θ∗ and Vθ∗ determine the normal distribution that the VB posterior will converge to.
The constant δn determines the convergence rate of the VB posterior to a point mass. Many parametric
models with a differentiable likelihood satisfy LAN. We provide a more technical description on how
to verify Assumption 3 in Appendix A.

With these assumptions, we establish the asymptotic properties of the VB posterior and the VB
posterior mean.
Theorem 1. (Variational Bernstein–von Mises Theorem under model misspecification, parametric
model version) Under Assumptions 1 to 3,

1. The VB posterior converges to a point mass at θ∗:

q∗(θ)
d→ δθ∗ . (9)

2. Denote θ̃ = δ−1
n (θ − θ∗) as the re-centered and re-scaled version of θ. The VB posterior of θ̃ is

asymptotically normal: ∥∥∥q∗(θ̃)−N (θ̃ ; ∆n,θ∗ , V
′−1
θ∗ ))

∥∥∥
TV

P0→ 0. (10)

where V ′θ∗ is diagonal and has the same diagonal terms as the exact posterior precision matrix Vθ∗ .
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3. The VB posterior mean converges to θ∗ almost surely:

θ̂VB
a.s.→ θ∗. (11)

4. The VB posterior mean is also asymptotically normal:

δ−1
n (θ̂VB − θ∗) d→ ∆∞,θ∗ , (12)

where ∆∞,θ∗ is the limiting distribution of the random vectors ∆n,θ∗: ∆n,θ∗
d→ ∆∞,θ∗ . Its

distribution is ∆∞,θ∗ ∼ N
(
0, V −1

θ∗ EP0

[
(log p(x | θ∗))′(log p(x | θ∗))′>

]
V −1
θ∗
)
.

Proof sketch. The proof structure of Theorem 1 mimics Wang & Blei [31] but extends it to allow
for model misspecification. In particular, we take care of the extra technicality due to the difference
between the true data-generating measure p0(x) and the probabilistic model we fit {p(x | θ) : θ ∈ Θ}.
The proof proceeds in three steps:

1. Characterize the asymptotic properties of the exact posterior:

p(θ |x)
d→ δθ∗ ,∥∥∥p(θ̃ |x)−N (∆n,θ∗ , V

−1
θ∗ )

∥∥∥
TV

P0→ 0.

This convergence is due to Assumptions 1 and 2, and the classical Bernstein–von Mises theorem
under model misspecification [18].

2. Characterize the KL minimizer of the limiting exact posterior in the variational approximating
family Q:

arg min
q∈Q

KL(q(θ) || p(θ |x))
d→ δθ∗ ,∥∥∥∥arg min

q∈Q
KL(q(θ̃) || p(θ̃ |x))−N (θ̃ ; ∆n,θ∗ , V

′−1
θ∗ )

∥∥∥∥
TV

P0→ 0,

where V ′ is diagonal and shares the same diagonal terms as V . The intuition of this step is due to
the observation that the point mass is factorizable: δθ∗ ∈ Q. We prove it via bounding the mass
outside a neighborhood of θ∗ under the KL minimizer q∗(θ).

3. Show that the VB posterior approaches the KL minimizer of the limiting exact posterior as the
number of data points increases: ∥∥∥∥∥q∗(θ)− arg min

q∈Qd

KL(q(·)||δθ∗)
∥∥∥∥∥

TV

P0→ 0.∥∥∥∥∥q∗(θ̃)− arg min
q∈Qd

KL(q(·)||N (· ; ∆n,θ∗ , V
−1
θ∗ ))

∥∥∥∥∥
TV

P0→ 0.

The intuition of this step is that if two distributions are close, then their KL minimizer should
also be close. In addition, the VB posterior is precisely the KL minimizer to the exact posterior:
q∗(θ) = arg minq∈Qd KL(q(θ)||p(θ | x)). We leverage Γ-convergence to prove this claim.

These three steps establish the asymptotic properties of the VB posterior under model misspecification
(Theorem 1.1 and Theorem 1.2): the VB posterior converges to δθ∗ and is asymptotically normal.

To establish the asymptotic properties of the VB posterior mean (Theorem 1.3 and Theorem 1.4), we
follow the classical argument in Theorem 2.3 of Kleijn et al. [18], which leverages that the posterior
mean is the Bayes estimator under squared loss. The full proof is in Appendix D.

Theorem 1 establishes the asymptotic properties of the VB posterior under model misspecification: it
is asymptotically normal and converges to a point mass at θ∗, which minimizes the KL divergence
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to the true data-generating distribution. It also shows that the VB posterior mean shares similar
convergence and asymptotic normality.

Theorem 1 states that, in the infinite data limit, the VB posterior and the exact posterior converge
to the same point mass. The reason for this coincidence is (1) the limiting exact posterior is a point
mass and (2) point masses are factorizable and hence belong to the variational approximating family
Q. In other words, the variational approximation has a negligible effect on the limiting posterior.

Theorem 1 also shows that the VB posterior has a different covariance matrix from the exact posterior.
The VB posterior has a diagonal covariance matrix but the covariance of the exact posterior is not
necessarily diagonal. However, the inverse of the two covariance matrices match in their diagonal
terms. This fact implies that the entropy of the limiting VB posterior is always smaller than or equal
to that of the limiting exact posterior (Lemma 8 of Wang & Blei [31]), which echoes the fact that the
VB posterior is under-dispersed relative to the exact posterior.

We remark that the under-dispersion of the VB posterior does not necessarily imply under-coverage
of the VB credible intervals. The reason is that, under model misspecification, even the credible
intervals of the exact posterior cannot guarantee coverage [18]. Depending on how the model is
misspecified, the credible intervals derived from the exact posterior can be arbitrarily under-covering
or over-covering. Put differently, under model misspecification, neither the VB posterior nor the exact
posterior are reliable for uncertainty quantification.

Consider a well-specified model, where p0(x) = p(x | θ0) for some θ0 ∈ Θ and θ∗ = θ0. In this case,
Theorem 1 recovers the variational Bernstein–von Mises theorem [31]. That said, Assumptions 2
and 3 are stronger than their counterparts for well-specified models; the reason is that P0 is usually less
well-behaved than Pθ0 . Assumptions 2 and 3 more closely align with those required in characterizing
the exact posteriors under misspecification (Theorem 2.1 of [18]).

2.2 The VB posterior predictive distribution

We now study the posterior predictive induced by the VB posterior. As a consequence of Theorem 1,
the error due to model misspecification dominates the error due to the variational approximation.

Recall that ppred
VB (xnew |x1:n) is the VB posterior predictive (Eq. 3), ppred

true (xnew |x1:n) is the exact
posterior predictive (Eq. 4), p0(·) is the true data generating density, and the TV distance between
two densities q1 and q2 is ‖q1(x)− q2(x)‖TV , 1

2

∫
|q1(x)− q2(x)|dx.

Theorem 2. (The VB posterior predictive distribution) If the probabilistic model is misspecified,
i.e. ‖p0(x)− p(x | θ∗)‖TV > 0, then the model approximation error dominates the variational
approximation error: ∥∥∥ppred

VB (xnew |x1:n)− ppred
exact(xnew |x1:n)

∥∥∥
TV∥∥∥p0(xnew)− ppred

exact(xnew |x1:n)
∥∥∥

TV

P0→ 0, (13)

under the regularity condition
∫
∇2
θp(x | θ∗) dx <∞ and Assumptions 1 to 3.

Proof sketch. Theorem 2 is due to two observations: (1) in the infinite data limit, the VB posterior
predictive converges to the exact posterior predictive and (2) in the infinite data limit, the exact
posterior predictive does not converge to the true data-generating distribution because of model
misspecification. Taken together, these two observations give Eq. 13.

The first observation comes from Theorem 1, which implies that both the VB posterior and the exact
posterior converge to the same point mass δθ∗ in the infinite data limit. Thus, they lead to similar
posterior predictive distributions, which gives∥∥∥ppred

VB (xnew |x1:n)− ppred
true (xnew |x1:n)

∥∥∥
TV

P0→ 0. (14)

Moreover, the model is assumed to be misspecified ‖p0(x)− p(x | θ∗)‖TV > 0, which implies∥∥∥p0(xnew)− ppred
exact(xnew |x1:n)

∥∥∥
TV
→ c0 > 0. (15)

This fact shows that the model misspecification error does not vanish in the infinite data limit. Eq. 14
and Eq. 15 imply Theorem 2. The full proof of Theorem 2 is in Appendix E.
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As the number of data points increases, Theorem 2 shows that the model misspecification error
dominates the variational approximation error. The reason is that both the VB posterior and the exact
posterior converge to the same point mass. So, even though the VB posterior has an under-dispersed
covariance matrix relative to the exact posterior, both covariance matrices shrink to zero in the infinite
data limit; they converge to the same posterior predictive distributions.

Theorem 2 implies that when the model is misspecified, VB pays a negligible price in its posterior
predictive distribution. In other words, if the goal is prediction, we should focus on finding the
correct model rather than on correcting the variational approximation. For the predictive ability of
the posterior, the problem of an incorrect model outweighs the problem of an inexact inference.

Theorem 2 also explains the phenomenon that VB predicts well despite being an approximate inference
method. As models are rarely correct in practice, the error due to model misspecification often
dominates the variational approximation error. Thus, on large datasets, VB can achieve comparable
predictive performance, even when compared to more exact Bayesian inference algorithms (like long-
run MCMC) that do not use approximating families [4, 5, 7, 20].

2.3 Variational Bayes (VB) in misspecified general probabilistic models

§ 2.1 and 2.2 characterize the VB posterior, the VB posterior mean, and the VB posterior predictive
distribution in misspecified parametric models. Here we extend these results to a more general class
of (misspecified) models with both global latent variables θ = θ1:d and local latent variables z = z1:n.
This more general class allows the local latent variables to grow with the size of the data. The key
idea is to reduce this class to the simpler parametric models, via what we call the “variational model.”

Consider the following probabilistic model with both global and local latent variables for n data
points x = x1:n,

p(θ, x, z) = p(θ)
∏n
i=1 p(zi | θ)p(xi | zi, θ). (16)

The goal is to infer p(θ |x), the posterior of the global latent variables.2

VB approximates the posterior of both global and local latent variables p(θ, z |x) by minimizing its
KL to the exact posterior:

q∗(θ)q∗(z) = q∗(θ, z) = arg min
q∈Q

KL(q(θ, z)||p(θ, z |x)), (17)

where Q = {q : q(θ, z) =
∏d
i=1 qθi(θi)

∏n
j=1 qzj (zj)} is the approximating family that contains all

factorizable densities. (The first equality is because q∗(θ, z) belongs to the factorizable family Q.)
The VB posterior of the global latent variables θ1:d is q∗(θ).

VB for general probabilistic models operates in the same way as for parametric models, except we
must additionally approximate the posterior of the local latent variables. Our strategy is to reduce the
general probabilistic model with VB to a parametric model (§ 2.1). Consider the so-called variational
log-likelihood [31],

log pVB(x | θ) = η(θ) + max
q(z)∈Q

Eq(z) [log p(x, z | θ)− log q(z)] , (18)

where η(θ) is a log normalizer. Now construct the variational model with pVB(x | θ) as the likelihood
and θ as the global latent variable. This model no longer contains local latent variables; it is a
parametric model.

Using the same prior p(θ), the variational model leads to a posterior on the global latent variable

π∗(θ |x) ,
p(θ)pVB(x | θ)∫
p(θ)pVB(x | θ) dθ

. (19)

As shown in [31], the VB posterior, which optimizes the variational objective, is close to π∗(θ |x),

q∗(θ) = arg min
q∈Q

KL(q(θ)||π∗(θ |x)) + oP0
(1). (20)

2This model has one local latent variable per data point. But the results here extend to probabilistic models
with z = z1:dn and non i.i.d data x = x1:n. We only require that d stays fixed as n grows but dn grows with n.
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Notice that Eq. 20 resembles Eq. 1. This observation leads to a reduction of VB in general probabilistic
models to VB in parametric probabilistic models with an alternative likelihood pVB(x | θ). This
perspective then allows us to extend Theorems 1 and 2 in § 2.1 to general probabilistic models.

More specifically, we define the optimal value θ∗ as in parametric models:

θ∗
∆
= arg max KL(p0(x)||pVB(θ ; x)). (21)

This definition of θ∗ coincides with the definition in parametric models (Eq. 2) when the model is
indeed parametric.

Next we state the assumptions and results for the VB posterior and the VB posterior mean for general
probabilistic models.
Assumption 4 (Consistent testability). For every ε > 0 there exists a sequence of tests φn such that∫

φn(x)p0(x) dx→ 0, (22)

sup
{θ:||θ−θ∗||≥ε}

∫
(1− φn(x))

pVB(x | θ)
pVB(x | θ∗)p0(x) dx→ 0. (23)

Assumption 5 (Local asymptotic normality (LAN)). For every compact set K ⊂ Rd, there exist
random vectors ∆n,θ∗ bounded in probability and nonsingular matrices Vθ∗ such that

sup
h∈K

∣∣∣∣log
pVB(x | θ∗ + δnh)

pVB(x | θ∗) − h>Vθ∗∆n,θ∗ +
1

2
h>Vθ∗h

∣∣∣∣ P0→ 0, (24)

where δn is a d× d diagonal matrix, where δn → 0 as n→∞.

Assumptions 4 and 5 are analogous to Assumptions 2 and 3 except that we replace the model
p(x | θ) with the variational model pVB(x | θ). In particular, Assumption 6 is a LAN assumption on
probabilistic models with local latent variables, i.e. nonparametric models. While the LAN assumption
does not hold generally in nonparametric models with infinite-dimensional parameters [12], there are a
few nonparametric models that have been shown to satisfy the LAN assumption, including generalized
linear mixed models [15], stochastic block models [3], and mixture models [32]. We illustrate how to
verify Assumptions 4 and 5 for specific models in Appendix C. We refer the readers to Section 3.4 of
Wang & Blei [31] for a detailed discussion on these assumptions about the variational model.

Under Assumptions 1, 4 and 5, Theorems 1 and 2 can be generalized to general probabilistic models.
The full details of these results (Theorems 3 and 4) are in Appendix B.

2.4 Applying the theory

To illustrate the theorems, we apply Theorems 1, 2, 3 and 4 to three types of model misspecification:
underdispersion in Bayesian regression of count data, component misspecification in Bayesian mixture
models, and latent dimensionality misspecification with Bayesian stochastic block models. For each
model, we verify the assumptions of the theorems and then characterize the limiting distribution of
their VB posteriors. The details of these results are in Appendix C.

3 Simulations

We illustrate the implications of Theorems 1, 2, 3 and 4 with simulation studies. We studied two
models, Bayesian GLMM [21] and LDA [6]. To make the models misspecified, we generate datasets
from an “incorrect” model and then perform approximate posterior inference. We evaluate how
close the approximate posterior is to the limiting exact posterior δθ∗ , and how well the approximate
posterior predictive captures the test sets.

To approximate the posterior, we compare VB with Hamiltonian Monte Carlo (HMC), which draws
samples from the exact posterior. We find that both achieve similar closeness to δθ∗ and comparable
predictive log likelihood on test sets. We use two automated inference algorithms in Stan [8]:
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Figure 2: Dataset size versus closeness to the limiting exact posterior δθ∗ and posterior predictive log
likelihood on test data (mean ± sd). VB posteriors and MCMC posteriors achieve similar closeness
to δθ∗ and comparable predictive accuracy.

automatic differentiation variational inference (ADVI) [20] for VB and No-U-Turn sampler (NUTS)
[16] for HMC. We lay out the detailed simulation setup in Appendix I.

Bayesian GLMM. We simulate data from a negative binomial linear mixed model (LMM): each
individual belongs to one of the ten groups; each group has N individuals; and the outcome is
affected by a random effect due to this group membership. Then we fit a Poisson LMM with the same
group structure, which is misspecified with respect to the simulated data. Figure 2a shows that the
RMSE to θ∗ for the VB and MCMC posterior converges to similar values as the number of individuals
increases. This simulation corroborates Theorems 1 and 3: the limiting VB posterior coincide with
the limiting exact posterior. Figure 2c shows that VB and MCMC achieve similar posterior predictive
log likelihood as the dataset size increases. It echoes Theorems 2 and 4: when performing prediction,
the error due to the variational approximation vanishes with infinite data.

Latent Dirichlet allocation (LDA). We simulate N documents from a 15-dimensional LDA and
fit a 10-dimensional LDA; the latent dimensionality of LDA is misspecified. Figure 2b shows the
distance between the VB/MCMC posterior topics to the limiting exact posterior topics, measured
by KL averaged over topics. When the number of documents is at least 200, both VB and MCMC
are similarly close to the limiting exact posterior. Figure 2d shows that, again once there are 200
documents, the VB and MCMC posteriors also achieve similar predictive ability. These results are
consistent with Theorems 1, 2, 3 and 4.

4 Discussion

In this work, we study VB under model misspecification. We show that the VB posterior is asymp-
totically normal, centering at the value that minimizes the KL divergence from the true distribution.
The VB posterior mean also centers at the same value and is asymptotically normal. These results
generalize the variational Bernstein–von Mises theorem Wang & Blei [31] to misspecified models.
We further study the VB posterior predictive distributions. We find that the model misspecification er-
ror dominates the variational approximation error in the VB posterior predictive distributions. These
results explain the empirical phenomenon that VB predicts comparably well as MCMC even if it uses
an approximating family. It also suggests that we should focus on finding the correct model rather
than de-biasing the variational approximation if we use VB for prediction.

An interesting direction for future work is to characterize local optima of the evidence lower bound
(ELBO), which is the VB posterior we obtain in practice. The results in this work all assume that the
ELBO optimization returns global optima. It provides the possibility for local optima to share these
properties, though further research is needed to understand the precise properties of local optima.
Combining this work with optimization guarantees may lead to a fruitful further characterization of
variational Bayes.
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