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Abstract

The Sinkhorn “distance,” a variant of the Wasserstein distance with entropic regular-
ization, is an increasingly popular tool in machine learning and statistical inference.
However, the time and memory requirements of standard algorithms for computing
this distance grow quadratically with the size of the data, making them prohibitively
expensive on massive data sets. In this work, we show that this challenge is sur-
prisingly easy to circumvent: combining two simple techniques—the Nystrom
method and Sinkhorn scaling—provably yields an accurate approximation of the
Sinkhorn distance with significantly lower time and memory requirements than
other approaches. We prove our results via new, explicit analyses of the Nystrom
method and of the stability properties of Sinkhorn scaling. We validate our claims
experimentally by showing that our approach easily computes Sinkhorn distances
on data sets hundreds of times larger than can be handled by other techniques.

1 Introduction

Optimal transport is a fundamental notion in probability theory and geometry [42], which has
recently attracted a great deal of interest in the machine learning community as a tool for image
recognition [26,35], domain adaptation [[11}[12], and generative modeling [5. 19, |20], among many
other applications [see, e.g., 25, 31].

The growth of this field has been fueled in part by computational advances, many of them stemming
from an influential proposal of Cuturi [13]] to modify the definition of optimal transport to include
an entropic penalty. The resulting quantity, which Cuturi [13] called the Sinkhorn “distance’
after Sinkhorn [38]], is significantly faster to compute than its unregularized counterpart. Though
originally attractive purely for computational reasons, the Sinkhorn distance has since become an
object of study in its own right because it appears to possess better statistical properties than the
unregularized distance both in theory and in practice [21} 29/ 31} 34} 136]. Computing this distance as
quickly as possible has therefore become an area of active study.

We briefly recall the setting. Let p and g be probability distributions supported on at most n points
in R%. We denote by M (p, q) the set of all couplings between p and q, and for any P € M(p, q),
we denote by H (P) its Shannon entropy. (See Sectionfor full definitions.) The Sinkhorn distance

"'We use quotations since it is not technically a distance; see [13] Section 3.2] for details. The quotes are
dropped henceforth.
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between p and q is defined as

Walp.):= pin 3 Pullrs =l =0~ H(P), 1)

for a parameter > 0. We stress that we use the squared Euclidean cost in our formulation of the
Sinkhorn distance. This choice of cost—which in the unregularized case corresponds to what is
called the 2-Wasserstein distance [42/]—is essential to our results, and we do not consider other costs
here. The squared Euclidean cost is among the most common in applications [9} 12, |16} 21} 36].

Many algorithms to compute W, (p, q) are known. Cuturi [13] showed that a simple iterative proce-
dure known as Sinkhorn’s algorithm had very fast performance in practice, and later experimental
work has shown that greedy and stochastic versions of Sinkhorn’s algorithm perform even better in
certain settings [3} 20]. These algorithms are notable for their versatility: they provably succeed for
any bounded, nonnegative cost. On the other hand, these algorithms are based on matrix manipula-
tions involving the n x n cost matrix C, so their running times and memory requirements inevitably
scale with n?. In experiments, Cuturi [13] and Genevay et al. [20] showed that these algorithms could
reliably be run on problems of size n ~ 10%.

Another line of work has focused on obtaining better running times when the cost matrix has special
structure. A preeminent example is due to Solomon et al. [40]], who focus on the Wasserstein distance
on a compact Riemannian manifold, and show that an approximation to the entropic regularized
Wasserstein distance can be obtained by repeated convolution with the heat kernel on the domain.
Solomon et al. [40] also establish that for data supported on a grid in R¢, significant speedups are
possible by decomposing the cost matrix into “slices” along each dimension [see |31, Remark 4.17].
While this approach allowed Sinkhorn distances to be computed on significantly larger problems
(n ~ 108), it does not extend to non-grid settings. Other proposals include using random sampling
of auxiliary points to approximate semi-discrete costs [41] or performing a Taylor expansion of the
kernel matrix in the case of the squared Euclidean cost [4]. These approximations both focus on the
7 — oo regime, when the regularization term in (IJ) is very small, and do not apply to the moderately
regularized case = O(1) typically used in practice. Moreover, the running time of these algorithms
scales exponentially in the ambient dimension, which can be very large in applications.

1.1 Our contributions

We show that a simple algorithm can be used to approximate W, (p, q) quickly on massive data sets.
Our algorithm uses only known tools, but we give novel theoretical guarantees that allow us to show
that the Nystrom method combined with Sinkhorn scaling provably yields a valid approximation
algorithm for the Sinkhorn distance at a fraction of the running time of other approaches.

We establish two theoretical results of independent interest: (i) New Nystrom approximation results
showing that instance-adaptive low-rank approximations to Gaussian kernel matrices can be found
for data lying on a low-dimensional manifold (Section ) (ii) New stability results about Sinkhorn
projections, establishing that a sufficiently good approximation to the cost matrix can be used
(Sectiond])

1.2 Prior work

Computing the Sinkhorn distance efficiently is a well studied problem in a number of communities.
The Sinkhorn distance is so named because, as was pointed out by Cuturi [13]], there is an extremely
simple iterative algorithm due to Sinkhorn [38] which converges quickly to a solution to (T)). This
algorithm, which we call Sinkhorn scaling, works very well in practice and can be implemented using
only matrix-vector products, which makes it easily parallelizable. Sinkhorn scaling has been analyzed
many times [3} [14, [17, 24, 27], and forms the basis for the first algorithms for the unregularized
optimal transport problem that run in time nearly linear in the size of the cost matrix [3} [14]. Greedy
and stochastic algorithms related to Sinkhorn scaling with better empirical performance have also
been explored [3l 20]. Another influential technique, due to Solomon et al. [40]], exploits the fact
that, when the distributions are supported on a grid, Sinkhorn scaling performs extremely quickly by
decomposing the cost matrix along lower-dimensional slices.

Other algorithms have sought to solve (I)) by bypassing Sinkhorn scaling entirely. Blanchet et al. [8]]
proposed to solve (1) directly using second-order methods based on fast Laplacian solvers [2, [10]].



Blanchet et al. [§] and Quanrud [32] have noted a connection to packing linear programs, which can
also be exploited to yield near-linear time algorithms for unregularized transport distances.

Our main algorithm relies on constructing a low-rank approximation of a Gaussian kernel matrix
from a small subset of its columns and rows. Computing such approximations is a problem with an
extensive literature in machine learning, where it has been studied under many different names, e.g.,
Nystrom method [44]], sparse greedy approximations [39]], incomplete Cholesky decomposition [[15],
Gram-Schmidt orthonormalization [37] or CUR matrix decompositions [28]]. The approximation
properties of these algorithms are now well understood [} 6, 22| 28]]; however, in this work, we
require significantly more accurate bounds than are available from existing results as well as adaptive
bounds for low-dimensional data. To establish these guarantees, we follow an approach based on
approximation theory [see, e.g.,[7, 133} 143]], which consists of analyzing interpolation operators for the
reproducing kernel Hilbert space corresponding to the Gaussian kernel.

Finally, this paper adds to recent work proposing the use of low-rank approximation for Sinkhorn
scaling [4,41]]. We improve upon those papers in several ways. First, although we also exploit the
idea of a low-rank approximation to the kernel matrix, we do so in a more sophisticated way that
allows for automatic adaptivity to data with low-dimensional structure. These new approximation
results are the key to our adaptive algorithm, and this yields a significant improvement in practice.
Second, the analyses of Altschuler et al. [4]] and Tenetov et al. [41] only yield an approximation to
W, (p,q) when 7 — oco. In the moderately regularized case when 7 = O(1), which is typically used
in practice, neither the work of Altschuler et al. [4]] nor of Tenetov et al. [41]] yields a rigorous error
guarantee.

2 Main Result

2.1 Preliminaries and notation

Problem setup. Throughout, p and q are two probability distributions supported on a set X :=
{x1,...,2,} of points in R?, with ||x;]]2 < R foralli € [n] := {1,...,n}. We define the
cost matrix C' € R " by C;; = ||; — x;||3. We identify p and q with vectors in the simplex
An = {v € R%;: Y v = 1} whose entries denote the weight each distribution gives to the
points of X. We denote by M(p, q) the set of couplings between p and q, identified with the set
of P € R%” satisfying P1 = p and P"1 = q, where 1 denotes the all-ones vector in R". The
Shannon entropy of a non-negative matrix P € RY§™ is denoted H(P) := >, P;;log %j, where
we adopt the standard convention that 0 log % =0.

Our goal is to approximate the Sinkhorn distance (1)) to some additive accuracy € > 0. By strict
convexity, this optimization problem has a unique minimizer, which we denote henceforth by P".
For shorthand, in the sequel we write

Vam(P) = (M,P) —n 'H(P),

for a matrix M € R™*". In particular, we have W, (p, q) = minpe aq(p,q) Vo (P). For the purpose
of simplifying some bounds, we assume throughout thatn > 2,n € [1,n], R > 1, < 1.

Sinkhorn scaling. Our approach is based on Sinkhorn scaling, an algorithm due to Sinkhorn [38]]
and popularized for optimal transport by Cuturi [[13]]. We recall the following fundamental definition.

Definition 1. Given p,q € A, and K € R™ "™ with positive entries, the Sinkhorn projec-

tion H‘j/l(p’q)(K) of K onto M(p, q) is the unique matrix in M(p, q) of the form D, K D, for

positive diagonal matrices Dy and Ds.

Since p and q remain fixed throughout, we abbreviate Hit( by IT° except when we want to make

the feasible set M(p, q) explicit.

P,q)

Proposition 1 (435). Let K have strictly positive entries, and let log K be the matrix defined by
(log K);; = log(K;;). Then

H}S\A(p,q)(K) = argmin (—log K, P) — H(P).
PeM(p,q)



Note that the strict convexity of —H (P) and the compactness of M(p, Q) implies that the minimizer
exists and is unique.
This yields the following simple but key connection between Sinkhorn distances and Sinkhorn scaling.
Corollary 1.
_ 18
P =14(p,q) (K)

where K is defined by K;; = e~ "%,

Notation. We define the probability simplices A,, := {p € IS p'l1=1}and A, x, :={P €
Rgé” : 1T P1 = 1}. Elements of A, «,, will be called joint distributions. The Kullback-Leibler
divergence between two joint distributions P and @ is KL(P[|Q) := >, P;; log SJJ .

Throughout the paper, all matrix exponentials and logarithms will be taken entrywise, i.e., (eA)ij =
€Aij and (log A)U = ij
norm (i.e., largest singular value), by || A||. its nuclear norm (i.e., the sum of its singular values), by
[[All1 its entrywise £1 norm (i.e., [|All1 := 32, [As)), oo Dorm (i.e.,
|A]|oo := max;; |A;;]). We abbreviate “positive semidefinite” by “PSD.”

The notation f = O(g) means that f < Cyg for some universal constant C, and g = Q(f) means
f = O(g). The notation O(-) omits polylogarithmic factors depending on R, 1), n, and &.

2.2 Main result and proposed algorithm

Pseudocode for our proposed algorithm is given in Algorithm[I] N'YS-SINK (pronounced “nice sink”)
computes a low-rank Nystrom approximation of the kernel matrix via a column sampling procedure.
For reasons of space, full pseudocode and proofs of all claims are deferred to the supplement.

As noted in Sectlon[], the Nystrom method constructs a low-rank approximation to a Gaussian kernel
matrix K = e~"¢ based on a small number of its columns. In order to design an efficient algorithm,
we aim to construct such an approximation with the smallest possible rank. The key quantity for
understanding the error of this algorithm is the so-called effective dimension (also sometimes called
the “degrees of freedom”) of the kernel matrix K [18 30, 46].

Definition 2. Let \;(K) denote the jth largest eigenvalue of K (with multiplicity). Then the effective
dimension of K atlevel 7 > 0 is

desi (T :ZA +m )

The effective dimension deg(7) indicates how large the rank of an approximation K to K must be
in order to obtain the guarantee ||I~( — Kllop < Tn. For our application, we have K = €% and
we will show that it suffices to obtain an approximate kernel K satisfying || K — K||op < %e““’Rz,
where ¢’ = O(eR’Q). We are therefore motivated to define the following quantity, which informally
captures the smallest possible rank of an approximation of this quality.

Definition 3. Given X = {x1,...,2,} C R? with ||z;||s < Rforalli € [n], > 0,and ¢’ € (0, 1),
the approximation rank is

r* (X, n,&") i= degs ( 6_4"R2)

where d(+) is the effective rank for the kernel matrix K := e~7C.

As we show below, we adaptively construct an approximate kernel K whose rank is at most a
logarithmic factor bigger than r* (X, n, ") with high probability. We also give concrete bounds on
r*(X,n,¢") below.

Our proposed algorithm makes use of several subroutines. The ADAPTIVENYSTROM procedure
in Algorithm [I]combines an algorithm of Musco & Musco [30] with a doubling trick that enables

automatic adaptivity. It outputs the approximate kernel K and its rank 7.



The SINKHORN procedure in Algorithmis the Sinkhorn scaling algorithm for projecting K onto
M(p, q). We use a variant of the standard algorithm, which returns both the scaling matrices and
an approximation of the cost of an optimal solution. The ROUND procedure in Algorithm [I] is
Algorithm 2 of Altschuler et al. [3]].

We emphasize that neither Dy K Dy nor P are ever represented explicitly, since this would take Q(n?)
time. Instead, we maintain these matrices in low-rank factorized forms. This enables Algorithm [I]
to be implemented efficiently in o(n?) time, since the procedures SINKHORN and ROUND can both
be implemented such that they depend on K only through matrix-vector multlphcatlons with K.
Moreover, we also emphasize that all steps of Algorithm|[T]are easily parallelizable since they can be
re-written in terms of matrix-vector multiplications.

We note also that although the present paper focuses specifically on the squared Euclidean cost
c(xi,xj) = ||z;—;||3 (corresponding to the 2-Wasserstein case of optimal transport pervasively used
in applications; see intro), our algorithm NYS-SINK readily extends to other cases of optimal transport.
Indeed, since the Nystrom method works not only for Gaussian kernel matrices K;; = e lzi—e; ”5,
but in fact more generally for any PSD kernel matrix, our algorithm can be used on any optimal
transport instance for which the corresponding kernel matrix K;; = e ne(®i%5) s PSD.

Algorithm 1 NYS-SINK
I: Input: X = {zq,... xn} CRY p,q€ A, e,n>0

2: Output P e M(p, q) WeR,reN
3¢ <—m1n(1

4: (K,r) ADAPTIVENYSTROM(X, 0,5 e 4Ry
{ Compute low-rank approximation}

5: (D1, Dy, W) + SINKHORN(K, p, q,¢’)
{Approx1mate Sinkhorn projection and cost}

6: P < ROUND(D;K D5, p,q)
{Round to feasible set}

7: Return P, W

Our main result is the following.
Theorem 1. Lete,d € (0,1). Algomhmlruns inO (nr ( + "R )) time, uses O(n(r +d)) space,
and returns a feasible matrix Pe M(p, q) in factored form and scalars W € R and r € N, where

Ve(P) = Wy(p,a)| <, (3a)
KL(P|IP") < e, (3b)
W — W, (p.q)| <, (3c)
and, with probability 1 — 6,
r<c-r*(X,n,e)log %, (3d)

for a universal constant ¢ and where &' = Q(e R™?).

We note that, while our algorithm is randomized, we obtain a deterministic guarantee that Pisa good
solution. We also note that runtime dependence on the radius R—which governs the scale of the
problem—is inevitable since we seek an additive guarantee.

We show in Section 3] that 7*—which controls the running time of the algorithm with high probability
by (Bd)—adapts to the intrinsic dimension of the data. This adaptivity is crucial in applications,
where data can have much lower dimension than the ambient space. We informally summarize this
behavior in the following theorem.

Theorem 2 (Informal). There exists an universal constant ¢ > 0 such that, for any n points in a ball
of radius Rin R, r*(X,n,e") < (e(nR? + log ﬁ))d. Moreover, for any k-dimensional manifold 2
satisfying certain technical conditions and ) > 0, there exists a constant cq , such that for any n
points lying on Q, r*(X,n,¢') < cqy(log & L )5k/2,



The formal versions of these bounds appear in Section[3] The second bound is significantly better
than the first when k£ < d, and clearly shows the benefits of an adaptive procedure.
Combining Theorems [I|and 2] yields the following time and space complexity for our algorithm.

Corollary 2 (Informal). If X consists of n points lying in a ball of radius R in RY, then with high
probability Algorithm I requires O(ne™(enR? + clog )24+ time and O(n(enR? + clog 2)%)
space. Moreover, if X lies on a k-dimensional manifold Q then with high probability Algorzthml
requires O(ne~ Leq,, (log 2)5%) time and O(ncq,,(log 2)5k/2) space.

3 Kernel Approximation via the Nystrom Method

Given points X = {x1,...,2,} with ||z;]|]2 < Rforall i € [n], let K € R™*" denote the matrix
with entries K;; := ky(x;, x;), where k, (z,2') := e~mlz=2"I" Note that ky(z, ") is the Gaussian
kernel e~ l7=I°/(20*) petween points  and 2’ with bandwith parameter o> = % Forr € N, we
consider an approximation of the matrix K that is of the form K=VA- VT, where V € R™*" and
A € R™*". Note that the matrix K is never computed explicitly. Indeed, our proposed Algorithm |l I
only depends on K through computing matrix-vector products Kuv, where v € R™, and these can be
computed efficiently as Kv = V(L™ (L~1(V Tv))), where L € R™*" s the lower triangular matrix
satisfying LL T = A. Once a Cholesky decomposition of A has been obtained—at computational
cost O(r3)—matrix-vector products can therefore be computed in time O(nr). In the supplement,
we give pseudocode for the AdaptiveNystrom subroutine, based on a simple doubling trick. It enjoys
the following guarantee:

Lemma 1. Ler K denote the (random) kernel output by ADAPTIVENYSTROM(X, 0, T), and let

= rank(K). Then ||K — K||o < 7, the algorithm used O(nr) space and terminated in O(nr?)
time, and there exists a universal constant c such that simultaneously for every § > 0,

P(r<codg(Z)log(3)) 14

3.1 General results: data points lie in a ball

In this section we assume no structure on X apart from the fact that X C B% where B is a ball
of radius R in R? centered around the origin, for some R > 0 and d € N. First we characterize the
eigenvalues of K in terms of 7, d, R, and then we use this to bound dg.

Theorem 3. Let X := {w1,...x,} C B%, and let K € R"*" be the matrix with entries K;; :=
—dyl/d)pg d t1/d

e~mlzi=zil® Then: 1. Fort > (2e)4, A\11(K) < ne 2 iRz 2. For T € (0,1],
dop(7) <3 (64 4nR2 4 31og 1)?.

Corollary 3. Lete’ € (0,1) and n > 0. If X consists of n points lying in a ball of radius R around
the origin in R, then

d
53 3 2
r*(X,n,e’) <3 (6 + EnRQ + glog ;) .

3.2 Adaptivity: data points lie on a low dimensional manifold

In this section, we show that the quality of the Nystrom approximation adapts to the intrinsic
dimension of the data. Let 2 C R? be a smooth compact manifold without boundary of dimension &,
for k < d, and let (¥, Uj)err), with T' € N, be an atlas for £2. We assume the following quantitative
control on the smoothness of the atlas.

Assumption 1. There exists ) > 0 such that

sup ||Da Tl <@, aeNt e[
UGB
where |a| = 2521 aj and D® = Wf#i;uzk’ for a € N,



Theorem 4. Let Q) C B‘}{ C R be a smooth compact manifold without boundary satisfying
Let X :={z1,...2,} C Q, and let K € R"*™ be the matrix with entries K;; :=

e~Mzi=2iI" " Then: 1. There exists a constant ¢ not depending on X or n, such that for t > 0,
2

Ai+1(K) < ne %, 2. There exist c1, ca not depending on X, n, or 7, such that for 7 € (0, 1],

deg(T) < (01 log %)Jkﬂ + ca.

The result above is new, to our knowledge, and extends interpolation results on manifolds [19} 23} 43,
from polynomial to exponential decay, generalizing a technique of Rieger & Zwicknagl [33]] to a
subset of real analytic manifolds. The crucial point is that now the eigenvalue decay and the effective
dimension depend on the dimension of the manifold k£ and not the ambient dimension d >> k.

Corollary 4. Let &' € (0,1), n > 0, and let Q C R? be a manifold of dimension k < d satisfying
There exists cq_, > 0 not depending on X or n such that

5k/2
(X, n,e") < cay (log g) .

4 Sinkhorn Scaling an Approximate Kernel Matrix

The main result of this section, presented next, gives both a runtime bound and an error bound
on the approximate Sinkhorn scaling performed in Algorithm |I} The error bound shows that the
objective function V- (+) in (I) is stable with respect to both (i) Sinkhorn projecting an approximate
kernel matrix K instead of the true kernel matrix K, and (ii) only performing an approximate
Sinkhorn projection.The results of this section apply to any bounded cost matrix C' € R™*"™, with
¢ == min(l, ——FL———).
50(lIClleeon+log 5. 2)

Theorem 5. [f K = ¢ "C and if K € R2}" satisfies || log K — log K ||oo < €', then the Sinkhorn
subroutine in Algorithmoutputs D+, Dy, and W such that P := D, K’Dg satisfies ||}51 =Pl +
[PT1 —q|: < €, [Ve(P") — Ve(P)| < £ and W — Vo(P)| < 5. Moreover; if matrix-
vector products can be computed with K and K7 in time Twmuwr, then this takes time O((n +
Taoir )| Clloce’™).

The running time bound in Theorem [3]for the time required to produce Dy and D, follows directly
from prior work which has shown that Sinkhorn scaling can produce an approximation to the Sinkhorn
projection of a positive matrix in time nearly independent of the dimension n [3} [14]. The error

bounds in Theorem [5|are based on and[3]
Proposition 2. For any p,q € A, and any K, K € R}*",

T (K) — 15 (&)1 < [|log K — log K|oc -

Proposition 3. Given K ¢ RLG", let C € R " satisfy CN'” = —n"tlog f(ij. Let D1 and D+ be
positive diagonal matrices such that P := D1 K Dy € Ay, with := ||p — P1||; + ||q — PT1|1.
If§ <1, then

. - ~ _ 2n
Ve (% (K)) = Va(P)| < 8[|Clo + 17 "6 log 5

5 Experimental Results

In this section we empirically validate our theoretical results. Details about the setup for each
experiment appear in the supplement.

We first compare to the standard Sinkhorn algorithm. [Fig. T| plots the time-accuracy tradeoff for NYs-
SINK, compared to the standard SINKHORN algorithm. [Fig. T|shows that NYS-SINK is consistently
orders of magnitude faster to obtain the same accuracy.

We then investigate NYS-SINK’s dependence on the intrinsic dimension and ambient dimension of the
input. This is done by running NYS-SINK with a fixed approximation rank on distributions supported
on 1-dimensional curves embedded in higher dimensions. empirically validates the result in
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Figure 1: Time-accuracy tradeoff for NYS-SINK and SINKHORN, for a range of regularization
parameters 7 (each corresponding to a different Sinkhorn distance W,,) and approximation ranks 7.
Each experiment has been repeated 50 times; the variance is indicated by the shaded area around the
curves. Note that curves in the plot start at different points corresponding to the time required for
initialization.
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tion of running time, for different ambient
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Figure 3: Running time vs input size n for
NYS-SINK and SINKHORN. Top uses random

point cloud data as in [Fig. 1| bottom uses
embedded curve data as in[Fig. 2|

namely that the required approximation rank — and consequently the computational
complexity of NYS-SINK — is independent of the ambient dimension.

Next, we demonstrate NYS-SINK’s dependence on the size n of the dataset. As[Fig. 3|indicates, the
running time of NYS-SINK is empirically well-approximated by a line with slope 1 in the log-log
plane — representing a complexity of ©(n) — whereas the running time of SINKHORN scales as O (n?).

Table 1: Performance of our algorithm on benchmark dataset.

Exp.1n=3x10%d=3,n=15 \ W, time (s)
Nys-Sink = 2000, 7" = 20 0.087 ==0.008 0.4 +0.1
Dual-Sink Multiscale + Anneal. » = 0.95 0.090 3.4
Dual-Sink + Anneal. » = 0.95 0.087 354
Exp.2n =3.8x10%,d=3,n=15 \ Wa time (s)
Nys-Sink » = 2000, 7 = 20 0.11 001 6.3+0.8
Dual-Sink Multiscale + Anneal. » = 0.95 0.11 103.6
Dual-Sink + Anneal. » = 0.95 0.10 1168




Moreover, SINKHORN saturates the RAM already for n ~ 104, whereas NYS-SINK can scale to
n =~ 10% on the same machine.

Finally, we evaluate the performance of our algorithm on a benchmark dataset used in computer
graphics. We measured Wasserstein distance between two 3D cloud points from the Stanford 3D
Scanning RepositoryE] We ran two experiments, with n = 3 x 10° and n = 3.8 x 10° points,
respectively.

We ran T = 20 iterations of our algorithm (Nys-Sink) with approximation rank » = 2000 on a GPU
and compared to two optimized implementations in the library GeomLossE] The results appear in
Each Nys-Sink experiment was repeated 50 times. Our method for moderate regularization
71 is comparable with the other approaches in terms of precision, with a computational time that is
orders of magnitude smaller. We note here that we choose the parameters r,T" in Nys-Sink by hand
to balance precision and time complexity.

We note that in these experiments, instead of using our doubling-trick algorithm to choose the rank
adaptively, we simply run experiments with a small fixed choice of r. As our experiments demonstrate,
NYS-SINK achieves good empirical performance even when the rank r is smaller than our theoretical
analysis requires. Investigating this empirical success further is an interesting topic for future study.
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