
Response To Reviewer #2.1

Running on real-world quantum hardware: We note that publicly available machines are less powerful for useful2

demonstrations mainly due to their size limit (# of gates and qubits). To include the real-world noise model in our3

simulations, in lines 271-278, we describe exactly the same type of noisy simulation from one ion-trap group.4

Real-world applications of proposed quantum WGAN. In the revised version of the paper, we will add a real-world5

application of the quantum WGAN suggested by Reviewer 2. The specific task is to approximately implement large6

quantum circuits (denoted by U0) by smaller ones (denoted by U1). The connection is as follows: to approximate U0 on,7

e.g., |0〉, quantum WGAN can find a more succinct generator U1 s.t. U1 |0〉 ≈ U0 |0〉. To approximate on all inputs, we8

use the quantum state-channel isomorphism (i.e.,the Choi-Jamiołkowski state), which is |Ψ0〉 = U0 ⊗ I |Φ〉 where |Φ〉9

is the maximally entangled state. It suffices to find a more succinct generator U1 such that |Ψ1〉 = U1 ⊗ I |Φ〉 ≈ |Ψ0〉.10

The fidelity between |Ψ0〉 and |Ψ1〉 then becomes the average output fidelity over uniformly chosen inputs to U0/U1.11

Specifically, we studied the quantum Hamiltonian simulation circuit for 1-d 3-qubit Heisenberg model (in Eqn. (1) of12

arXiv:1711.10980v1). The best-known quantum circuit with the worst case error 10−3 (in operator norm) has over13

11,900 gates. Using the above approach and our quantum WGAN (for 6-qubit), we discovered a circuit U1 with 5214

gates with an average output fidelity over 0.9999 and a worst-case error 0.15. The worst-case input is not realistic in15

current experiments and hence the high average fidelity implies very reasonable approximation in practice. This task16

could only be achieved using our quantum WGAN, rather than previous quantum GAN proposals, given its complexity.17

Response To Reviewers #1 and #3.18

Differences between classical and quantum data/sampling. We want to emphasize that the quantum extension of19

WGAN was not a straightforward extension of WGAN as suggested by Reviewer 3, due to the essential difference20

between quantum and classical data. Consider a classical random bit b with density (0.4(b = 0), 0.6(b = 1)). A21

classical readout (or sample) refers to a random variable with this distribution. In quantum mechanics, these are two22

separate concepts. An operator extension of density, called the density operator (semidefinite operators with trace 1,23

lines 135-150), represents an ensemble of quantum data, which includes information of both pure quantum states (as24

unit vectors) and their density. A classical readout on quantum states refers to a quantum measurement (lines 439-449).25

When measuring density operator Q using observable ψ, its outcome is a random variable with expectation Tr(Qψ).26

Classical random bit (0.4, 0.6) is simply a diag(0.4, 0.6) density operator and there is only one allowed measurement27

in classical mechanics. Hence, there is no distinction between these two concepts for classical data. A quantum bit28

(qubit) refers to a 2× 2 density operator with potentially complicated off-diagonal terms. Moreover, one can have many29

measurements for one quantum data. This justifies why density operators represent the entity of quantum data.30

The outcome of a quantum generator must hence be mathematically represented by a single density operator. A classical31

random bit can also be represented by a diagonal density operator, although it might not be very intuitive in the first use.32

Cost function and the geometry of the sample space in qWGAN. The definition of cost function for quantum data33

must work with density operators. Let us first formulate the classical cost function (2.1) in the density operator34

form. Consider one random bit and choose c(0,0)=c(1,1)=0 and c(0,1)=c(1,0)=1. Then (2.1) becomes
∑

a,b∈{0,1}35

π(a, b)c(a, b) where π is the coupling of two random bits, which is mathematically the same as Tr(πC) where π =36

diag(π(0, 0), π(0, 1), π(1, 0), π(1, 1)) and C = diag(c(0, 0), c(0, 1), c(1, 0), c(1, 1)). (Note C is independent of π.)37

Our (3.1) is the quantum extension of the above with important distinctions. In (3.1), π is a density operator for the38

quantum coupling of P and Q, with potentially very complicated off-diagonal terms. The diagonal C in the classical39

case does not work for off-diagonal π. It is easy to find examples of P such that qW(P, P ) > 0 with the diagonal C.40

Our solution is to leverage the concept of symmetric subspace in quantum information. The projection onto any41

subspace V is a matrix with eigenspace V with eigenvalue 1, and eigenspace V ⊥ with eigenvalue 0. The projection42

onto the symmetric subspace, denoted Πsym=(I+SWAP)/2, has the property that ΠsymP ⊗ P = P ⊗ P . By choosing C43

to be the projection of its orthogonal subspace, i.e., C=I- Πsym =(I-SWAP)/2, we have qW(P, P ) = 0 for any P .44

It also encodes the geometry of the space of quantum states. Choose P=~v~v† and Q=~u~u† and Tr(πC) becomes 0.545

(1− |~u†~v|2), where |~u†~v| depends the angle between ~u and ~v which are unit vectors representing (pure) quantum states.46

Evaluation of the loss function. The generator produces a density operator Q. The loss function is evaluated by47

approximating terms like Tr(Qψ) (lines 221-246) via measuring multiple copies of Q (via multi-run of the generator).48

Comments on the evaluation and experiments: Most existing literature is not explicit in architecture, with no publicly49

available code/data, and has only studied the 1-qubit case (except for Ref. [3] with 6-qubit). We are the only one with a50

thorough numerical study up to 8 qubits, with both large generator circuits and noisy simulation. Note that the sample51

space for 8-qubit is already of dimension 28 × 28. This exponential growth limits numerical evaluation by classical52

simulation in quantum computing and we did reach the limit of our computing resources. Our advantage to all existing53

literature (especially to Ref. [3]) is demonstrated in lines 279-295. Our to-add real-word application (in response to54

Reviewer #2) further demonstrates the ability of qWGAN to handle complicated tasks.55

In the revised version of the paper, we will address all minor comments and also add a background section on56

quantum information to make our results further accessible to broader audience.57
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