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Abstract

We study the problem of estimating a p-dimensional s-sparse vector in a linear
model with Gaussian design and additive noise. In the case where the labels are
contaminated by at most o adversarial outliers, we prove that the `1-penalized
Huber’s M -estimator based on n samples attains the optimal rate of convergence
(s/n)1/2 + (o/n), up to a logarithmic factor. For more general design matrices,
our results highlight the importance of two properties: the transfer principle and
the incoherence property. These properties with suitable constants are shown to
yield the optimal rates, up to log-factors, of robust estimation with adversarial
contamination.

1 Introduction

Is it possible to attain optimal rates of estimation in outlier-robust sparse regression using penalized
empirical risk minimization (PERM) with convex loss and convex penalties? Current state of literature
on robust estimation does not answer this question. Furthermore, it contains some signals that might
suggest that the answer to this question is negative. First, it has been shown in (Chen et al., 2013,
Theorem 1) that in the case of adversarially corrupted samples, no method based on penalized
empirical loss minimization, with convex loss and convex penalty, can lead to consistent support
recovery. The authors then advocate for robustifying the `1-penalized least-squares estimators by
replacing usual scalar products by their trimmed counterparts. Second, (Chen et al., 2018) established
that in the multivariate Gaussian model subject to Huber’s contamination, coordinatewise median—
which is the ERM for the `1-loss—is sub-optimal. Similar result was proved in (Lai et al., 2016,
Prop. 2.1) for the geometric median, the ERM corresponding to the `2-loss. These negative results
prompted researchers to use other techniques, often of higher computational complexity, to solve the
problem of outlier-corrupted sparse linear regression.

In the present work, we prove that the `1-penalized empirical risk minimizer based on Huber’s loss is
minimax-rate-optimal, up to possible logarithmic factors. Naturally, this result is not valid in the most
general situation, but we demonstrate its validity under the assumptions that the design matrix satisfies
some incoherence condition and only the response is subject to contamination. The incoherence
condition is shown to be satisfied by the Gaussian design with a covariance matrix that has bounded
and bounded away from zero diagonal entries. This relatively simple setting is chosen in order to
convey the main message of this work: for properly chosen convex loss and convex penalty functions,
the PERM is minimax-rate-optimal in sparse linear regression with adversarially corrupted labels.

To describe more precisely the aforementioned optimality result, let D◦n = {(Xi, y
◦
i ); i = 1, . . . , n}

be iid feature-label pairs such thatXi ∈ Rp are Gaussian with zero mean and covariance matrix Σ
and y◦i are defined by the linear model

y◦i = X>i β
∗ + ξi, i = 1, . . . , n,
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where the random noise ξi, independent ofXi, is Gaussian with zero mean and variance σ2. Instead of
observing the “clean” data D◦n, we have access to a contaminated version of it, Dn = {(Xi, yi); i =
1, . . . , n}, in which a small number o ∈ {1, . . . , n} of labels y◦i are replaced by an arbitrary value.
Setting θ∗i = (yi− y◦i )/

√
n, and using the matrix-vector notation, the described model can be written

as
Y = Xβ∗ +

√
nθ∗ + ξ, (1)

where X = [X>1 ; . . . ;X>n ] is the n× p design matrix, Y = (y1, . . . , yn)> is the response vector,
θ∗ = (θ∗1 , . . . , θ

∗
n)> is the contamination and ξ = (ξ1, . . . , ξn)> is the noise vector. The goal is to

estimate the vector β∗ ∈ Rp. The dimension p is assumed to be large, possibly larger than n but, for
some small value s ∈ {1, . . . , p}, the vector β∗ is assumed to be s-sparse: ‖β∗‖0 = Card{j : β∗ 6=
0} ≤ s. In such a setting, it is well-known that if we have access to the clean data D◦n and measure
the quality of an estimator β̂ by the Mahalanobis norm1 ‖Σ1/2(β̂ − β∗)‖2, the optimal rate is

r◦(n, p, s) = σ
(s log(p/s)

n

)1/2

.

In the outlier-contaminated setting, i.e., when D◦n is unavailable but one has access to Dn, the
minimax-optimal-rate (Chen et al., 2016) takes the form

r(n, p, s, o) = σ
(s log(p/s)

n

)1/2

+
σo

n
. (2)

The first estimators proved to attain this rate (Chen et al., 2016; Gao, 2017) were computationally
intractable2 for large p, s and o. This motivated several authors to search for polynomial-time
algorithms attaining nearly optimal rate; the most relevant results will be reviewed later in this work.

The assumption that only a small number o of labels are contaminated by outliers implies that the
vector θ∗ in (1) is o-sparse. In order to take advantage of sparsity of both β∗ and θ∗ while ensuring
computational tractability of the resulting estimator, a natural approach studied in several papers
(Laska et al., 2009; Nguyen and Tran, 2013; Dalalyan and Chen, 2012) is to use some version of the
`1-penalized ERM. This corresponds to defining

β̂ ∈ arg min
β∈Rp

min
θ∈Rn

{ 1

2n
‖Y −X>β −

√
nθ‖22 + λs‖β‖1 + λo‖θ‖1

}
, (3)

where λs, λo > 0 are tuning parameters. This estimator is very attractive from a computational
perspective, since it can be seen as the Lasso for the augmented design matrix M = [X,

√
n In],

where In is the n× n identity matrix. To date, the best known rate for this type of estimator is

σ
(s log p

n

)1/2

+ σ
( o
n

)1/2

, (4)

obtained in (Nguyen and Tran, 2013) under some restrictions on (n, p, s, o). A quick comparison of
(2) and (4) shows that the latter is sub-optimal. Indeed, the ratio of the two rates may be as large as
(n/o)1/2. The main goal of the present paper is to show that this sub-optimality is not an intrinsic
property of the estimator (3), but rather an artefact of previous proof techniques. By using a refined
argument, we prove that β̂ defined by (3) does attain the optimal rate under very mild assumptions.

In the sequel, we refer to β̂ as `1-penalized Huber’s M -estimator. The rationale for this term is that
the minimization with respect to θ in (3) can be done explicitly. It yields (Donoho and Montanari,
2016, Section 6)

β̂ ∈ arg min
β∈Rp

{
λ2
o

n∑
i=1

Φ
(yi −X>i β

λo
√
n

)
+ λs‖β‖1

}
, (5)

where Φ : R→ R is Huber’s function defined by Φ(u) = (1/2)u2 ∧ (|u| − 1/2).

To prove the rate-optimality of the estimator β̂, we first establish a risk bound for a general design
matrix X not necessarily formed by Gaussian vectors. This is done in the next section. Then, in
Section 3, we state and discuss the result showing that all the necessary conditions are satisfied for the
Gaussian design. Relevant prior work is presented in Section 4, while Section 5 discusses potential
extensions. Section 7 provides a summary of our results and an outlook on future work. The proofs
are deferred to the supplementary material.

1In the sequel, we use notation ‖β‖q = (
∑

j |βj |
q)1/q for any vector β ∈ Rp and any q ≥ 1.

2In the sense that there is no algorithm computing these estimators in time polynomial in (n, p, s, o).

2



2 Risk bound for the `1-penalized Huber’s M -estimator

This section is devoted to bringing forward sufficient conditions on the design matrix that allow for
rate-optimal risk bounds for the estimator β̂ defined by (3) or, equivalently, by (5). There are two
qualitative conditions that can be easily seen to be necessary: we call them restricted invertibility and
incoherence. Indeed, even when there is no contamination, i.e., the number of outliers is known to
be o = 0, the matrix X has to satisfy a restricted invertibility condition (such as restricted isometry,
restricted eigenvalue or compatibility) in order that the Lasso estimator (3) does achieve the optimal
rate σ

√
(s/n) log(p/s). On the other hand, in the case where n = p and X =

√
n In, even in

the extremely favorable situation where the noise ξ is zero, the only identifiable vector is β∗ + θ∗.
Therefore, it is impossible to consistently estimate β∗ when the design matrix X is aligned with the
identity matrix In or close to be so.

The next definition formalizes what we call restricted invertibility and incoherence by introducing
three notions: the transfer principle, the incoherence property and the augmented transfer principle.
We will show that these notions play a key role in robust estimation by `1-penalized least squares.

Definition 1. Let Z ∈ Rn×p be a (random) matrix and Σ ∈ Rp×p. We use notation Z(n) = Z/
√
n.

(i) We say that Z satisfies the transfer principle with a1 ∈ (0, 1) and a2 ∈ (0,∞), denoted by
TPΣ(a1; a2), if for all v ∈ Rp,∥∥Z(n)v

∥∥
2
≥ a1‖Σ1/2v‖2 − a2‖v‖1. (6)

(ii) We say that Z satisfies the incoherence property IPΣ(b1; b2; b3) for some positive numbers
b1, b2 and b3, if for all [v;u] ∈ Rp+n,

|u>Z(n)v| ≤ b1

∥∥Σ1/2v
∥∥

2
‖u‖2 + b2‖v‖1‖u‖2 + b3

∥∥Σ1/2v
∥∥

2
‖u‖1.

(iii) We say that Z satisfies the augmented transfer principle ATPΣ(c1; c2; c3) for some positive
numbers c1, c2 and c3, if for all [v;u] ∈ Rp+n,

‖Z(n)v + u‖2 ≥ c1

∥∥[Σ1/2v;u]
∥∥

2
− c2‖v‖1 − c3‖u‖1. (7)

Note that the transfer principle was already well-known to be important in sparse estimation; a more
general formulation of it can be found in (Juditsky and Nemirovski, 2011, Eq. 37). Note also that
these three properties are inter-related and related to extreme singular values of the matrix Z(n).

(P1) If Z satisfies ATPΣ(c1; c2; c3) then it also satisfies TPΣ(c1; c2).
(P2) If Z satisfies TPΣ(a1; a2) and IPΣ(b1; b2; b3) then it also satisfies ATPΣ(c1; c2; c3) with

c2
1 = a2

1 − b1 − α2, c2 = a2 + 2b2/α and c3 = 2b3/α for any positive α <
√
a2

1 − b1.
(P3) If Z satisfies IPΣ(b1; b2; b3), then it also satisfies IPΣ(0; b2; b1 + b3)

(P4) Any matrix Z satisfies TPI(sp(Z
(n)); 0), and IPI(s1(Z(n)); 0; 0), where sp(Z(n)) and s1(Z(n))

are, respectively, the p-th largest and the largest singular values of Z(n).

Claim (P1) is true, since if we choose u = 0 in (7) we obtain (6). Claim (P2) coincides with Lemma 7,
proved in the supplement. (P3) is a direct consequence of the inequality ‖u‖2 ≤ ‖u‖1, valid for
any vector u. (P4) is a well-known characterization of the smallest and the largest singular values
of a matrix. We will show later on that a Gaussian matrix satisfies with high probability all these
conditions with constants a1 and c1 independent of (n, p) and a2, b2, b3, c2, c3 of order n−1/2, up to
logarithmic factors.

To state the main theorem of this section, we consider the simplified setting in which λs = λo = λ.
Remind that in practice it is always recommended to normalize the columns of the matrixX so that
their Euclidean norm is of the order

√
n. The more precise version of the next result with better

constants is provided in the supplement (see Proposition 1). We recall that a matrix Σ is said to satisfy
the restricted eigenvalue condition RE(s, c0) with some constant κ > 0, if ‖Σ1/2v‖2 ≥ κ‖vJ‖2 for
any vector v ∈ Rp and any set J ⊂ {1, . . . , p} such that Card(J) ≤ s and ‖vJc‖1 ≤ c0‖vJ‖1.
Theorem 1. Let Σ satisfy the RE(s, 5) condition with constant κ > 0. Let b1, b2, b3, c1, c2, c3

be some positive real numbers such that X satisfies the IPΣ(0; b2; b3) and the ATPΣ(c1; c2; c3).
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Assume that for some δ ∈ (0, 1), the tuning parameter λ satisfies

λ
√
n ≥

√
8 log(n/δ)

∨(
max

j=1,...,p
‖X(n)
•,j ‖2

)√
8 log(p/δ).

If the sparsity s and the number of outliers o satisfy the condition
s

κ2
+ o ≤ c2

1

400
(
c2 ∨ c3 ∨ 5b2/c1

)2 , (8)

then, with probability at least 1− 2δ, we have∥∥Σ1/2(β̂ − β∗)
∥∥

2
≤ 24λ

c2
1

(2c2

c1

∨ b3

c2
1

)( s

κ2
+ 7o

)
+

5λ
√
s

6c2
1κ

. (9)

Theorem 1 is somewhat hard to parse. At this stage, let us simply mention that in the case of a
Gaussian design considered in the next section, c1 is of order 1 while b2, b3, c2, c3 are of order n−1/2,
up to a factor logarithmic in p, n and 1/δ. Here δ is an upper bound on the probability that the
Gaussian matrix X does not satisfy either IPΣ or ATPΣ. Since Theorem 1 allows us to choose λ
of the order

√
log{(p+ n)/δ}/n, we infer from (9) that the error of estimating β∗, measured in

Euclidean norm, is of order s
nκ2 + o

n + ( s
nκ2 )1/2 = O( on + ( s

nκ2 )1/2), under the assumption that
( s
nκ2 + o

n ) log(np/δ) is smaller than a universal constant.

To complete this section, we present a sketch of the proof of Theorem 1. In order to convey the main
ideas without diving too much into technical details, we assume Σ = Ip. This means that the RE
condition is satisfied with κ = 1 for any s and c0. From the fact that the ATPΣ holds for X, we infer
that [X

√
n In] satisfies the RE(s+ o, 5) condition with the constant c1/2. Using the well-known

risk bounds for the Lasso estimator (Bickel et al., 2009), we get

‖β̂ − β∗‖22 + ‖θ̂ − θ∗‖22 ≤ Cλ2(s+ o) and ‖β̂ − β∗‖1 + ‖θ̂ − θ∗‖1 ≤ Cλ(s+ o). (10)

Note that these are the risk bounds established in3 (Candès and Randall, 2008; Dalalyan and Chen,
2012; Nguyen and Tran, 2013). These bounds are most likely unimprovable as long as the estimation
of θ∗ is of interest. However, if we focus only on the estimation error of β∗, considering θ∗ as a
nuisance parameter, the following argument leads to a sharper risk bound. First, we note that

β̂ ∈ arg min
β∈Rp

{ 1

2n
‖Y −Xβ −

√
n θ̂‖22 + λ‖β‖1

}
.

The KKT conditions of this convex optimization problem take the following form
1/nX>(Y −Xβ̂ −

√
n θ̂) ∈ λ · sgn(β̂),

where sgn(β̂) is the subset of Rp containing all the vectors w such that wj β̂j = |β̂j | and |wj | ≤ 1

for every j ∈ {1, . . . , p}. Multiplying the last displayed equation from left by β∗ − β̂, we get
1/n(β∗ − β̂)>X>(Y −Xβ̂ −

√
n θ̂) ≤ λ

(
‖β∗‖1 − ‖β̂‖1

)
.

Recall now that Y = Xβ∗ +
√
nθ∗ + ξ and set v = β∗ − β̂ and u = θ∗ − θ̂. We arrive at

1/n‖Xv‖22 = 1/nv>X>Xv ≤ −v>(X(n))>u− 1/nv>X>ξ + λ
(
‖β∗‖1 − ‖β̂‖1

)
.

On the one hand, the duality inequality and the lower bound on λ imply that |v>X>ξ| ≤
‖v‖1‖X>ξ‖∞ ≤ nλ‖v‖1/2. On the other hand, well-known arguments yield ‖β∗‖1 − ‖β̂‖1 ≤
2‖vS‖1 − ‖v‖1. Therefore, we have

1/n‖Xv‖22 ≤ |v>(X(n))>u|+ λ/2
(
4‖vS‖1 − ‖v‖1

)
. (11)

SinceX satisfies the ATPI(c1, c2, c3) that implies the TPI(c1, c2), we get c2
1‖v‖22 ≤ 2/n‖Xv‖22 +

2c2
2‖v‖21. Combining with (11), this yields

c2
1‖v‖22 ≤ 2|v>(X(n))>u|+ λ

(
4‖vS‖1 − ‖v‖1

)
+ 2c2

2‖v‖21
IPI(0,b2,b3)

≤ 2b3‖v‖2‖u‖1 + 2b2‖v‖1‖u‖2 + λ
(
4‖vS‖1 − ‖v‖1

)
+ 2c2

2‖v‖21 (12)

≤ c2
1

2
‖v‖22 +

2b2
3

c2
1

‖u‖21 + ‖v‖1(2b2‖u‖2 − λ) + 4λ‖vS‖1 + 2c2
2‖v‖21.

3the first two references deal with the small dimensional case only, that is where s = p� n.
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Using the first inequality in (10) and condition (8), we upper bound (2b2‖u‖2 − λ) by 0. To upper
bound the second last term, we use the Cauchy-Schwarz inequality: 4λ‖vS‖1 ≤ 4λ

√
s ‖v‖2 ≤

(4/c1)2λ2s+ (c1/2)2‖v‖22. Combining all these bounds and rearranging the terms, we arrive at

(c2
1/4)‖v‖22 ≤ 2{(b3/c1) ∨ c2}2(‖u‖1 + ‖v‖1)2 + (4/c1)2λ2s.

Taking the square root of both sides and using the second inequality in (10), we obtain an inequality
of the same type as (9) but with slightly larger constants. As a concluding remark for this sketch of
proof, let us note that if instead of using the last arguments, we replace all the error terms appearing
in (12) by their upper bounds provided by (10), we do not get the optimal rate.

3 The case of Gaussian design

Our main result, Theorem 1, shows that if the design matrix satisfies the transfer principle and the
incoherence property with suitable constants, then the `1-penalized Huber’s M -estimator achieves
the optimal rate under adversarial contamination. As a concrete example of a design matrix for which
the aforementioned conditions are satisfied, we consider the case of correlated Gaussian design. As
opposed to most of prior work on robust estimation for linear regression with Gaussian design, we
allow the covariance matrix to have a non degenerate null space. We will simply assume that the
n rows of the matrix X are independently drawn from the Gaussian distribution Np(0,Σ) with a
covariance matrix Σ satisfying the RE(s, 5) condition. We will also assume in this section that all the
diagonal entries of Σ are equal to 1: Σjj = 1. The more formal statements of the results, provided in
the supplementary material, do not require this condition.

Theorem 2. Let δ ∈ (0, 1/7) be a tolerance level and n ≥ 100. For every positive semi-definite
matrix Σ with all the diagonal entries bounded by one, with probability at least 1− 2δ, the matrix X
satisfies the TPΣ(a1, a2), the IPΣ(b1, b2, b3) and the ATPΣ(c1, c2, c3) with constants

a1 = 1−
4.3 +

√
2 log(9/δ)√
n

, a2 = b2 = 1.2

√
2 log p

n

b1 =
4.8
√

2 +
√

2 log(81/δ)√
n

, b3 = 1.2

√
2 log n

n
,

c1 =
3

4
−

17.5 + 9.6
√

2 log(2/δ)√
n

, c2 = 3.6

√
2 log p

n
, c3 = 2.4

√
2 log n

n
.

The proof of this result is provided in the supplementary material. It relies on by now standard tools
such as Gordon’s comparison inequality, Gaussian concentration inequality and the peeling argument.
Note that the TPΣ and related results have been obtained in Raskutti et al. (2010); Oliveira (2016);
Rudelson and Zhou (2013). The IPΣ is basically a combination of a high probability version of
Chevet’s inequality (Vershynin, 2018, Exercises 8.7.3-4) and the peeling argument. A property similar
to the ATPΣ for Gaussian matrices with non degenerate covariance was established in (Nguyen and
Tran, 2013, Lemma 1) under further restrictions on n, p, s, o.

Theorem 3. There exist universal positive constants d1, d2, d3 such that if

s log p

κ2
+ o log n ≤ d1n and 1/7 ≥ δ ≥ 2e−d2n

then, with probability at least 1− 4δ, `1-penalized Huber’s M -estimator with λ2
sn = 9σ2 log(p/δ)

and λ2
on = 8σ2 log(n/δ) satisfies∥∥Σ1/2(β̂ − β∗)

∥∥
2
≤ d3σ

{(s log(p/δ)

nκ2

)1/2

+
o log(n/δ)

n

}
. (13)

Even though the constants appearing in Theorem 2 are reasonably small and smaller than in the
analogous results in prior work, the constants d1, d2 and d3 are large, too large for being of any
practical relevance. Finally, let us note that if s and o are known, it is very likely that following the
techniques developed in (Bellec et al., 2018, Theorem 4.2), one can replace the terms log(p/δ) and
log(n/δ) in (13) by log(p/sδ) and log(n/oδ), respectively.
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Comparing Theorem 3 with (Nguyen and Tran, 2013, Theorem 1), we see that our rate improvement
is not only in terms of its dependence on the proportion of outliers, o/n, but also in terms of the
condition number κ, which is now completely decoupled from o in the risk bound.

While our main focus is on the high dimensional situation in which p can be larger than n, it also
applies to the case of small dimensional dense vectors, i.e., when s = p is significantly smaller than
n. One of the applications of such a setting is the problem of stylized communication considered, for
instance, in (Candès and Randall, 2008). The problem is to transmit a signal β∗ ∈ Rp to a remote
receiver. What the receiver gets is a linearly transformed codeword Xβ∗ corrupted by small noise
and malicious errors. While all the entries of the received codeword are affected by noise, only a
fraction of them is corrupted by malicious errors, corresponding to outliers. The receiver has access
to the corrupted version of Xβ∗ as well as to the encoding matrix X. Theorem 3.1 from (Candès and
Randall, 2008) establishes that the Dantzig selector (Candès and Tao, 2007), for a properly chosen
tuning parameter proportional to the noise level, achieves the (sub-optimal) rate σ2(s+ o)/n, up to
a logarithmic factor. A similar result, with a noise-level-free version of the Dantzig selector, was
proved in (Dalalyan and Chen, 2012). Our Theorem 3 implies that the error of the `1-penalized
Huber’s estimator goes to zero at the faster rate σ2{(s/n) + (o/n)2}. Finally, one can deduce from
Theorem 3 that as soon as the number of outliers satisfies o = o(

√
sn/κ2), the rate of convergence

remains the same as in the outlier-free setting.

4 Prior work

As attested by early references such as (Tukey, 1960), robust estimation has a long history. A
remarkable—by now classic—result by Huber (1964) shows that among all the shift invariant M -
estimators of a location parameter, the one that minimizes the asymptotic variance corresponds to the
loss function φ(x) = 1/2{x2 ∧ (2x − 1)}. This result was proved in the case when the reference
distribution is univariate Gaussian. Apart from some exceptions, such as (Yatracos, 1985), during
several decades the literature on robust estimation was mainly exploring the notions of breakdown
point, influence function, asymptotic efficiency, etc., see for instance (Donoho and Gasko, 1992;
Hampel et al., 2005; Huber and Ronchetti, 2009) and the recent survey (Yu and Yao, 2017). A more
recent trend in statistics is to focus on finite sample risk bounds that are minimax-rate-optimal when
the sample size n, the dimension p of the unknown parameter and the number o of outliers tend
jointly to infinity (Chen et al., 2018, 2016; Gao, 2017).

In the problem of estimating the mean of a multivariate Gaussian distribution, it was shown that
the optimal rate of the estimation error measured in Euclidean norm scales as (p/n)1/2 + (o/n).
Similar results were established for the problem of robust linear regression as well. However, the
estimator that was shown to achieve this rate under fairly general conditions on the design is based
on minimizing regression depths, which is a hard computational problem. Several alternative robust
estimators with polynomial complexity were proposed (Diakonikolas et al., 2016; Lai et al., 2016;
Cheng et al., 2019; Collier and Dalalyan, 2017; Diakonikolas et al., 2018).

Many recent papers studied robust linear regression. (Karmalkar and Price, 2018) considered `1-
constrained minimization of the `1-norm of residuals and found a sharp threshold on the proportion
of outliers determining whether the error of estimation tends to zero or not, when the noise level
goes to zero. From a methodological point of view, `1-penalized Huber’s estimator has been
considered in (Sardy et al., 2001; She and Owen, 2011; Lee et al., 2012). These papers contain
also comprehensive empirical evaluation and proposals for data-driven choice of tuning parameters.
Robust sparse regression with an emphasis on contaminated design was investigated in (Chen et al.,
2013; Balakrishnan et al., 2017; Diakonikolas et al., 2019; Liu et al., 2018, 2019). Iterative and
adaptive hard thresholding approaches were considered in (Bhatia et al., 2015, 2017; Suggala et al.,
2019). Methods based on penalizing the vector of outliers were studied by Li (2013); Foygel and
Mackey (2014); Adcock et al. (2018), who adopted a more signal-processing point of view in which
the noise vector is known to have a small `2 norm and nothing else is known about it. We should
stress that our proof techniques share many common features with those in (Foygel and Mackey,
2014).

The problem of robust estimation of graphical models, closely related to the present work, was
addressed in (Balmand and Dalalyan, 2015; Katiyar et al., 2019; Liu et al., 2019). Quite surprisingly,
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at least to us, the minimax rate of robust estimation of the precision matrix in Frobenius norm is not
known yet.

5 Extensions

The results presented in previous sections pave the way for some future investigations, that are
discussed below. None of these extensions is carried out in this work, they are listed here as possible
avenues for future research.

Contaminated design In addition to labels, the features also might be corrupted by outliers.
This is the case, for instance, in Gaussian graphical models. Formally, this means that instead of
observing the clean data {(X◦i , y◦i ); i = 1, . . . , n} satisfying y◦i = (X◦i )

>β∗ + ξi, we observe
{(Xi, yi); i = 1, . . . , n} such that (Xi, yi) = (X◦i , y

◦
i ) for all i except for a fraction of outliers

i ∈ O. In such a setting, we can set θ∗i = (yi −X>i β
∗ − ξi)/

√
n and recover exactly the same

model as in (1).

The important difference as compared to the setting investigated in previous section is that it is
not reasonable anymore to assume that the feature vectors {Xi : i ∈ O} are iid Gaussian. In the
adversarial setting, they may even be correlated with the noise vector ξ. It is then natural to remove
all the observations for which maxj |Xij | >

√
2 log np/δ and to assume, that the `1-penalized

Huber estimator is applied to data for which maxij |Xij | ≤
√

2 log np/δ. This implies that λ can
be chosen of the order of4 σÕ(n−1/2 + (o/n)), which is an upper bound on ‖X>ξ‖∞/n.

In addition, TPΣ is clearly satisfied since it is satisfied for the submatrix XOc and ‖Xv‖2 ≥
‖XOcv‖2. As for the IPΣ, we know from Theorem 2 that XOc satisfies IPΣ with constants b1, b2,
b3 of order Õ(n−1/2). On the other hand,

|u>OXOv| ≤ ‖X‖∞‖uO‖1‖v‖1 ≤
√

2o log(np/δ)‖uO‖2‖v‖1.

This implies that X satisfies IPΣ with b1 = Õ(n−1/2), b2 = Õ((o/n)1/2) and b3 = Õ(n−1/2).
Applying Theorem 1, we obtain that if (so+o2) log(np) ≤ cn for a sufficiently small constant c > 0,
then with high probability

‖Σ1/2(β̂ − β∗)‖2 = σÕ

{√
s

n
+
o
√
s

n
+

√
o

n

( 1√
n

+
o

n

)
(s+ o)

}
= σO

{√
s

n
+

√
o3

n

}
.

This rate of convergence appear to be slower than those obtained by methods tailored to deal with
corruption in design, see (Liu et al., 2018, 2019) and the references therein. Using more careful
analysis, this rate might be improvable. On the positive side, unlike many of its competitors, the
estimator β̂ has the advantage of being independent of the covariance matrix Σ and on the sparsity s.
Furthermore, the upper bound does not depend, even logarithmically, on ‖β∗‖2. Finally, if o3 ≤ sn,
our bound yields the minimax-optimal rate. To the best of our knowledge, none of the previously
studied robust estimators has such a property.

Sub-Gaussian design The proof of Theorem 2 makes use of some results, such as Gordon-Sudakov-
Fernique or Gaussian concentration inequality, which are specific to the Gaussian distribution. A
natural question is whether the rate σ{( s log(p/s)

n )1/2 + o
n} can be obtained for more general design

distributions. In the case of a sub-Gaussian design with the scale- parameter 1, it should be possible
to adapt the methodology developed in this work to show that the TPΣ and the IPΣ are satisfied
with high-probability. Indeed, for proving the IPΣ, it is possible to replace Gordon’s comparison
inequality by Talagrand’s sub-Gaussian comparison inequality (Vershynin, 2018, Cor. 8.6.2). The
Gaussian concentration inequality can be replaced by generic chaining.

Heavier tailed noise distributions For simplicity, we assumed in the paper that the random
variables ξi are drawn from a Gaussian distribution. As usual for the Lasso analysis, all the results
extend to the case of sub-Gaussian noise, see (Koltchinskii, 2011). Indeed, we only need to control
tail probabilities of the random variable ‖X>ξ‖∞ and ‖ξ‖∞, which can be done using standard tools.

4We use notation an = Õ(bn) as a shorthand for an ≤ Cbn logc n for some C, c > 0 and for every n.
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We believe that it is possible to extend our results beyond sub-Gaussian noise, by assuming some
type of heavy-tailed distributions. The rationale behind this is that any random variable ξ can be
written (in many different ways) as a sum of a sub-Gaussian variable ξnoise and a “sparse” variable
ξout. By “sparse” we mean that ξout takes the value 0 with high probability. The most naive way for
getting such a decomposition is to set ξnoise = ξ1(|ξ| < τ) and ξout = ξ1(|ξ| ≥ τ). The random
noise terms ξout

i can be merged with θi and considered as outliers. We hope that this approach can
establish a connection between two types of robustness: robustness to outliers considered in this work
and robustness to heavy tails considered in many recent papers (Devroye et al., 2016; Catoni, 2012;
Minsker, 2018; Lugosi and Mendelson, 2019; Lecué and Lerasle, 2017).

6 Numerical illustration

We performed a synthetic experiment to illustrate the obtained theoretical result and to check that it
is in line with numerical results. We chose n = 1000 and p = 100 for 3 different levels of sparsity
s = 5, 15, 25. The noise variance was set to 1 and β∗ was set to have its first s non-zero coordinates
equal to 10. Each corrupted response coordinate was θ∗j = 10. The fraction ε = o/n of outliers
was ranging between 0 and 0.25 with a step-size of 5 for the number of outliers o is used. The
MSE was computed using 200 independent repetitions. The optimisation problem in (3) was solved
using the glmnet package with the tuning parameters λs = λo =

√
(8/n)(log(p/s) + log(n/o)).

fraction of outliers, "
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The obtained plots clearly demonstrate that there is a linear dependence on ε of the square-root of the
mean squared error.

7 Conclusion

We provided the first proof of the rate-optimality—up to logarithmic terms that can be avoided—
of `1-penalized Huber’s M -estimator in the setting of robust linear regression with adversarial
contamination. We established this result under the assumption that the design is Gaussian with a
covariance matrix Σ that need not be invertible. The condition number governing the risk bound is the
ratio of the largest diagonal entry of Σ and its restricted eigenvalue. Thus, in addition to improving
the rate of convergence, we also relaxed the assumptions on the design. Furthermore, we outlined
some possible extensions, namely to corrupted design and/or sub-Gaussian design, which seem to be
fairly easy to carry out building on the current work.

Next on our agenda is the more thorough analysis of the robust estimation by `1-penalization in the
case of contaminated design. A possible approach, complementary to the one described in Section 5
above, is to adopt an errors-in-variables point of view similar to that developed in (Belloni et al., 2016).
Another interesting avenue for future research is the development of scale-invariant robust estimators
and their adaptation to the Gaussian graphical models. This can be done using methodology brought
forward in (Sun and Zhang, 2013; Balmand and Dalalyan, 2015). Finally, we would like to better
understand what is the largest fraction of outliers for which the `1-penalized Huber’s M -estimator
has a risk—measured in Euclidean norm—upper bounded by σo/n. Answering this question even
under stringent assumptions of independent standard Gaussian designXij with (s log p)/n going to
zero as n tends to infinity would be of interest.
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