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Abstract

We propose a projected Stein variational Newton (pSVN) method for high-
dimensional Bayesian inference. To address the curse of dimensionality, we exploit
the intrinsic low-dimensional geometric structure of the posterior distribution in
the high-dimensional parameter space via its Hessian (of the log posterior) op-
erator and perform a parallel update of the parameter samples projected into a
low-dimensional subspace by an SVN method. The subspace is adaptively con-
structed using the eigenvectors of the averaged Hessian at the current samples. We
demonstrate fast convergence of the proposed method, complexity independent of
the parameter and sample dimensions, and parallel scalability.

1 Introduction

Bayesian inference provides an optimal probability formulation for learning complex models from
observational or experimental data under uncertainty by updating the model parameters from their
prior distribution to a posterior distribution [30]. In Bayesian inference we typically face the task
of drawing samples from the posterior probability distribution to compute various statistics of some
given quantities of interest. However, this is often prohibitive when the posterior distribution is
high-dimensional; many conventional methods for Bayesian inference suffer from the curse of
dimensionality, i.e., computational complexity grows exponentially or convergence deteriorates with
increasing parameter dimension.

To address this curse of dimensionality, several efficient and dimension-independent methods have
been developed that exploit the intrinsic properties of the posterior distribution, such as its smooth-
ness, sparsity, and intrinsic low-dimensionality. Markov chain Monte Carlo (MCMC) methods
exploiting geometry of the log-likelihood function have been developed [16, 21, 24, 12, 3], providing
more effective sampling than black-box MCMC. For example, the DILI MCMC method [12] uses
the low rank structure of the Hessian of the negative log likelihood in conjunction with operator-
weighted proposals that are well-defined on function space to yield a sampler whose performance is
dimension-independent and effective at capturing information provided by the data. However, despite
these enhancements, MCMC methods remain prohibitive for problems with expensive-to-evaluate
likelihoods (i.e., involving complex models) and in high parameter dimensions. Deterministic sparse
quadratures were developed in [28, 26, 8] and shown to converge rapidly with dimension-independent
rates for smooth and sparse problems. However, the fast convergence is lost when the posterior has
significant local variations, despite enhancements with Hessian-based transformation [27, 9].

Variational inference methods reformulate the sampling problem as an optimization problem that
approximates the posterior by minimizing its Kullback–Leibler divergence with a transformed prior
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[22, 20, 4], which can be potentially much faster than MCMC. In particular, Stein variational methods,
which seek a composition of a sequence of simple transport maps represented by kernel functions
using gradient descent (SVGD) [20, 11, 19] and especially Newton (SVN) [14] optimization methods,
are shown to achieve fast convergence in relatively low dimensions. However, these variational
optimization methods can again become deteriorated in convergence and accuracy in high dimensions.
The curse of dimensionality can be partially addressed by a localized SVGD on Markov blankets,
which relies on a conditional independence structure of the target distribution [32, 31].

Contributions: In this work, we develop a projected Stein variational Newton method (pSVN)
to tackle the challenge of high-dimensional Bayesian inference by exploiting the intrinsic low-
dimensional geometric structure of the posterior distribution (where it departs from the prior), as
characterized by the dominant spectrum of the prior-preconditioned Hessian of the negative log
likelihood. This low-rank structure, or fast decay of eigenvalues of the preconditioned Hessian, has
been proven for some inference problems and commonly observed in many others with complex
models [5, 6, 29, 18, 12, 9, 10, 2, 7]. By projecting the parameters into this data-informed low-
dimensional subspace and applying the SVN in this subspace, we can effectively mitigate the curse
of dimensionality. We demonstrate fast convergence of pSVN that is independent of the number of
parameters and samples. In particular, in two (both linear and nonlinear) experiments we show that
the intrinsic dimension is a few (6) and a few tens (40) with the nominal dimension over 1K and 16K,
respectively. We present a scalable parallel implementation of pSVN that yields rapid convergence,
minimal communication, and low memory footprint, thanks to this low-dimensional projection.

Below, we present background on Bayesian inference and Stein variational methods in Section
2, develop the projected Stein variational Newton method in Section 3, and provide numerical
experiments in Section 4.

2 Background

2.1 Bayesian inference

We consider a random parameter x ∈ Rd, d ∈ N, with a prior probability density function p0 : Rd →
R, and noisy observational data y of a parameter-to-observable map f : Rd → Rs, s ∈ N, i.e.,

y = f(x) + ξ, (1)

where ξ ∈ Rs represents observation noise with probability density function pξ : Rs → R. The
posterior density p(·|y) : Rd → R of x conditioned on the data y is given by Bayes’ rule

p(x|y) =
1

Z
py(x), where py(x) := pξ(y − f(x)) p0(x), (2)

and the normalization constant Z, typically Z 6= 1 if pξ or p0 is known up to a constant, is given by

Z := Ep0 [pξ(y − f(x))] =

∫
Rd

pξ(y − f(x))p0(x)dx. (3)

In practice, Z is computationally intractable, especially for large d.

2.2 Stein variational methods

While sampling from the prior is tractable, sampling from the posterior is a great challenge. One
method to sample from the posterior is to find a transport map T : Rd → Rd in a certain function class
T that pushes forward the prior to the posterior by minimizing a Kullback–Leibler (KL) divergence

min
T∈T
DKL(T∗p0|py). (4)

Stein variational methods [20, 14] simplify the minimization of (4) for one possibly very complex
and nonlinear transport map T to a sequence of simpler transport maps that are perturbations of the
identity, i.e., T = TL ◦ TL−1 ◦ · · · ◦ T2 ◦ T1, L ∈ N, where

Tl(x) = I(x) + εQl(x), l = 1, . . . , L, (5)

with I(x) = x, step size ε, and perturbation map Ql : Rd → Rd. Let pl denote the pushforward
density pl := (Tl ◦ · · · ◦ T1)∗p0. For l = 1, 2, . . . , we define a cost functional Jl(Q) as

Jl(Q) := DKL((I +Q)∗pl−1|py). (6)
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Then at step l, Stein variational methods lead to

Ql = −H−1
l ∇Jl(0), (7)

where ∇Jl(0) : Rd → Rd is the Fréchet derivative of Jl(Q) evaluated at Q = 0, and Hl is a
preconditioner. For the SVGD method [20],Hl = I , while for the SVN method [14],Hl ≈ ∇2Jl(0),
an approximation of the Hessian of the cost functional∇2Jl(0).

Given basis functions kn : Rd → R, n = 1, . . . , N , an ansatz representation of Ql is defined as

Ql(x) =

N∑
n=1

cnkn(x), (8)

where cn ∈ Rd, n = 1, . . . , N , are unknown coefficient vectors. It is shown in [14] that the coefficient
vector c = (c>1 , . . . , c

>
N )> ∈ RNd is a solution of the linear system

Hc = −g, (9)

where g = (g>1 , . . . , g
>
N )> ∈ RNd is the gradient vector given by

gm := Epl−1
[−∇x log(py)km −∇xkm], m = 1, . . . , N, (10)

and H ∈ RNd×Nd is the Hessian matrix, specified as the identity for SVGD [20], which leads to
cn = −gn, n = 1, . . . , N , while for SVN it is given with mn-block Hmn ∈ Rd×d by [14]

Hmn := Epl−1
[−∇2

x log(py)knkm +∇xkn(∇xkm)>], m, n = 1, . . . , N. (11)

At each step l = 1, 2, . . . , the expectation Epl−1
[·] in (10) and (11) are approximated by the sample

average approximation with samples xl−1
1 , . . . , xl−1

N , which are drawn from the prior at l = 1 and
pushed forward by (5) once the coefficients c1, . . . , cN are obtained. We remark that in the original
SVGD method [20], the samples are moved with the simplified perturbation Ql(xm) = cm.

In both [20] and [14], the basis functions kn(x) are specified by a suitable kernel function kn(x) =
k(x, x′) at x′ = xn, n = 1, . . . , N , e.g., a Gaussian kernel given by

k(x, x′) = exp

(
−1

2
(x− x′)>M(x− x′)

)
, (12)

where M is a metric that measures the distance between x and x′ ∈ Rd. In [20], it is specified
as rescaled identity matrix αI for α > 0 depending on the samples, while in [14], M is given
by M = Epl−1

[−∇2
x log(py)]/d to account for the geometry of the posterior by averaged Hessian

information. This was shown to accelerate convergence for both SVGD and SVN compared to αI .
We remark that for high-dimensional complex models where a direct computation of the Hessian
∇2
x log(py) is not tractable, its low-rank decomposition by randomized algorithms can be applied.

3 Projected Stein variational Newton

3.1 Dimension reduction by projection

Stein variational methods suffer from the curse of dimensionality, i.e., the sample estimate (e.g., for
variance) deteriorates considerably in high dimensions because the global kernel function (12) cannot
represent the transport map well, as shown in [32, 31] for SVGD. This challenge can be alleviated in
moderate dimensions by a suitable choice of the metric in (12) as demonstrated in [14]. However it is
still present when the dimension becomes high. An effective method to tackle this difficulty, which
relies on conditional independence of the posterior density, uses local kernel functions defined over a
Markov blanket with much lower dimension, thus achieving effective dimension reduction [32, 31].

In many applications, even when the nominal dimension of the parameter is very high, the intrinsic
parameter dimension informed by the data is typically low, i.e., the posterior density is effectively
different from the prior density only in a low-dimensional subspace [5, 6, 29, 18, 12, 9, 10, 2]. This is
because: (i) the prior p0 may have correlation in different dimensions, (ii) the parameter-to-observable
map f may be smoothing/regularizing, (iii) the data y may not be very informative, or a combined
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effect. Let Ψ = (ψ1, . . . , ψr) ∈ Rd×r denote the basis of a subspace of dimension r � d in Rd.
Then we can project the parameter x with mean x̄ into this subspace as

xr = x̄+ Pr(x− x̄) = x̄+

r∑
i=1

ψi(ψi, (x− x̄))H = x̄+

r∑
i=1

ψiwi = x̄+ Ψw, (13)

where w = (w1, . . . , wr) ∈ Rr is a vector of coefficients wi = (ψi, x − x̄)H of the projection
of x − x̄ to ψi in a suitable norm H , e.g., (ψi, x − x̄)H = ψTi Γ−1

0 (x − x̄) where Γ0 is the prior
covariance of x and ψTi Γ−1

0 ψj = δij . We define the projected posterior as

pr(x|y) =
1

Zr
pry(x), where pry(x) = pξ(y − f(xr))p0(x) and Zr = Ep0 [pξ(y − f(xr))]. (14)

Then we can establish convergence under the following assumption. We define || · ||X as a suitable
norm, e.g., ||x||2X = xTXx with X = I , the identity matrix or a mass matrix discretized from
identity operator in finite dimension approximation space in our numerical experiments.
Assumption 1. For Gaussian noise ξ ∈ N (0,Γ) with s.p.d. covariance Γ ∈ Rs×s. Let ||v||Γ :=
(vTΓ−1v)1/2 for any v ∈ Rs. Assume there exists a constant Cf > 0 such that for any xr in (13)

Ep0 [||f(xr)||Γ] ≤ Cf and Ep0 [||f(x)||Γ] ≤ Cf . (15)

For every b > 0, assume there is Cb > 0 such that for all x1, x2 with max{||x1||X , ||x2||X} < b,

||f(x1)− f(x2)||Γ ≤ Cb||x1 − x2||X . (16)

We state the convergence result for the projected posterior density in the following theorem, whose
proof is presented in Appendix A.
Theorem 1. Under Assumption 1, there exists a constant C independent of r such that

DKL(p(x|y) | pr(x|y)) ≤ C||x− xr||X . (17)

Remark 1. Theorem 1 indicates that the projected posterior converges to the full one as along as
the projected parameter converges in X-norm, and that the convergence of the former is bounded by
the latter. In practical applications, the former may converge faster than the latter because it only
depends on the data-informed subspace while the latter is measured in data-independent X-norm.

3.2 Projected Stein variational Newton

Let pr0 denote the prior densities for xr in (13). Let x⊥ = x− xr. Then the prior is decomposed as

p0(x) = pr0(xr)p⊥0 (x⊥|xr), (18)

where p⊥0 (x⊥|xr) is a conditional density, which becomes p⊥0 (x⊥) if p0 is a Gaussian density. Then
the projected posterior density pry(x) in (14) becomes

pry(x) = pξ(y − f(xr))pr0(xr)p⊥0 (x⊥|xr), (19)

so that sampling from pry(x) can be realized by sampling from pry(xr) = pξ(y − f(xr))pr0(xr) for
xr and from p⊥0 (x⊥|xr) for x⊥ conditioned on xr (or from p⊥0 (x⊥) if p0 is Gaussian). To sample
from the posterior, we can sample x from the prior, decompose it as x = xr + x⊥, freeze x⊥, push
xr to xry as a sample from pry(xr), and construct the posterior sample as xy = xry + x⊥.

To sample from pry(xr) in the projection subspace, we seek a transport map T that pushes forward
pr0(xr) to pry(xr) by minimizing the KL divergence between them. Since the randomness of xr =
x̄ + Ψw is fully represented by w given the projection basis Ψ, we just need to find a transport
map that pushes forward π0(w) = pr0(xr) to πy(w) = pry(xr) in the (coefficient) parameter space
Rr, where r � d. Similarly in the full space, we look for a composition of a sequence of maps
T = TL ◦ TL−1 ◦ · · · ◦ T2 ◦ T1, L ∈ N, with

Tl(w) = I(w) + εQl(w), l = 1, . . . , L, (20)

where the perturbation map Ql is represented by the basis functions kn : Rr → R, n = 1, . . . , N , as

Ql(w) =

N∑
n=1

cnkn(w), (21)
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Then the coefficient vector c = ((c1)>, . . . , (cN )>)> ∈ RNr is the solution of the linear system

Hc = −g. (22)

Here the m-th component of the gradient g is defined as

gm := Eπl−1
[−∇w log(πy)km −∇wkm], (23)

and the mn-th component of the Hessian H for pSVN is defined as

Hmn := Eπl−1
[−∇2

w log(πy)knkm +∇wkn(∇wkm)>]. (24)

The expectations in (23) and (24) are evaluated by sample average approximation at samples
wl−1

1 , . . . , wl−1
N , which are drawn from π0 for l = 1 and pushed forward by (20) as wln = T (wl−1

n ),
n = 1, . . . , N . By the definition of the projection (13), we have

∇w log(πy(w)) = Ψ>∇x log(pry(xr)), and ∇2
w log(πy(w)) = Ψ>∇2

x log(pry(xr))Ψ. (25)

For the basis functions kn, n = 1, . . . , N , we use a Gaussian kernel kn(w) = k(w,wn) defined as in
(12), with the metric M given by an averaged Hessian at the current samples wl−1

1 , . . . , wl−1
N , i.e.,

M = −1

r
Eπl−1

[∇2
w log(πy)] ≈ − 1

rN

N∑
n=1

∇2
w log(πy(wl−1

n )). (26)

We remark that the projected system (22) is of size Nr×Nr, which is a considerable reduction from
the full system (9) of size Nd×Nd, since r � d. To further reduce the size of the coupled system
(22), we use a classical “mass-lumping” technique to decouple it as N systems of size r × r

Hmcm = −gm, m = 1, . . . , N, (27)

where gm is given as in (25), and Hm is given by the lumped Hessian

Hm :=

N∑
n=1

Hmn, m = 1, . . . , N, (28)

with Hmn defined in (24). We refer to [14] for this technique and a diagonalization Hm = Hmm.
Moreover, to find a good step size ε in (20), we adopt a classical line search [23], see Appendix B.

3.3 Hessian-based subspace

To construct a data-informed subspace of the parameter space, we exploit the geometry of the posterior
density characterized by its Hessian. More specifically, we seek the basis functions ψi, i = 1, . . . , r,
as the eigenvectors corresponding to the r largest eigenvalues of the generalized eigenvalue problem

E[∇2
xηy(x)]ψi = λiΓ

−1
0 ψi, i = 1, . . . , r, (29)

where Γ0 is the covariance of x under the prior distribution (not necessarily Gaussian), ψTi Γ−1
0 ψj =

δij , i, j = 1, . . . , r, E[∇2
xηy(x)], with ηy(x) := − log(pξ(y− f(x))), is the averaged Hessian of the

negative log-likelihood function w.r.t. a certain distribution, e.g., the prior, posterior, or Gaussian
approximate distribution [13]. Here we propose to evaluate E[∇2

xηy(x)] by an adaptive sample
average approximation at the samples pushed from the prior to the posterior, and adaptively construct
the eigenvectors Ψ, as presented in next section. For linear Bayesian inference problems, with
f(x) = Ax for A ∈ Rs×d, a Gaussian prior distribution x ∼ N (x̄,Γ0) and a Gaussian noise
ξ ∼ N (0,Γξ) lead to a Gaussian posterior distribution given by N (xMAP,Γpost), where [30]

Γ−1
post = ∇2

xηy + Γ−1
0 , xMAP = x̄− ΓpostA

TΓ−1
ξ (y −Ax̄). (30)

Therefore, the eigenvalue λi of (∇2
xηy,Γ

−1
0 ), with∇2

xηy = ATΓ−1
ξ A, measures the relative variation

between the data-dependent log-likelihood and the prior in direction ψi. For λi � 1, the data provides
negligible information in direction ψi, so the difference between the posterior and the prior in ψi is
negligible. In fact, it is shown in [29] that the subspace constructed by (29) is optimal for linear f .
Let (λi, ψi)1≤i≤r denote the r largest eigenpairs such that |λ1| ≥ |λ2| ≥ · · · ≥ |λr| ≥ ελ > |λr+1|
for some small tolerance ελ < 1. Then the Hessian-based subspace spanned by the eigenvectors
Ψ = (ψ1, . . . , ψr) captures the most variation of the parameter x informed by data y. We remark that
to solve the generalized Hermitian eigenvalue problem (29), we employ a randomized SVD algorithm
[17], which requires O(NrCh + dr2) flops, where Ch is the cost of a Hessian action in a direction.
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3.4 Parallel and adaptive pSVN algorithm

Given the bases Ψ as the data-informed parameter directions, we can draw samples x1, . . . , xN from
the prior distribution and push them by pSVN to match the posterior distribution in a low-dimensional
subspace, while keeping the components of the samples in the complementary subspace unchanged.
We set the stopping criterion as: (i) the maximum norm of the updates wlm − wl−1

m , m = 1, . . . , N ,
is smaller than a given tolerance Tolg; (ii) the maximum norm of the gradients gm, m = 1, . . . , N ,
is smaller than a given tolerance Tolw; or (iii) the number of iterations l reaches a preset number
L. Moreover, we take advantage of pSVN advantages in low-dimensional subspaces—including
fast computation, lightweight communication, and low memory footprint—and provide an efficient
parallel implementation using MPI communication in Algorithm 1, with analysis in Appendix C.

Algorithm 1 pSVN in parallel using MPI
1: Input: M prior samples, x1, . . . , xM , in each of K cores, bases Ψ, and density py in all cores.
2: Output: posterior samples xy1, . . . , x

y
M in each core.

3: Perform projection (13) to get xm = xrm + x⊥m and the samples wl−1
m , m = 1, . . . ,M , at l = 1.

4: Perform MPI_Allgather for wl−1
m , m = 1, . . . ,M .

5: repeat
6: Compute the gradient and Hessian by (25).
7: Perform MPI_Allgather for the gradient and Hessian.
8: Compute the kernel and its gradient by (12) and (26).
9: Perform MPI_Allgather for km, m = 1, . . . ,M ,

MPI_Allreduce w. sum for
∑
m km and

∑
m∇wkm.

10: Assemble and solve system (27) for c1, . . . , cM .
11: Perform a line search to get wl1, . . . , w

l
M .

12: Perform MPI_Allgather for wlm, m = 1, . . . ,M .
13: Update the samples xrm = Ψwlm + x̄, m = 1, . . . ,M .
14: Set l← l + 1.
15: until A stopping criterion is met.
16: Reconstruct samples xym = xrm + x⊥m, m = 1, . . . ,M .

In Algorithm 1, we assume that the bases Ψ for the projection are the data informed parameter
directions, which are obtained by the Hessian-based algorithm in Section 3.3 at the “representative”
samples x1, . . . , xN . However, we do not have these samples but only the prior samples at the
beginning. To address this problem, we propose an adaptive algorithm that adaptively construct the
bases Ψ based on samples pushed forward from the prior to the posterior, see Algorithm 2.

Algorithm 2 Adaptive pSVN
1: Input: M prior samples, x1, . . . , xM , in each of K cores, and density py in all cores.
2: Output: posterior samples xy1, . . . , x

y
M in each core.

3: Set level l2 = 1, xl2−1
m = xm, m = 1, . . . ,M .

4: repeat
5: Perform the eigendecomposition (29) at samples xl2−1

1 , . . . , xl2−1
M , and form the bases Ψl2 .

6: Apply Algorithm 1 to update the samples
[xl21 , . . . , x

l2
M ] = pSVN([xl2−1

1 , . . . , xl2−1
M ],K,Ψl2 , py).

7: Set l2 ← l2 + 1.
8: until A stopping criterion is met.

4 Numerical experiments

We demonstrate the convergence, accuracy, and dimension-independence of the pSVN method by
two examples, one a linear problem with Gaussian posterior to demonstrate the convergence and
accuracy of pSVN in comparison with SVN and SVGD, the other a nonlinear problem to demonstrate
accuracy as well as the dimension-independent and sample-independent convergence of pSVN and
its scalability w.r.t. the number of processor cores. The code is described in Appendix D.
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4.1 A linear inference problem

For the linear inference problem, we have the parameter-to-observable map

f(x) = Ax, (31)

where the linear map A = O(Bx), with an observation map O : Rd → Rs, and an inverse discrete
differential operator B = (L + M)−1 : Rd → Rd where L and M are the discrete Laplacian and
mass matrices in the PDE model −4u+ u = x, in (0, 1), u(0) = 0, u(1) = 1. s = 15 pointwise
observations of u with 1% noise are distributed with equal distance in (0, 1). The input x is a random
field with Gaussian prior N (0,Γ0), where Γ0 is discretized from (I − 0.14)−1 with identity I and
Laplace operator4. We discretize this forward model by a finite element method with piecewise
linear elements on a uniform mesh of size 2n, which leads to the parameter dimension d = 2n + 1.
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Figure 1: Decay of the RMSE (with 10 trials in dashed lines) of the L2-norm of the mean (left) and
pointwise variance (middle) of the parameter w.r.t. dimension d = 16, 64, 256, 1024 with N = 128
samples. Right: Decay of the RMSE of the L2-norm of the pointwise variance with N = 32, 512
samples in parameter dimension d = 256 w.r.t. # iterations. Comparison for SVGD, SVN, pSVN.

Figure 1 compares the convergence and accuracy of SVGD, SVN, and pSVN by the decay of the
root mean square errors (RMSE) (using 10 trials and 10 iterations) of the sample mean and variance
(with L2-norm of errors computed against analytic values in (30)) w.r.t. parameter dimensions and
iterations. We observe much faster convergence and greater accuracy of pSVN relative to SVGD and
SVN, for both mean and especially variance, which measures the goodness of samples. In particular,
we see from the middle figure that the SVN estimate of variance deteriorates quickly with increasing
dimension, while pSVN leads to equally good variance estimate. Moreover, from the right figure we
can see that pSVN converges very rapidly in a subspace of dimension 6 (at tolerance ελ = 0.01 in
Section 3.3, i.e., |λ7| < 0.01) and achieves higher accuracy with larger number of samples, while
SVN converges slowly and leads to large errors. With the same number of iterations of SVN and
pSVN, SVGD produces no evident error decay.

4.2 A nonlinear inference problem

We consider a nonlinear benchmark inference problem (which is often used for testing high-
dimensional inference methods [30, 12, 3]), whose forward map is given by f(x) = O(S(x)),
with observation map O : Rd → Rs and a nonlinear solution map u = S(x) ∈ Rd of the lognormal
diffusion model −∇ · (ex∇u) = 0, in (0, 1)2 with u = 1 on top and u = 0 on bottom boundaries,
and zero Neumann conditions on left and right boundaries. 49 pointwise observations of u are equally
distributed in (0, 1)2. We use 10% noise to test accuracy against a DILI MCMC method [12] with
10,000 MCMC samples as reference and a challenging 1% noise for a dimension-independence test
of pSVN. The input x is a random field with Gaussian prior N (0,Γ0), where Γ0 is a discretization
of (I − 0.14)−2. We solve this forward model by a finite element method with piecewise linear
elements on a uniform mesh of varying sizes, which leads to a sequence of parameter dimensions.

Figure 2 shows the comparison of the accuracy and convergence of pSVN and SVN for their sample
estimate of mean and variance. We can see that in high dimension, d = 1089, pSVN converges
faster and achieves higher accuracy than SVN for both mean and variance estimate. Moreover, SVN
using the kernel (12) in high dimensions (involving low-rank decomposition of the metric M for
high-dimensional nonlinear problems) is more expensive than pSVN per iteration.

We next demonstrate pSVN’s independence of the number of parameter and sample dimensions, and
its scalability w.r.t. processor cores. First, the dimension of the Hessian-based subspace r, which
determines the computational cost of pSVN, depends on the decay of the absolute eigenvalues |λi|
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Figure 2: Decay of the RMSE (with 10 trials in dashed lines) of the L2-norm of the mean (left) and
pointwise variance (right) of the parameter with dimension d = 1089 and N = 32, 512 samples.
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Figure 3: Left: Decay of eigenvalues log10(|λi|) with increasing dimension d. Middle: Decay
of a stopping criterion—the averaged norm of the update wl − wl−1 w.r.t. the iteration number l,
with increasing number of samples. Right: Decay of the wall clock time (seconds) of different
computational components w.r.t. increasing number of processor cores on a log-log scale.

as presented in Section 3.3. The left part of Figure 3 shows that with increasing d from 289 to
over 16K, r does not change, which implies that the convergence of pSVN is independent of the
number of nominal parameter dimensions. Second, as shown in the middle part of Figure 3, with
increasing number of samples for a fixed parameter dimension d = 1089, the averaged norm of the
update wl −wl−1, as one convergence indicator presented in Subsection 3.4, decays similarly, which
demonstrates the independence of the convergence of pSVN w.r.t. the number of samples. Third, in
the right of Figure 3 we plot the total wall clock time of pSVN and the time for its computational
components in Algorithm 1 using different number of processor cores for the same work, i.e., the
same number of samples (256), including variation for forward model solve, gradient and Hessian
evaluation, as well as eigendecomposition, kernel for kernel and its gradient evaluation, solve for
solving the Newton system (27), and sample for sample projection and reconstruction. We can
observe nearly perfect strong scaling w.r.t. increasing number of processor cores. Moreover, the time
for variation, which depends on parameter dimension d, dominates the time for all other components,
in particular kernel and solve whose cost only depends on r, not d.

5 Conclusion

We presented a fast and scalable variational method, pSVN, for Bayesian inference in high dimensions.
The method exploits the geometric structure of the posterior via its Hessian, and the intrinsic low-
dimensionality of the change from prior to posterior characteristic of many high-dimensional inference
problems via low rank approximation of the averaged Hessian of the log likelihood, computed
efficiently using randomized matrix-free SVD. The fast convergence and higher accuracy of pSVN
relative to SVGD and SVN, its complexity that is independent of parameter and sample dimensions,
and its scalability w.r.t. processor cores were demonstrated for linear and nonlinear inference problems.
Investigation of pSVN to tackle intrinsically high-dimensional inference problem (e.g., performed in
local dimensions as the message passing scheme or combined with dimension-independent MCMC
to update samples in complement subspace) is ongoing. Further development and application of
pSVN to more general probability distributions, projection basis constructions, and forward models
such as deep neural network, and further analysis of the convergence and scalability of pSVN w.r.t.
the number of samples, parameter dimension reduction, and data volume, are of great interest.
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