
0.5 0.6 0.7 0.8 0.9
recall

0.4

0.6

0.8

1.0
pr

ec
isi

on
Time Series

n_buckets 2
n_buckets 3
n_buckets 4
n_buckets 5
n_buckets 6

(a) Varying number of buckets

0.5 0.6 0.7 0.8 0.9
recall

0.5

0.6

0.7

0.8

0.9

1.0

pr
ec

isi
on

Time Series

n_samples 50
n_samples 100
n_samples 150
n_samples 200
n_samples 250

(b) Varying number of samples

0 2 4 6 8 10 12 14 16 18
noise dimension

0

20

40

60

80

100

ac
cu

ra
cy

Mixture of Gaussians with added Noise
PIDForest
RRCF
SVM
kNN
PCA

(c) Noise uniform in [-2,2]

0 2 4 6 8 10 12 14 16 18
noise dimension

0

20

40

60

80

100

ac
cu

ra
cy

Mixture of Gaussians with added Noise
PIDForest
RRCF
SVM
kNN
PCA

(d) Noise uniform in [-10,10]

We thank the referees for their careful reading of the paper, their encouraging comments and thoughtful critiques. We1

will address all typographic and minor suggestions in the revised version. We will move the key related work and2

references, and more experimental results to the main body. R3 points out that we focus more on detecting anomalies3

rather than certifying them; we agree, and can drop the word “Certification” from the title.4

(R1) Dynamic Program vs. approximate algorithm for histograms. On a 300 dimensional array, the approximate5

algorithm is 50x faster than the exact dynamic program in finding a best 5-bucket histogram (0.05 s vs 2.5s), with the6

approximation factor chosen to find a histogram having mean squared error at most 1.1 times the optimal histogram.7

This speedup is expected given that the complexity of the DP scales quadratically with array length, whereas the8

approximate algorithm is roughly linear. As histogram computation is in a deep inner loop and is invoked multiple9

times, we expect similar slowdowns when running the fit routine using the DP.10

(R2) Why is maximizing variance a good choice? We will try to have more intuitive description of the main algorithm11

in the revised version. For intuition, consider the 1-dimensional case where points are generated according to a normal12

distribution. In this case, the outliers would be points in the tails. Indeed, if we partition the points into 3 intervals to13

maximize the variance in the sparsity, then we get a dense interval around the mean and two sparse intervals, one for14

each tail, which is exactly what we want. Moving to the general high dimensional setting, in any partition, if we pick a15

random point, then the expected sparsity is the same (see L202). A partition that produces large variance in the sparsity16

needs to partition space into some sparse regions and other dense regions, which will correspond to outliers and normal17

regions respectively. Alternately, one might choose partitions to optimize the maximum sparsity of any interval in the18

partition, or some higher moment of the sparsity. Since maximizing variance turns out to equivalent to a well-studied19

problem about histograms, it admits a very efficient streaming algorithm.20

(R2) Provable guarantees for PIDForest. PIDForest is a heuristic, we do not have rigorous guarantees for it in the21

high-dimensional setting. This is addressed at the very start of Section 3 (L177), which states that we do not know22

polynomial algorithms in n and d that exactly compute or provably approximate PIDScore. Indeed, we suspect that23

exact computation might be hard as the dimension d grows (and we know an exact algorithm in 1-d).24

(R2) Comparison with kNN and PCA. Isolation based algorithms work with the input basis, they do not compute25

linear combinations of attributes which are required to change basis. This is an advantage in dealing with heterogenous26

data. But for datasets that involve audio or visual inputs (like Vowels/MNIST), the input basis may not be the right27

basis. If the signal has sparsity in some special basis, then `2 distance (or some variant of it like Mahalanobis distance)28

might be a natural metric for such settings. In such situations kNN, PCA might do better. In general, anomaly detection29

problems are diverse and no single algorithm can be reasonably expected to be the best in every setting. The strength of30

PIDForest is that it makes minimal assumptions and hence works well in several settings that are common in practice31

and existing algorithms find challenging (e.g. heterogenous, noisy data).32

(R3) Hyperparameter settings. One of the appealing properties of PIDForest is that the quality of the output is33

relatively insensitive to the exact value of the hyper-parameters. We tested multiple settings and generally found that34

each hyper-parameter has a moderate value above which the quality of the output doesn’t change much. Figure 1a35

shows precision-recall in the synthetic time-series experiment, where we vary the parameter k (number of buckets). We36

see that k = 2 is too little, but there isn’t much difference between k = 3, 4, 5, 6. Similar behavior was observed for the37

number of samples m (see Figure 1b where there is no clear trend), number of trees t and depth of each tree h, and38

again with the mixture of Gaussians experiment. Since these parameters do affect the running time directly, we set them39

to the smallest values for which we got good results. This is how we arrive at the guidelines in L220.40

(R3) Noise Tolerance. We have included plots for the mixtures of Gaussians experiment with additional noisy41

dimensions for the other algorithms (kNN, SVM, RRCF, PCA). The conclusion is that PIDForest is more noise resilient42

than the other algorithms. In Figure 1c we choose the noise to be uniform in [−2, 2] (as in Fig 1b in the paper) and see43

that RRCF and PIDForest are the best algorithms. In Figure 1d, we choose the noise coordinates uniformly in [−10, 10]44

and find that PIDForest is markedly better than RRCF as well.45


