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Abstract

Exploring the transferability between heterogeneous tasks sheds light on their
intrinsic interconnections, and consequently enables knowledge transfer from one
task to another so as to reduce the training effort of the latter. In this paper, we
propose an embarrassingly simple yet very efficacious approach to estimating the
transferability of deep networks, especially those handling vision tasks. Unlike
the seminal work of faskonomy that relies on a large number of annotations as
supervision and is thus computationally cumbersome, the proposed approach
requires no human annotations and imposes no constraints on the architectures
of the networks. This is achieved, specifically, via projecting deep networks
into a model space, wherein each network is treated as a point and the distances
between two points are measured by deviations of their produced attribution maps.
The proposed approach is several-magnitude times faster than taskonomy, and
meanwhile preserves a task-wise topological structure highly similar to the one
obtained by taskonomy. Code is available at https://github.com/zju-vipa/
TransferbilityFromAttributionMaps.

1 Introduction

Deep learning has brought about unprecedented advances in many if not all the major artificial
intelligence tasks, especially computer vision ones. The state-of-the-art performances, however, come
at the costs of the often burdensome training process that requires an enormous number of human
annotations and GPU hours, as well as the partially interpretable and thus the only intermittently
predictable black-box behaviors. Understanding the intrinsic relationships between such deep-
learning tasks, if any, may on the one hand elucidate the rationale of the encouraging results achieved
by deep learning, and on the other hand allows for more predictable and explainable transfer learning
from one task to another, so that the training effort can be significantly reduced.

The seminal work of taskonomy [37] made the pioneering attempt towards disentangling the rela-
tionships between visual tasks through a computational approach. This is accomplished by training
first all the task models and then all the feasible transfers among models, in a fully supervised
manner. Based on the obtained transfer performances, an affinity matrix of transferability is derived,
upon which an Integer Program can be further imposed to compute the final budget-constrained
task-transferability graph. Despite the intriguing results achieved, the training cost, especially that
for the combinatorial-based transferability learning, makes taskonomy prohibitively expensive to
estimate. Even for the first-order transferability estimation, the training costs grow quadratically with
respect to the number of tasks involved; when adding a new task to the graph, the transferability has
to be explicitly trained between the new task and all those in the task dictionary.

In this paper, we propose an embarrassingly simple yet competent approach to estimating the
transferability between different tasks, with a focus on the computer vision ones. Unlike taskonomy
that relies on training the task-specific models and their transferability using human annotations, in
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our approach we assume no labelled data are available, and we are given only the pre-trained deep
networks, which can be nowadays found effortless online. Moreover, we do not impose constraints
on the architectures of the deep networks, such as networks handling different tasks sharing the same
architectures.

At the heart of our approach is to project pre-trained deep networks into a common space, termed
model space. The model space accepts networks of heterogeneous architectures and handling different
tasks, and transforms each network into a point. The distance between two points in the model space is
then taken to be the measure of their relatedness and the consequent transferability. Such construction
of the model space enables prompt model insertion or deletion, as updating the transferability graph
boils down to computing nearest neighbors in the model space, which is therefore much lighter than
taskonomy that requires the pair-wise re-training for each newly added task.

The projection to the model space is attained by feeding unlabelled images, which can be obtained
handily online, into a network and then computing the corresponding attribution maps. An attribution
map signals pixels in the input image highly relevant to the downstream tasks or hidden representa-
tions, and therefore highlights the “attention” of a network over a specific task. In other words, the
model space can be thought as a space defined on top of attribution maps, where the affinity between
points or networks is evaluated using the distance between their produced attribution maps, which
again, requires no supervision and can be computed really fast.

The intuition behind adopting attribution maps for network-affinity estimation is rather straight-
forward: models focusing on similar regions of input images are expected to produce correlated
representations, and thus potentially give rise to favorable transfer-learning results. This assumption
is inspired by the work of [36], which utilizes the attention of a teacher model to guide the learning
of a student and produces encouraging results. Despite its very simple nature, the proposed approach
yields truly promising results: it leads to a speedup factor of several magnitudes of times and mean-
while maintains a highly similar transferability topology, as compared to taskonomy. In addition,
experiments on vision tasks beyond those involved in taskonomy also produce intuitively plausible
results, validating the proposed approach and providing us with insights on their transferability.

Our contribution is therefore a lightweight and effective approach towards estimating transferability
between deep visual models, achieved via projecting each model into a common space and approxi-
mating their affinity using attribution maps. It requires no human annotations and is readily applicable
to pre-trained networks specializing in various tasks and of heterogeneous architectures. Running at
a speed several magnitudes faster than taskonomy and producing competitively similar results, the
proposed model may serve as a competent transferability estimator and an effectual substitute for
taskonomy, especially when human annotations are unavailable, when the model library is large in
size, or when frequent model insertion or update takes place.

2 Related Work

We briefly review here some topics that are most related to the proposed work, including model
reusing, transfer learning, and attribution methods for deep models.

Model Reusing. Reusing pre-trained models has been an active research topic in recent years.
Hinton et al. 9] firstly propose the concept of “knowledge distillation” where the trained cumbersome
teacher models are reused to produce soft labels for training a lightweight student model. Following
their teacher-student scheme, some more advanced methods [24, 36, 16| |L5] are proposed to fully
exploit the knowledge encoded in the trained teacher model. However, in these works all the teachers
and the student are trained for the same task. To reuse models of different tasks, Rusu et al. [23]]
propose the progressive neural net to extract useful features from multiple teachers for a new task.
Parisotto et al. [19] propose “Actor-Mimic” to use the guidance from several expert teachers of
distinct tasks. However, none of these works explore the relatedness among different tasks. In this
paper, by explicitly modeling the model transferability, we provide an effective method to pick a
trained model most beneficial for solving the target task.

Transfer Learning. Another way of reusing trained models is to transfer the trained model to
another task by reusing the features extracted from certain layers. Razavian ef al. [22] demonstrated
that features extracted from deep neural networks could be used as generic image representations to
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Figure 1: An illustrative diagram of the workflow of the proposed method. It mainly consists of three
steps: collecting probe data, computing attribution maps, and estimating model transferability.

tackle the diverse range of visual tasks. Yosinski et al. [34] investigated the transferability of deep
features extracted from every layer of a deep neural network. Azizpour et al. [2]] investigated several
factors affecting the transferability of deep features. Recently, the effects of pre-training datasets for
transfer learning are studied [[13} (7} [12} 33 23]]. None of these works, however, explicitly quantify the
relatedness among different tasks or trained models to provide a principled way for model selection.
Zamir et al. [37] proposed a fully computational approach, known as taskonomy, to address this
challenging problem. However, taskonomy requires labeled data and is computationally expensive,
which limited its applications in large-scale real-world problems. Recently, Dwivedi and Roig [4]
proposed to use representation similarity analysis to approximate the task taxonomy. In this paper, we
introduce a model space for modeling task transferability and propose to measure the transferability
via attribution maps, which, unlike taskonomy, requires no human annotations and works directly on
pre-trained models. We believe our method is a good complement to existing works.

Attribution Methods for Deep Models. Attribution refers to assigning importance scores to
the inputs for a specified output. Existing attribution methods can be mainly divided into two
groups, including perturbation- 38} |39} 40]] and gradient-based [28, 3} 27, 130} 26, 18} [1] methods.
Perturbation-based methods compute the attribution of an input feature by making perturbations, e.g.,
removing, masking or altering, to individual inputs or neurons and observe the impact on later
neurons. However, such methods are computationally inefficient as each perturbation requires a
separate forward propagation through the network. Gradient-based methods, on the other hand,
estimate the attributions for all input features in one or few forward and backward passes throughout
the network, which renders them generally more efficient. Simonyan et al. [28]] construct attributions
by taking the absolute value of the partial derivative of the target output with respect to the input
features. Later, Layer-wise Relevance Propagation (e-LRP) [3], gradient*input [27], integrated
gradients [30]] and deepLIFT [26] are proposed to aid understanding the information flow of deep
neural networks. In this paper, we directly adopt some of these off-the-shelf methods to produce the
attribution maps. Devising more suitable attribution method for our problem is left to future work.

3 Estimating Model Transferability from Attribution Maps

We provide in this section the details of the proposed transferability estimator. We start by giving
the problem setup and an overview of the method, followed by describing its three steps, and finally
show the efficiency analysis.

3.1 Problem Setup

Assume we are given a set of pre-trained deep models M = {my, ma, ..., my}, where N is the total
number of models involved. No constraints are imposed on the architectures of these models. We use
t; to denote the task handled by model m;, and use 7 = {t1, ta, ..., t ; } to denote the task dictionary,
i.e., the set of all the tasks involved in M. Furthermore, we assume that no labeled annotations
are available. Our goal is to efficiently quantify the transferability between different tasks in 7, so
that given a target task, we can read out from the learned transferability matrix the source task that
potentially yields the highest transfer performance.



3.2 Overview

The core idea of our method is to embed the pre-trained deep models into the model space, wherein
models are represented by points and model transferability is measured by the distance between
corresponding points. To this end, we utilize the attribution maps to construct such a model space.
The assumption is that related models should produce similar attribution maps for the same input
image. The workflow of our method consists of three steps, as shown in Figure[I] First, we collect an
unlabeled probe dataset, which will be used to construct the model space, from a randomly selected
data distribution. Second, for each trained model, we adopt off-the-shelf attribution methods to
compute the attribution maps of all images in the constructed probe dataset. Finally, for each model,
all its attribution maps are collectively viewed as a single point in the model space, based on which
the model transferability is estimated. In what follows, we provide details for each of the three steps.

3.3 Key Steps

Step 1: Building the Probe Dataset. As deep models handling different tasks or even the same
one may be of heterogeneous architectures or trained on data from various domains, it is non-trivial
to measure their transferability directly from their outputs or intermediate features. To bypass this
problem, we feed the same input images to these models and measure the model transferability by
the similarity of their response to the same stimuli. We term the set of all such input images probe
data, which is shared by all the tasks involved.

Intuitively, the probe dataset should be designed not only large in size but also rich in diversity, as
models in M may be trained on various domains for different tasks. However, experiments show
that the proposed method works surprisingly well even when the probe data are collected in a single
domain and of moderately small size (~ 1,000 images). The produced transferability relationship is
highly similar to the one derived by taskonomy. This property renders the proposed method attractive
as little effort is required for collecting the probe data. More details can be found in Section[#.2.3]

Step 2: Computing Attribution Maps. Let us denote the collected probe data by X =
{X1, Xo, s Xn, b, Xy = [, 2, ., 2l yc] € RWHC, where W, H and C respectively de-
note the width, the height and the channels of the input images, and N, is the size of the probe
data. Note that for brevity the maps are symbolized in vectorization form here. For model m;, it
takes an input X = T;(X) € RWYiHi% and produces a hidden representation R = [r1, 79, ..., 7p].
Here, T serves as a preprocessing function that transforms the images in probe data for model m;,
as we allow different models to take images of different sizes as input, and D is the dimension of
the representation. For each model m; in M, our goal in this step is to produce an attribution map
Al =at,aly,..] € RWHC for each image X in the probe data X

In fact, an attribution map A;k can be computed for each unit r; in R. However, as we consider the
transferability of R, we average the attribution maps of all 7 in R as the overall attribution map of R.

Formally, we have A; = % Zszl Azk Specifically, here we adopt three off-the-shelf attribution
methods to produce the attribution maps: saliency map [28]], gradient * input [27], and e-LRP [3].
Saliency map computes attributions by taking the absolute value of the partial derivative of the
target output with respect to the input. Gradient * input refers to a first-order taylor approximation
of how the output would change if the input was set to zero. e-LRP, on the other hand, computes
the attributions by redistributing the prediction score (output) layer by layer until the input layer
is reached. For all the three attribution methods, the overall attribution map A% can be computed
through one single forward-and-backward propagation [1]] in Tensorflow. The fzormulations of the
three attribution maps are summarized in Tablem More details can be found from [28 27, (3, [1]].

Table 1: Mathematical formulations of saliency map [28], gradient * input [27] and e-LRP [3]. Note
that the superscript g denotes a novel definition of partial derivative [1]].

Method | Saliency Map [28] | Gradient * Input [27] | e-LRP [3.1]]
. W, H;C; . WiH;C; A Wi H;C;
A?,k ‘ [ Ory ] ‘ [ J . 87%} ‘ |: J . Bgf;c} g = f(z)
J 9y 1] g—1 Ya " ows | 4 S I z




For model m;, the produced attribution map At is of the same size as the input X ,le., Ai e RWiHiCi
We do the inverse of 7" to transform the attribution maps back to the same size as the images in the

probe data: A® = T—1(A#), A € RWHC  As attribution maps of all models are transformed into the
same size, the transferability can be computed based on these maps.

Step 3: Estimating Model Transferability. Once step 2 is completed, we have N, attribution
maps A’ = {A], A3, ..., Aly } for each model m;, where A} denotes the attribution map of j-th

image X in X'. The model m; can be viewed as a sample in the model space RNWHC “formed by
concatenating all the attribution maps. The distance of two models are taken to be

Np

d(m;, m;) = —, (1
T cos_sim(A}, A])
where cos_sim (AL, A,i) = %. The model transferability map, which measures the pairwise

transferability relationships, can then be derived based on these distances. The model transferability,
as shown by taskonomy [37], is inherently asymmetric. In other words, if model m; ranks first in
being transferred to task ¢; among all the models (except m;) in M, m; does not necessarily rank
first in being transferred to task ¢;. Yet, the proposed model space is symmetric in distance, as we have
d(m;, m;) = d(m;, m;). We argue that the symmetric property of the distance in the model space
makes little negative effect on the transferability relationships, as the task transferability rankings
of the source tasks are computed by relative comparison of distances. Experiments demonstrate
that with the symmetric model space, the proposed method is able to effectively approximate the
asymmetric transferability relationships produced by taskonomy.

3.4 Efficiency Analysis

Here we make a rough comparison between the efficiency of the proposed approach and that of
taskonomy. As we assume task-specific trained models are available, we compare the computation
cost of our method with that of only the transfer modeling in taskonomy. For taskonomy, let us
assume the transfer model is trained for F epochs on the training data of size IV, then for a task
dictionary of size T, the computation cost can be approximately denoted as ENT (T — 1)-times
forward-and-backward propagatiorﬂ For our method working on the probe dataset, however, only
one time of forward-and-backward propagation is required. The overall computation cost for building
the model space in our method is about 7'M -times forward-and-backward propagation, where M is

the size of the probe dataset and usually M < N. The proposed method is thus about %—times
more efficient than taskonomy. This also means the speedup over taskonomy will be even more

significant, if more tasks are involved and hence 7" enlarges.

In our experiments, the proposed method takes about 20 GPU hours to compute the pairwise
transferability relationships on one Quadro P5000 card for 20 pre-trained taskonomy models, while
taskonomy takes thousands of GPU hours on the cloud?] for the same number of tasks.

4 Experiments

4.1 Experimental Settings

Pre-trained Models. Two groups of trained models are adopted to validate the proposed method.
In the first group, we adopt 20 trained models of single-image tasks released by taskonomy [37], of
which the task relatedness has been constructed and also released. It is used as the oracle to evaluate
the proposed method. Note that all these models adopt an encoder-decoder architecture, where the
encoder is used to extract representations and the decoder makes task predictions. For these models,
the attribution maps are computed with respect to the output of the encoder.

To further validate the proposed method, we construct a second group of trained models which are
collected online. We have managed to obtain 18 trained models in this group: two VGGs [29] (VGG16,
VGG19), three ResNets [8] (ResNet50, ResNet101, ResNet152), two Inceptions (Inception V3 [32],

"Here for simplicity, we ignore the computation-cost difference caused by the model architectures.
2As the hardware configurations are not clear here, we list the GPU hours only for perceptual comparison.
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Figure 2: Visualization of attribution maps produced using e-LRP on taskonomy models. Some tasks
produce visually similar attribution maps, such as Rgb2depth and Rgb2mnist.

Inception ResNet V2 [31]]), three MobileNets [[10] (MobileNet, 0.5 MobileNet, 0.25 MobileNet),
four Inpaintings [35] (ImageNet, CelebA, CelebA-HQ, Places), FCRN [14]], FCN [17]], PRN [5] and
Tiny Face Detector [[L1]]. All these models are also viewed in an encoder-decoder architecture. The
sub-model which produces the most compact features is viewed as the encoder and the remainder as
the decoder. Similar to taskonomy models, the attribution maps are computed with respect to the
output of the encoder. More details of these models can be found in the supplementary material.

Probe Datasets. We build three datasets, taskonomy data [37]], indoor scene [20], and COCO [16],
as the probe data to evaluate our method. The domain difference between taskonomy data and
COCO is much larger than that between taskonomy data and indoor scene. For all the three datasets,
we randomly select about 1, 000 images to construct the probe datasets. More details of the three
probe datasets are provided in the supplementary material. In Section #.2.3] we demonstrate the
performances of the proposed method evaluated on these three probe datasets.

4.2 Experiments on Models in Taskonomy

4.2.1 Visualization of Attribution Maps

We first visualize the attribution maps produced by various trained models for the same input images.
Two examples are given in Figure[2] Attribution maps are produced by e-LRP on taskonomy data.
From the two examples, we can see that some tasks produce visually similar attribution maps. For
example, (Rgb2depth, Rgb2mist)El, (Class 1000, Class Places) and (Denoise, Keypoint 2D). In
each cluster, trained models pay their “attentions” to the similar regions, thus the “knowledge” they
learned are intuitively highly correlated (as seen in Section .2.2) and can be transferred to each
other (as seen in Section [#.2.3). Two examples may produce conclusions where the constructed
model transferability deviates from the underlying model relatedness. However, such deviation is
alleviated by aggregating the results of more examples drawn from the data distribution. For more
visualization examples, please see the supplementary material.

4.2.2 Rationality of the Assumption

Here we adopt Singular Vector Canonical Correlation Analysis (SVCCA) [21] to validate the rational-
ity underlying our assumption: if tasks produce similar attribution maps, the representations extracted
from corresponding models should be highly correlated, thus they are expected to yield favorable
transfer-learning performance to each other. In SVCCA, each neuron is represented by an activation
vector: its set of response to a set of inputs and hence the layer can be represented by the subspace

3Here we use () to denote a cluster of tasks, of which the attribution maps are highly similar.
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Figure 3: Left: visualization of the correlation matrix from SVCCA. Middle: the difference between
correlation matrix from SVCCA and the transferability matrix derived from attribution maps. Both of
them are normalized for better visualization. Right: the Correlation-Priority Curve (CPC).

spanned by the activation vectors of all the neurons in this layer. SVCCA first adopts Singular Value
Decomposition (SVD) of each subspace to obtain new subspaces that comprise the most important
directions of the original subspaces, and then uses Canonical Correlation Analysis (CCA) to compute
a series of correlation coefficients between the new subspaces. The overall correlation is measured by
the average of these correlation coefficients.

Experimental results on taskonomy data with e-LRP are shown in Figure[3] In the left, the correlation
matrix over the pre-trained taskonomy models is visualized. In the middle, we plot the difference
between the correlation matrix and the model transferability matrix derived from attribution maps
in the proposed method. It can be seen that the values in the difference matrix are in general small,
implying that the correlation matrix is highly similar to the model transferability matrix. To further
quantify the overall similarity between these two matrices, we compute their Pearson correlation
(pp = 0.939) and Spearman correlation (ps = 0.660). All these results show that the similarity of
attribution maps is a good indicator of the correlation between representations.

In addition, we can see that some tasks, like Edge3d and Colorization, tend to be more correlated
to other tasks, as the colors of the corresponding row or column are darker than those of others,
while some other tasks are not, like Vanishing Point. In taskonomy, the prioritiesﬂ of Edge3d,
Colorization and Vanishing Point are 5.4, 5.8 and 14.2, respectively. It indicates that more correlated
representations tend to be more suitable for transferring learning to each other. To make this
clearer, we depict the Correlation-Priority Curve (CPC) in the right of Figure 3] In this figure,
for each priority p shown on the abscissa, the correlation shown on the ordinate is computed as
correlation(p) = & >, £ I(ri = p)ps,;» where Iis the indicator function and p; ; is the correlation
between representations extracted from two models m; and m;. It can be seen that as the priority
becomes lower, the average correlation becomes weaker. All these results verify the rationality
underlying the assumption.

4.2.3 Deep Model Transferability

We adopt two evaluation metrics, P@K and R@KE[, which are widely used in the information retrieval
field, to compare the model transferability constructed from our method with that from tasknomy.
Each target task is viewed as a query, and its top-5 source tasks that produce the best transferring
performances in taskonomy are regarded as relevant to the query. To better understand the results, we
introduce one baseline using random ranking, and the oracle, the ideal method which always produces
the perfect results. Additionally, we also evaluate SVCCA for computing the model transferability
relationships. The experimental results are depicted in Figure[d} Based on the results, we can make
the following conclusions.

o The topology structure of the model transferability derived from the proposed method is similar to
that of oracle. For example, when only top-3 predictions are examined, the precision can be about
85% on COCO with e-LRP. To see this clearer, we also depict the task similarity tree constructed

“The priority of a task 4 refers to the average ranking when transferred to other tasks: p; = % Z;V r§, where

r; denotes the ranking of task ¢ when transferred to task j. A smaller value of p denotes a higher priority.
>P: precision, R: recall, @K: only the top-K results are examined.
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Figure 4: From left to right: P@K curve, R@K curve and task similarity tree constructed by e-LRP.
Results of SVCCA are produced using validation data from taskonomy.

by agglomerative hierarchical clustering in Figure 4] This tree is again highly similar to that of
taskonomy where 3D, 2D, geometric, and semantic tasks cluster together.

e ¢-LRP and gradient* input generally produce better performance than saliency. This phenomenon
can be in part explained by the fact that saliency generates attributions entirely based on gradients
that denote the direction for optimization. However, the gradients are not able to fully reflect the
relevance between the inputs and the outputs of the deep model, thus leading to inferior results. It
also implies the attribution method can affect the performance of our method. Devising better
attribution methods may further promote the accuracy of our method, which is left as future work.

e The proposed method works quite well on the probe data from different domains, such as indoor
scene and COCO. It implies that the proposed method is robust to different choices of the probe
data to some degree, which makes the data collection effortless. Furthermore, it can be seen
that the probe data from indoor scene and COCO surprisingly better predict the taskonomy
transferability than the probe data from taskonomy data. We conjecture that more complex
textures disentangle the attributions better, thus the probe data from COCO and indoor scene
which are generally more complex in texture yield superior results to taskonomy as probe data.
However, more research is necessary to discover if the explanation holds in general.

e SVCCA also works well in estimating the transferability of taskonomy models. However, the
proposed method yields superior or comparable performance to SVCCA when using gradient *
input and ¢-LRP for attribution. What’s more, as the proposed method measures transferability by
computing distances, it is several times more efficient than SVCCA, especially when the hidden
representation is large in dimension or a new task is added into a large task dictionary.

With all these observations and the fact that the proposed method is significantly more efficient than
taskonomy, the proposed method is indeed an effectual substitute for taskonomy, especially when
human annotations are unavailable, when the model library is large in size, or when frequent model
insertion and update takes place.

4.3 Experiments on Models beyond Taskonomy

To give a more comprehensive view of the proposed method, we also conduct experiments on the
online collected pre-trained models beyond taskonomy. Results are shown in Figure[5] The left two
subfigures show the correlation matrix from SVCCA and the model transferability matrix produced
by our method. The right two subfigures depict the task similarity trees produced by SVCCA and the
proposed method. The classification and inpainting models are listed in different colors. We have the
following observations.

e The proposed method produces an affinity matrix and a task similarity tree alike those derived
from SVCCA, although the collected models are heterogeneous in architectures, tasks, and input
size. These results further validate that models producing similar attribution maps also produce
highly correlated representations.

o All the ImageNet-trained classification models, despite their different architectures, tend to cluster
together. Furthermore, the same-task trained models with the similar architectures tend to be more
related than with dissimilar architectures. For example, ResNet50 is more related to ResNet101
and ResNet152 than VGG, MobileNet and Inception models, indicating that the architecture plays
a certain role in regularization for solving the tasks.



Figure 5: Results on collected models beyond taskonomy. From left to right: affinity matrix from
SVCCA, affinity matrix from attribution maps, task similarity tree from SVCCA, and task similarity
tree from attribution maps.

e The inpainting models, albeit trained on data from different data domain, also tend to cluster
together. It implies that different models of the same task, albeit trained on data from different
data domain, tend to play similar role in transfer learning. However, more research is necessary
to verify if this observation holds in general.

We also merge the two groups into one to further evaluate the proposed method, of which the results
are provided in the supplementary material, providing us with more insights on model transferability.

5 Conclusion

We introduce in this paper an embarrassingly simple yet efficacious approach towards estimating the
transferability between deep models, without using any human annotation. Specifically, we project
the pre-trained models of interest into a model space, wherein each model is treated as a point and the
distance between two points are used to approximate their transferability. The projection to the model
space is achieved by computing the attribution maps from the unlabelled probe dataset. The proposed
approach imposes no constraints on the architectures on the models, and turns out to be robust to the
selection of the probe data. Despite the lightweight construction, it yields a transferability map highly
similar to the one obtained by taskonomy yet runs at a speed several magnitudes faster, and therefore
may serve as a compact and express transferability estimation, especially when no annotations are
available, the model library is large in size, or frequent model insertion or update takes place.
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