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Abstract

Machine learning classifiers are often trained to recognize a set of pre-defined
classes. However, in many applications, it is often desirable to have the flexibility
of learning additional concepts, with limited data and without re-training on the
full training set. This paper addresses this problem, incremental few-shot learning,
where a regular classification network has already been trained to recognize a
set of base classes, and several extra novel classes are being considered, each
with only a few labeled examples. After learning the novel classes, the model is
then evaluated on the overall classification performance on both base and novel
classes. To this end, we propose a meta-learning model, the Attention Attractor
Network, which regularizes the learning of novel classes. In each episode, we
train a set of new weights to recognize novel classes until they converge, and
we show that the technique of recurrent back-propagation can back-propagate
through the optimization process and facilitate the learning of these parameters.
We demonstrate that the learned attractor network can help recognize novel classes
while remembering old classes without the need to review the original training set,
outperforming various baselines.

1 Introduction

The availability of large scale datasets with detailed annotation, such as ImageNet [30], played a
significant role in the recent success of deep learning. The need for such a large dataset is however a
limitation, since its collection requires intensive human labor. This is also strikingly different from
human learning, where new concepts can be learned from very few examples. One line of work
that attempts to bridge this gap is few-shot learning [16, 36, 33], where a model learns to output a
classifier given only a few labeled examples of the unseen classes. While this is a promising line
of work, its practical usability is a concern, because few-shot models only focus on learning novel
classes, ignoring the fact that many common classes are readily available in large datasets.

An approach that aims to enjoy the best of both worlds, the ability to learn from large datasets for
common classes with the flexibility of few-shot learning for others, is incremental few-shot learning
[9]. This combines incremental learning where we want to add new classes without catastrophic
forgetting [20], with few-shot learning when the new classes, unlike the base classes, only have a
small amount of examples. One use case to illustrate the problem is a visual aid system. Most objects
of interest are common to all users, e.g., cars, pedestrian signals; however, users would also like to
augment the system with additional personalized items or important landmarks in their area. Such a
system needs to be able to learn new classes from few examples, without harming the performance
on the original classes and typically without access to the dataset used to train the original classes.

In this work we present a novel method for incremental few-shot learning where during meta-learning
we optimize a regularizer that reduces catastrophic forgetting from the incremental few-shot learning.
Our proposed regularizer is inspired by attractor networks [42] and can be thought of as a memory of
the base classes, adapted to the new classes. We also show how this regularizer can be optimized,
using recurrent back-propagation [18, 1, 25] to back-propagate through the few-shot optimization
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Figure 1: Our proposed attention attractor network for incremental few-shot learning. During
pretraining we learn the base class weights Wa and the feature extractor CNN backbone. In the
meta-learning stage, a few-shot episode is presented. The support set only contains novel classes,
whereas the query set contains both base and novel classes. We learn an episodic classifier network
through an iterative solver, to minimize cross entropy plus an additional regularization term predicted
by the attention attractor network by attending to the base classes. The attention attractor network is
meta-learned to minimize the expected query loss. During testing an episodic classifier is learned in
the same way.

stage. Finally, we show empirically that our proposed method can produce state-of-the-art results in
incremental few-shot learning on mini-ImageNet [36] and tiered-ImageNet [29] tasks.

2 Related Work

Recently, there has been a surge in interest in few-shot learning [16, 36, 33, 17], where a model
for novel classes is learned with only a few labeled examples. One family of approaches for few-
shot learning, including Deep Siamese Networks [16], Matching Networks [36] and Prototypical
Networks [33], follows the line of metric learning. In particular, these approaches use deep neural
networks to learn a function that maps the input space to the embedding space where examples
belonging to the same category are close and those belonging to different categories are far apart.
Recently, [8] proposes a graph neural networks based method which captures the information
propagation from the labeled support set to the query set. [29] extends Prototypical Networks to
leverage unlabeled examples while doing few-shot learning. Despite their simplicity, these methods
are very effective and often competitive with the state-of-the-art.

Another class of approaches aims to learn models which can adapt to the episodic tasks. In particular,
[27] treats the long short-term memory (LSTM) as a meta learner such that it can learn to predict
the parameter update of a base learner, e.g., a convolutional neural network (CNN). MAML [7]
instead learns the hyperparameters or the initial parameters of the base learner by back-propagating
through the gradient descent steps. [31] uses a read/write augmented memory, and [21] combines
soft attention with temporal convolutions which enables retrieval of information from past episodes.

Methods described above belong to the general class of meta-learning models. First proposed in
[32, 23, 35], meta-learning is a machine learning paradigm where the meta-learner tries to improve
the base learner using the learning experiences from multiple tasks. Meta-learning methods typically
learn the update policy yet lack an overall learning objective in the few-shot episodes. Furthermore,
they could potentially suffer from short-horizon bias [41], if at test time the model is trained for
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longer steps. To address this problem, [4] proposes to use fast convergent models like logistic
regression (LR), which can be back-propagated via a closed form update rule. Compared to [4], our
proposed method using recurrent back-propagation [18, 1, 25] is more general as it does not require a
closed-form update, and the inner loop solver can employ any existing continuous optimizers.

Our work is also related to incremental learning, a setting where information is arriving continuously
while prior knowledge needs to be transferred. A key challenge is catastrophic forgetting [20, 19], i.e.,
the model forgets the learned knowledge. Various memory-based models have since been proposed,
which store training examples explicitly [28, 34, 5, 24], regularize the parameter updates [15], or
learn a generative model [13]. However, in these studies, incremental learning typically starts from
scratch, and usually performs worse than a regular model that is trained with all available classes
together since it needs to learned a good representation while dealing with catastrophic forgetting.

Incremental few-shot learning is also known as low-shot learning. To leverage a good representation,
[10, 37, 9] starts off with a pre-trained network on a set of base classes, and tries to augment the
classifier with a batch of new classes that has not been seen during training. [10] proposes the squared
gradient magnitude loss, which makes the learned classifier from the low-shot examples have a smaller
gradient value when learning on all examples. [37] propose the prototypical matching networks,
a combination of prototypical network and matching network. The paper also adds hallucination,
which generates new examples. [9] proposes an attention based model which generates weights for
novel categories. They also promote the use of cosine similarity between feature representations and
weight vectors to classify images.

In contrast, during each few-shot episode, we directly learn a classifier network that is randomly
initialized and solved till convergence, unlike [9] which directly output the prediction. Since the
model cannot see base class data within the support set of each few-shot learning episode, it is
challenging to learn a classifier that jointly classifies both base and novel categories. Towards this
end, we propose to add a learned regularizer, which is predicted by a meta-network, the “attention
attractor network”. The network is learned by differentiating through few-shot learning optimization
iterations. We found that using an iterative solver with the learned regularizer significantly improves
the classifier model on the task of incremental few-shot learning.

3 Model

In this section, we first define the setup of incremental few-shot learning, and then we introduce our
new model, the Attention Attractor Network, which attends to the set of base classes according to
the few-shot training data by using the attractor regularizing term. Figure 1 illustrates the high-level
model diagram of our method.

3.1 Incremental Few-Shot Learning

The outline of our meta-learning approach to incremental few-shot learning is: (1) We learn a
fixed feature representation and a classifier on a set of base classes; (2) In each training and testing
episode we train a novel-class classifier with our meta-learned regularizer; (3) We optimize our
meta-learned regularizer on combined novel and base classes classification, adapting it to perform
well in conjunction with the base classifier. Details of these stages follow.

Pretraining Stage: We learn a base model for the regular supervised classification task on
dataset {(xa,i, ya,i)}Na

i=1 where xa,i is the i-th example from dataset Da and its labeled class
ya,i ∈ {1, 2, ...,K}. The purpose of this stage is to learn both a good base classifier and a good
representation. The parameters of the base classifier are learned in this stage and will be fixed
after pretraining. We denote the parameters of the top fully connected layer of the base classifier
Wa ∈ RD×K where D is the dimension of our learned representation.

Incremental Few-Shot Episodes: A few-shot dataset Db is presented, from which we can sample
few-shot learning episodes E . Note that this can be the same data source as the pretraining datasetDa,
but sampled episodically. For each N -shot K ′-way episode, there are K ′ novel classes disjoint from
the base classes. Each novel class has N and M images from the support set Sb and the query set
Qb respectively. Therefore, we have E = (Sb, Qb), Sb = (xSb,i, y

S
b,i)

N×K′
i=1 , Qb = (xQb,i, y

Q
b,i)

M×K′
i=1
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where yb,i ∈ {K+1, ...,K+K ′}. Sb andQb can be regarded as this episodes training and validation
sets. Each episode we learn a classifier on the support set Sb whose learnable parameters Wb are
called the fast weights as they are only used during this episode. To evaluate the performance on
a joint prediction of both base and novel classes, i.e., a (K +K ′)-way classification, a mini-batch
Qa = {(xa,i, ya,i)}M×Ki=1 sampled from Da is also added to Qb to form Qa+b = Qa ∪ Qb. This
means that the learning algorithm, which only has access to samples from the novel classes Sb, is
evaluated on the joint query set Qa+b.

Meta-Learning Stage: In meta-training, we iteratively sample few-shot episodes E and try to learn
the meta-parameters in order to minimize the joint prediction loss on Qa+b. In particular, we design a
regularizerR(·, θ) such that the fast weights are learned via minimizing the loss `(Wb, Sb)+R(Wb, θ)
where `(Wb, Sb) is typically cross-entropy loss for few-shot classification. The meta-learner tries to
learn meta-parameters θ such that the optimal fast weights W ∗b w.r.t. the above loss function performs
well on Qa+b. In our model, meta-parameters θ are encapsulated in our attention attractor network,
which produces regularizers for the fast weights in the few-shot learning objective.

Joint Prediction on Base and Novel Classes: We now introduce the details of our joint prediction
framework performed in each few-shot episode. First, we construct an episodic classifier, e.g., a
logistic regression (LR) model or a multi-layer perceptron (MLP), which takes the learned image
features as inputs and classifies them according to the few-shot classes.

During training on the support set Sb, we learn the fast weights Wb via minimizing the following
regularized cross-entropy objective, which we call the episodic objective:

LS(Wb, θ) = − 1

NK ′

NK′∑
i=1

K+K′∑
c=K+1

ySb,i,c log ŷSb,i,c +R(Wb, θ). (1)

This is a general formulation and the specific functional form of the regularization termR(Wb, θ) will
be specified later. The predicted output ŷSb,i is obtained via, ŷSb,i = softmax(

[
W>a xb,i, h(xb,i;W

∗
b )
]
),

where h(xb,i) is our classification network and Wb is the fast weights in the network. In the case of
LR, h is a linear model: h(xb,i;Wb) = W>b xb,i. h can also be an MLP for more expressive power.

During testing on the query set Qa+b, in order to predict both base and novel classes, we directly
augment the softmax with the fixed base class weights Wa, ŷQi = softmax(

[
W>a xi, h(xi;W

∗
b )
]
),

where W ∗b are the optimal parameters that minimize the regularized classification objective in Eq. (1).

3.2 Attention Attractor Networks

Directly learning the few-shot episode, e.g., by setting R(Wb, θ) to be zero or simple weight decay,
can cause catastrophic forgetting on the base classes. This is becauseWb which is trained to maximize
the correct novel class probability can dominate the base classes in the joint prediction. In this section,
we introduce the Attention Attractor Network to address this problem. The key feature of our attractor
network is the regularization term R(Wb, θ):

R(Wb, θ) =

K′∑
k′=1

(Wb,k′ − uk′)>diag(exp(γ))(Wb,k′ − uk′), (2)

where uk′ is the so-called attractor and Wb,k′ is the k′-th column of Wb. This sum of squared
Mahalanobis distances from the attractors adds a bias to the learning signal arriving solely from
novel classes. Note that for a classifier such as an MLP, one can extend this regularization term
in a layer-wise manner. Specifically, one can have separate attractors per layer, and the number of
attractors equals the number of output dimension of that layer.

To ensure that the model performs well on base classes, the attractors uk′ must contain some
information about examples from base classes. Since we can not directly access these base examples,
we propose to use the slow weights to encode such information. Specifically, each base class has
a learned attractor vector Uk stored in the memory matrix U = [U1, ..., UK ]. It is computed as,
Uk = fφ(Wa,k), where f is a MLP of which the learnable parameters are φ. For each novel class k′
its classifier is regularized towards its attractor uk′ which is a weighted sum of Uk vectors. Intuitively

4



the weighting is an attention mechanism where each novel class attends to the base classes according
to the level of interference, i.e. how prediction of new class k′ causes the forgetting of base class k.

For each class in the support set, we compute the cosine similarity between the average representation
of the class and base weights Wa then normalize using a softmax function

ak′,k =
exp

(
τA( 1

N

∑
j hj1[yb,j = k′],Wa,k)

)
∑
k exp

(
τA( 1

N

∑
j hj1[yb,j = k′],Wa,k)

) , (3)

where A is the cosine similarity function, hj are the representations of the inputs in the support set Sb
and τ is a learnable temperature scalar. ak′,k encodes a normalized pairwise attention matrix between
the novel classes and the base classes. The attention vector is then used to compute a linear weighted
sum of entries in the memory matrix U , uk′ =

∑
k ak′,kUk + U0, where U0 is an embedding vector

and serves as a bias for the attractor.

Algorithm 1 Meta Learning for Incremental Few-Shot
Learning
Require: θ0, Da, Db, h
Ensure: θ
1: θ ← θ0;
2: for t = 1 ... T do
3: {(xSb , ySb )}, {(xQb , y

Q
b )} ← GetEpisode(Db);

4: {xQa+b, y
Q
a+b} ← GetMiniBatch(Da) ∪ {(xQb , y

Q
b )};

5:
6: repeat
7: LS ← 1

NK′
∑
i y
S
b,i log ŷSb,i +R(Wb; θ);

8: Wb ← OptimizerStep(Wb,∇WbL
S);

9: until Wb converges
10: ŷQa+b,j ← softmax([W>

a x
Q
a+b,j , h(xQa+b,j ;Wb)]);

11: LQ ← 1
2NK′

∑
j y

Q
a+b,j log ŷQa+b,j ;

12:
// Backprop through the above optimization via RBP
// A dummy gradient descent step

13: W ′
b ←Wb − α∇WbL

S ;

14: J ← ∂W ′b
∂Wb

; v ← ∂LQ

∂Wb
; g ← v;

15: repeat
16: v ← J>v − εv; g ← g + v;
17: until g converges
18:
19: θ ← OptimizerStep(θ, g>

∂W ′b
∂θ

)
20: end for

Our design takes inspiration from attractor
networks [22, 42], where for each base
class one learns an “attractor” that stores
the relevant memory regarding that class.
We call our full model “dynamic attractors”
as they may vary with each episode even
after meta-learning. In contrast if we only
have the bias term U0, i.e. a single attractor
which is shared by all novel classes, it will
not change after meta-learning from one
episode to the other. We call this model
variant the “static attractor”.

In summary, our meta parameters θ include
φ, U0, γ and τ , which is on the same
scale as as the number of paramters in Wa.
It is important to note that R(Wb, θ) is
convex w.r.t. Wb. Therefore, if we use
the LR model as the classifier, the overall
training objective on episodes in Eq. (1)
is convex which implies that the optimum
W ∗b (θ, Sb) is guaranteed to be unique and
achievable. Here we emphasize that the
optimal parameters W ∗b are functions of
parameters θ and few-shot samples Sb.

During meta-learning, θ are updated to
minimize an expected loss of the query
set Qa+b which contains both base and
novel classes, averaging over all few-shot
learning episodes,

min
θ

E
E

[
LQ(θ, Sb)

]
= E
E

M(K+K′)∑
j=1

K+K′∑
c=1

yj,c log ŷj,c(θ, Sb)

 , (4)

where the predicted class is ŷj(θ, Sb) = softmax
([
W>a xj , h (xj ;W

∗
b (θ, Sb))

])
.

3.3 Learning via Recurrent Back-Propagation

As there is no closed-form solution to the episodic objective (the optimization problem in Eq. 1), in
each episode we need to minimize LS to obtain W ∗b through an iterative optimizer. The question is
how to efficiently compute ∂W∗b

∂θ , i.e., back-propagating through the optimization. One option is to
unroll the iterative optimization process in the computation graph and use back-propagation through
time (BPTT) [38]. However, the number of iterations for a gradient-based optimizer to converge can
be on the order of thousands, and BPTT can be computationally prohibitive. Another way is to use
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Table 1: Comparison of our proposed model with other methods

Method Few-shot learner Episodic objective Attention mechanism

Imprint [26] Prototypes N/A N/A
LwoF [9] Prototypes + base classes N/A Attention on base classes
Ours A fully trained classifier Cross entropy on

novel classes
Attention on learned attractors

the truncated BPTT [39] (T-BPTT) which optimizes for T steps of gradient-based optimization, and
is commonly used in meta-learning problems. However, when T is small the training objective could
be significantly biased.

Alternatively, the recurrent back-propagation (RBP) algorithm [1, 25, 18] allows us to back-propagate
through the fixed point efficiently without unrolling the computation graph and storing intermediate
activations. Consider a vanilla gradient descent process on Wb with step size α. The difference
between two steps Φ can be written as Φ(W

(t)
b ) = W

(t)
b − F (W

(t)
b ), where F (W

(t)
b ) = W

(t+1)
b =

W
(t)
b − α∇LS(W

(t)
b ). Since Φ(W ∗b (θ)) is identically zero as a function of θ, using the implicit

function theorem we have ∂W∗b
∂θ = (I − J>F,W∗b )−1 ∂F∂θ , where JF,W∗b denotes the Jacobian matrix

of the mapping F evaluated at W ∗b . Algorithm 1 outlines the key steps for learning the episodic
objective using RBP in the incremental few-shot learning setting. Note that the RBP algorithm
implicitly inverts (I − J>) by computing the matrix inverse vector product, and has the same time
complexity compared to truncated BPTT given the same number of unrolled steps, but meanwhile
RBP does not have to store intermediate activations.

Damped Neumann RBP To compute the matrix-inverse vector product (I−J>)−1v, [18] propose
to use the Neumann series: (I − J>)−1v =

∑∞
n=0(J>)nv ≡

∑∞
n=0 v

(n). Note that J>v can be
computed by standard back-propagation. However, directly applying the Neumann RBP algorithm
sometimes leads to numerical instability. Therefore, we propose to add a damping term 0 < ε < 1
to I − J>. This results in the following update: ṽ(n) = (J> − εI)nv. In practice, we found the
damping term with ε = 0.1 helps alleviate the issue significantly.

4 Experiments

We experiment on two few-shot classification datasets, mini-ImageNet and tiered-ImageNet. Both
are subsets of ImageNet [30], with images sizes reduced to 84 × 84 pixels. We also modified the
datasets to accommodate the incremental few-shot learning settings. 1

4.1 Datasets

• mini-ImageNet Proposed by [36], mini-ImageNet contains 100 object classes and 60,000 images.
We used the splits proposed by [27], where training, validation, and testing have 64, 16 and 20
classes respectively.

• tiered-ImageNet Proposed by [29], tiered-ImageNet is a larger subset of ILSVRC-12. It features
a categorical split among training, validation, and testing subsets. The categorical split means that
classes that belong to the same high-level category, e.g. “working dog” and ”terrier” or some other
dog breed, are not split between training, validation and test. This is a harder task, but one that
more strictly evaluates generalization to new classes. It is also an order of magnitude larger than
mini-ImageNet.

4.2 Experiment setup

We use a standard ResNet backbone [11] to learn the feature representation through supervised
training. For mini-ImageNet experiments, we follow [21] and use a modified version of ResNet-10.

1Code released at: https://github.com/renmengye/inc-few-shot-attractor-public
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Table 2: mini-ImageNet 64+5-way results

Model 1-shot 5-shot
Acc. ↑ ∆ ↓ Acc. ↑ ∆ ↓

ProtoNet [33] 42.73 ± 0.15 -20.21 57.05 ± 0.10 -31.72
Imprint [26] 41.10 ± 0.20 -22.49 44.68 ± 0.23 -27.68

LwoF [9] 52.37 ± 0.20 -13.65 59.90 ± 0.20 -14.18
Ours 54.95 ± 0.30 -11.84 63.04 ± 0.30 -10.66

Table 3: tiered-ImageNet 200+5-way results

Model 1-shot 5-shot
Acc. ↑ ∆ ↓ Acc. ↑ ∆ ↓

ProtoNet [33] 30.04 ± 0.21 -29.54 41.38 ± 0.28 -26.39
Imprint [26] 39.13 ± 0.15 -22.26 53.60 ± 0.18 -16.35

LwoF [9] 52.40 ± 0.33 -8.27 62.63 ± 0.31 -6.72
Ours 56.11 ± 0.33 -6.11 65.52 ± 0.31 -4.48

∆ = average decrease in acc. caused by joint prediction within base and novel classes (∆ = 1
2
(∆a + ∆b))

↑ (↓) represents higher (lower) is better.

For tiered-ImageNet, we use the standard ResNet-18 [11], but replace all batch normalization [12]
layers with group normalization [40], as there is a large distributional shift from training to testing in
tiered-ImageNet due to categorical splits. We used standard data augmentation, with random crops
and horizonal flips. We use the same pretrained checkpoint as the starting point for meta-learning.

In the meta-learning stage as well as the final evaluation, we sample a few-shot episode from the
Db, together with a regular mini-batch from the Da. The base class images are added to the query
set of the few-shot episode. The base and novel classes are maintained in equal proportion in our
experiments. For all the experiments, we consider 5-way classification with 1 or 5 support examples
(i.e. shots). In the experiments, we use a query set of size 25×2 =50.

We use L-BFGS [43] to solve the inner loop of our models to make sure Wb converges. We use the
ADAM [14] optimizer for meta-learning with a learning rate of 1e-3, which decays by a factor of 10
after 4,000 steps, for a total of 8,000 steps. We fix recurrent backpropagation to 20 iterations and
ε = 0.1.

We study two variants of the classifier network. The first is a logistic regression model with a single
weight matrix Wb. The second is a 2-layer fully connected MLP model with 40 hidden units in the
middle and tanh non-linearity. To make training more efficient, we also add a shortcut connection in
our MLP, which directly links the input to the output. In the second stage of training, we keep all
backbone weights frozen and only train the meta-parameters θ.

4.3 Evaluation metrics

We consider the following evaluation metrics: 1) overall accuracy on individual query sets and the
joint query set (“Base”, “Novel”, and “Both”); and 2) decrease in performance caused by joint
prediction within the base and novel classes, considered separately (“∆a” and “∆b”). Finally we take
the average ∆ = 1

2 (∆a + ∆b) as a key measure of the overall decrease in accuracy.

4.4 Comparisons

We implemented and compared to three methods. First, we adapted Prototypical Networks [33]
to incremental few-shot settings. For each base class we store a base representation, which is the
average representation (prototype) over all images belonging to the base class. During the few-shot
learning stage, we again average the representation of the few-shot classes and add them to the bank
of base representations. Finally, we retrieve the nearest neighbor by comparing the representation of
a test image with entries in the representation store. In summary, both Wa and Wb are stored as the
average representation of all images seen so far that belong to a certain class. We also compare to the
following methods:

• Weights Imprinting (“Imprint”) [26]: the base weights Wa are learned regularly through
supervised pre-training, and Wb are computed using prototypical averaging.

• Learning without Forgetting (“LwoF”) [9]: Similar to [26],Wb are computed using prototypical
averaging. In addition, Wa is finetuned during episodic meta-learning. We implemented the most
advanced variants proposed in the paper, which involves a class-wise attention mechanism. This
model is the previous state-of-the-art method on incremental few-shot learning, and has better
performance compared to other low-shot models [37, 10].

4.5 Results

We first evaluate our vanilla approach on the standard few-shot classification benchmark where no
base classes are present in the query set. Our vanilla model consists of a pretrained CNN and a
single-layer logistic regression with weight decay learned from scratch; this model performs on-par
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Table 4: Ablation studies on mini-ImageNet

1-shot 5-shot
Acc. ↑ ∆ ↓ Acc. ↑ ∆ ↓

LR 52.74 ± 0.24 -13.95 60.34 ± 0.20 -13.60
LR +S 53.63 ± 0.30 -12.53 62.50 ± 0.30 -11.29
LR +A 55.31 ± 0.32 -11.72 63.00 ± 0.29 -10.80

MLP 49.36 ± 0.29 -16.78 60.85 ± 0.29 -12.62
MLP +S 54.46 ± 0.31 -11.74 62.79 ± 0.31 -10.77
MLP +A 54.95 ± 0.30 -11.84 63.04 ± 0.30 -10.66

Table 5: Ablation studies on tiered-ImageNet

1-shot 5-shot
Acc. ↑ ∆ ↓ Acc. ↑ ∆ ↓

LR 48.84 ± 0.23 -10.44 62.08 ± 0.20 -8.00
LR +S 55.36 ± 0.32 -6.88 65.53 ± 0.30 -4.68
LR +A 55.98 ± 0.32 -6.07 65.58 ± 0.29 -4.39

MLP 41.22 ± 0.35 -10.61 62.70 ± 0.31 -7.44
MLP +S 56.16 ± 0.32 -6.28 65.80 ± 0.31 -4.58
MLP +A 56.11 ± 0.33 6.11 65.52 ± 0.31 -4.48

“+S” stands for static attractors, and “+A” for attention attractors.
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Figure 2: Learning the proposed model using truncated BPTT vs. RBP. Models are evaluated with
1-shot (left) and 5-shot (right) 64+5-way episodes, with various number of gradient descent steps.

with other competitive meta-learning approaches (1-shot 55.40 ± 0.51, 5-shot 70.17 ± 0.46). Note
that our model uses the same backbone architecture as [21] and [9], and is directly comparable
with their results. Similar findings of strong results using simple logistic regression on few-shot
classification benchmarks are also recently reported in [6]. Our full model has similar performance
as the vanilla model on pure few-shot benchmarks, and the full table is available in Supp. Materials.

Next, we compare our models to other methods on incremental few-shot learning benchmarks in
Tables 2 and 3. On both benchmarks, our best performing model shows a significant margin over
the prior works that predict the prototype representation without using an iterative optimization
[33, 26, 9].

4.6 Ablation studies

To understand the effectiveness of each part of the proposed model, we consider the following
variants:

• Vanilla (“LR, MLP”) optimizes a logistic regression or an MLP network at each few-shot episode,
with a weight decay regularizer.
• Static attractor (“+S”) learns a fixed attractor center u and attractor slope γ for all classes.
• Attention attractor (“+A”) learns the full attention attractor model. For MLP models, the weights

below the final layer are controlled by attractors predicted by the average representation across all
the episodes. fφ is an MLP with one hidden layer of 50 units.

Tables 4 and 5 shows the ablation experiment results. In all cases, the learned regularization function
shows better performance than a manually set weight decay constant on the classifier network, in
terms of both jointly predicting base and novel classes, as well as less degradation from individual
prediction. On mini-ImageNet, our attention attractors have a clear advantage over static attractors.

Formulating the classifier as an MLP network is slightly better than the linear models in our
experiments. Although the final performance is similar, our RBP-based algorithm have the flexibility
of adding the fast episodic model with more capacity. Unlike [4], we do not rely on an analytic form
of the gradients of the optimization process.

Comparison to truncated BPTT (T-BPTT) An alternative way to learn the regularizer is to unroll
the inner optimization for a fixed number of steps in a differentiable computation graph, and then
back-propagate through time. Truncated BPTT is a popular learning algorithm in many recent
meta-learning approaches [2, 27, 7, 34, 3]. Shown in Figure 2, the performance of T-BPTT learned
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Figure 3: Visualization of a 5-shot 64+5-way episode using PCA. Left: Our attractor model learns to
“pull” prototypes (large colored circles) towards base class weights (white circles). We visualize the
trajectories during episodic training; Right: Dynamic few-shot learning without forgetting [9].

models are comparable to ours; however, when solved to convergence at test time, the performance
of T-BPTT models drops significantly. This is expected as they are only guaranteed to work well for
a certain number of steps, and failed to learn a good regularizer. While an early-stopped T-BPTT
model can do equally well, in practice it is hard to tell when to stop; whereas for the RBP model,
doing the full episodic training is very fast since the number of support examples is small.
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Figure 4: Results on tiered-ImageNet with {50,
100, 150, 200} base classes.

Visualization of attractor dynamics We
visualize attractor dynamics in Figure 3. Our
learned attractors pulled the fast weights close
towards the base class weights. In comparison,
[9] only modifies the prototypes slightly.

Varying the number of base classes While
the framework proposed in this paper cannot be
directly applied on class-incremental continual
learning, as there is no module for memory
consolidation, we can simulate the continual
learning process by varying the number of base
classes, to see how the proposed models are
affected by different stages of continual learning.
Figure 4 shows that the learned regularizers
consistently improve over baselines with weight
decay only. The overall accuracy increases from
50 to 150 classes due to better representations on the backbone network, and drops at 200 classes due
to a more challenging classification task.

5 Conclusion

Incremental few-shot learning, the ability to jointly predict based on a set of pre-defined concepts
as well as additional novel concepts, is an important step towards making machine learning models
more flexible and usable in everyday life. In this work, we propose an attention attractor model,
which regulates a per-episode training objective by attending to the set of base classes. We show that
our iterative model that solves the few-shot objective till convergence is better than baselines that do
one-step inference, and that recurrent back-propagation is an effective and modular tool for learning
in a general meta-learning setting, whereas truncated back-propagation through time fails to learn
functions that converge well. Future directions of this work include sequential iterative learning of
few-shot novel concepts, and hierarchical memory organization.
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