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Abstract

We consider a finite-horizon multi-armed bandit (MAB) problem in a Bayesian
setting, for which we propose an information relaxation sampling framework.
With this framework, we define an intuitive family of control policies that include
Thompson sampling (TS) and the Bayesian optimal policy as endpoints. Analogous
to TS, which, at each decision epoch pulls an arm that is best with respect to
the randomly sampled parameters, our algorithms sample entire future reward
realizations and take the corresponding best action. However, this is done in
the presence of “penalties” that seek to compensate for the availability of future
information.
We develop several novel policies and performance bounds for MAB problems that
vary in terms of improving performance and increasing computational complexity
between the two endpoints. Our policies can be viewed as natural generalizations
of TS that simultaneously incorporate knowledge of the time horizon and explicitly
consider the exploration-exploitation trade-off. We prove associated structural
results on performance bounds and suboptimality gaps. Numerical experiments
suggest that this new class of policies perform well, in particular in settings where
the finite time horizon introduces significant exploration-exploitation tension into
the problem.

1 Introduction

Dating back to the earliest work [2, 10], multi-armed bandit (MAB) problems have been considered
within a Bayesian framework, in which the unknown parameters are modeled as random variables
drawn from a known prior distribution. In this setting, the problem can be viewed as a Markov
decision process (MDP) with a state that is an information state describing the beliefs of unknown
parameters that evolve stochastically upon each play of an arm according to Bayes’ rule.

Under the objective of expected performance, where the expectation is taken with respect to the
prior distribution over unknown parameters, the (Bayesian) optimal policy (OPT) is characterized
by Bellman equations immediately following from the MDP formulation. In the discounted infinite-
horizon setting, the celebrated Gittins index [10] determines an optimal policy, despite the fact that
its computation is still challenging. In the non-discounted finite-horizon setting, which we consider,
the problem becomes more difficult [1], and except for some special cases, the Bellman equations
are neither analytically nor numerically tractable, due to the curse of dimensionality. In this paper,
we focus on the Bayesian setting, and attempt to apply ideas from dynamic programming (DP) to
develop tractable policies with good performance.

To this end, we apply the idea of information relaxation [4], a technique that provides a systematic
way of obtaining the performance bounds on the optimal policy. In multi-period stochastic DP
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problems, admissible policies are required to make decisions based only on previously revealed
information. The idea of information relaxation is to consider non-anticipativity as a constraint
imposed on the policy space that can be relaxed, while simultaneously introducing a penalty for this
relaxation into the objective, as in the usual Lagrangian relaxations of convex duality theory. Under
such a relaxation, the decision maker (DM) is allowed to access future information and is asked
to solve an optimization problem so as to maximize her total reward, in the presence of penalties
that punish any violation of the non-anticipativity constraint. When the penalties satisfy a condition
(dual feasibility, formally defined in §3), the expected value of the maximal reward adjusted by the
penalties provides an upper bound on the expected performance of the (non-anticipating) optimal
policy.

The idea of relaxing the non-anticipativity constraint has been studied in different contexts [17, 6,
18, 11], and was later formulated as a formal framework by [4], upon which our methodology is
developed. This framework has been applied to a variety of applications including optimal stopping
problems [7], linear-quadratic control [12], dynamic portfolio execution [13], and more (see [3]).
Typically, the application of this method to a specific class of MDPs requires custom analysis. In
particular, it is not always easy to determine penalty functions that (1) yield a relaxation that is
tractable to solve, and (2) provide tight upper bounds on the performance of the optimal policy.
Moreover, the established information relaxation theory focuses on upper bounds and provides no
guidance on the development of tractable policies.

Our contribution is to apply the information relaxation techniques to the finite-horizon stochastic
MAB problem, explicitly exploiting the structure of a Bayesian learning process. In particular,

1. we propose a series of information relaxations and penalties of increasing computational
complexity;

2. we systematically obtain the upper bounds on the best achievable expected performance that
trade off between tightness and computational complexity;

3. and we develop associated (randomized) policies that generalize Thompson sampling (TS)
in the finite-horizon setting.

In our framework, which we call information relaxation sampling, each of the penalty functions (and
information relaxations) determines one policy and one performance bound given a particular problem
instance specified by the time horizon and the prior beliefs. As a base case for our algorithms, we
have TS [21] and the conventional regret benchmark that has been used for Bayesian regret analysis
since [15]. At the other extreme, the optimal policy OPT and its expected performance follow from
the “ideal” penalty (which, not surprisingly, is intractable to compute). By picking increasingly strict
information penalties, we can improve the policy and the associated bound between the two extremes
of TS and OPT.

As an example, one of our algorithms, IRS.FH, provides a very simple modification of TS that
naturally incorporates time horizon T . Recalling that TS makes a decision based on sampled
parameters from the posterior distribution in each epoch, we focus on the fact that knowing the
parameters is as informative as having an infinite number of future reward observations in terms of
the best arm identification. By contrast, IRS.FH makes a decision based on future Bayesian estimates,
updated with only T − 1 future reward realizations for each arm, where the rewards are sampled
based on the prior belief at the moment. When T = 1 (equivalently, at the last decision epoch), such a
policy takes a myopically best action based only on the current estimates, which is indeed an optimal
decision, whereas TS would still explore unnecessarily. While keeping the recursive structure of the
sequential decision-making process of TS, IRS.FH naturally performs less exploration than TS as the
remaining time horizon diminishes. This mitigates a common practical criticism of TS: it explores
too much.

Beyond this, we propose other algorithms that more explicitly quantify the benefit of exploration and
more explicitly trade off between exploration and exploitation, at the cost of additional computational
complexity. As we increase the complexity, we achieve policies that improve performance, and
separately provide tighter tractable computational upper bounds on the expected performance of
any policy for a particular problem instance. By providing natural generalizations of TS, our
work provides both a deeper understanding of TS and improved policies that do not require tuning.
Since TS has been shown to be asymptotically regret optimal [5], our improvements can at best be
(asymptotically) constant factor improvements by that metric. On the other hand, TS is extremely
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popular in practice, and we demonstrate in numerical examples that the improvements can be
significant and are likely to be of practical interest.

Moreover, we develop upper bounds on performance that are useful in their own right. Suppose that
a decision maker faces a particular problem instance and is considering any particular MAB policy
(be it one we suggest or otherwise). By simulating the policy, a lower bound on the performance of
the optimal policy can be found. We introduce a series of upper bounds that can also be evaluated in
any problem instance via simulation. Paired with the lower bound, these provide a computational,
simulation-based “confidence interval” that can be helpful to the decision maker. For example, if the
upper bound and lower bound are close, the suboptimality gap of the policy under consideration is
guaranteed to be small, and it is not worth investing in better policies.

2 Notation and Preliminaries

Problem. We consider a classical stochastic MAB problem with K independent arms and finite-
horizon T . At each decision epoch t = 1, . . . , T , the decision maker (DM) pulls an arm at ∈ A ,
{1, . . . ,K} and earns a stochastic reward associated with arm at. More formally, the reward from
the nth pull of arm a is denoted by Ra,n which is independently drawn from unknown distribution
Ra(θa), where θa ∈ Θa is the parameter associated with arm a. We also have a prior distribution
Pa(ya) over unknown parameter θa, where ya ∈ Ya, which we call belief, is a hyperparameter
describing the prior distribution: θa ∼ Pa(ya) and Ra,n|θa ∼ Ra(θa) for all n ∈ N and all a ∈ A.

We define the outcome ω , ((θa)a∈A, (Ra,n)a∈A,n∈N) that incorporates the all uncertainties that
the DM encounters. Given the prior belief vector y , (y1, . . . , yK) ∈ Y , we let I(y) be the prior
distribution of outcome ω that would be described with Pa’s andRa’s.

We additionally define the true mean reward µa and its Bayesian estimate µ̂a,n as follows

µa(θa) , E [Ra,n|θa] , µ̂a,n(ω; ya) , E [µa(θa)|Ra,1, . . . , Ra,n] . (1)

Through out the paper, we assume that the rewards are absolutely integrable over the prior distribution:
i.e., E [|Ra,n|] < ∞, or more explicitly, Er∼Ra(Pa(ya)) [|r|] < ∞ where Ra(Pa(ya)) denotes the
(unconditional) distribution of reward Ra,n as a doubly stochastic random variable.

Policy. Given an action sequence up to time t, a1:t , (a1, . . . , at) ∈ At, define the
number of pulls nt(a1:t, a) ,

∑t
s=1 1{as = a} for each arm a, and the corresponding

reward realization rt(a1:t, ω) , Rat,nt(a1:t,at). The natural filtration Ft(a1:t, ω;T,y) ,

σ
(
T,y, (as, rs(a1:s, ω))s∈[t]

)
encodes the observations revealed up to time t (inclusive).

Let aπ1:t be the action sequence taken by a policy π. A policy π is called non-anticipating if its every
action aπt is Ft−1-measurable, and we define ΠF be a set of all non-anticipating policies, including
randomized ones. The (Bayesian) performance of a policy π is defined as the expected total reward
over the randomness associated with the outcome, i.e.,

V (π, T,y) , Eω∼I(y)

[
T∑
t=1

rt(a
π
1:t, ω)

]
. (2)

MDP formulation. We assume that we are equipped with a Bayesian update function U : Y ×A×
R 7→ Y so that after observing Ra,1 = r from some arm a, the belief vector is updated from y to
U(y, a, r) according to Bayes’ rule, where only the ath component is updated in this step.

In a Bayesian framework, the MAB problem has a recursive structure. Given a time horizon T and
prior belief y, suppose the DM had just earned r by pulling an arm a at time t = 1. The remaining
problem for the DM is equivalent to a problem with time horizon T − 1 and prior belief U(y, a, r).
Following from this Markovian structure, we obtain the Bellman equations for the MAB problem:

Q∗(T,y, a) , Er∼Ra(Pa(ya)) [r + V ∗(T − 1,U(y, a, r))] , V ∗(T,y) , max
a∈A

Q∗(T,y, a), (3)

with V ∗(0,y) , 0 for all y ∈ Y . While the Bellman equation is intractable to analyze, it offers a
characterization of the Bayesian optimal policy (OPT) and the best achievable performance V ∗: i.e.,
V ∗(T,y) = V (OPT, T,y) = supπ∈ΠF

V (π, T,y).
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3 Information Relaxation Sampling

We propose a general framework, which we refer to as information relaxation sampling (IRS), that
takes as an input a “penalty function” zt(·), and produces as outputs a policy πz and an associated
performance bound W z .

Information relaxation penalties and inner problem. If we relax the non-anticipativity constraint
imposed on policy space ΠF (i.e., aπt is Ft−1-measurable), the DM will be allowed to first observe
all future outcomes in advance, and then pick an action (i.e., aπt is σ(ω)-measurable). To compensate
for this relaxation, we impose a penalty on the DM for violating the nonanticipativity constraint.

We introduce a penalty function zt(a1:t, ω;T,y) to denote the penalty that the DM incurs at time
t, when taking an action sequence a1:t given a particular instance specified by ω, T and y. The
clairvoyant DM can find the best action sequence that is optimal for a particular outcome ω in the
presence of penalties zt, by solving the following (deterministic) optimization problem, referred to as
the inner problem:

maximizea1:T∈AT

T∑
t=1

rt(a1:t, ω)− zt(a1:t, ω;T,y). (∗)

Definition 1 (Dual feasibility). A penalty function zt is dual feasible if it is ex-ante zero-mean, i.e.,

E [zt(a1:t, ω;T,y) |Ft−1(a1:t−1, ω;T,y) ] = 0, ∀a1:t ∈ At, ∀t ∈ [T ]. (4)

To clarify the notion of conditional expectation, we remark that the mapping a1:t 7→ zt(a1:t, ω;T,y)
is a stochastic function of the action sequence a1:t since the outcome ω is random.1 The dual
feasibility condition requires that the DM who makes decisions on the natural filtration will receive
zero penalties in expectation.

IRS performance bound. Let W z(T,y) be the expected maximal value of the inner problem (∗),
when the outcome ω is randomly drawn from its prior distribution I(y), i.e., the expected total payoff
that a clairvoyant DM can achieve in the presence of penalties:

W z(T,y) , Eω∼I(y)

[
max

a1:T∈AT

{
T∑
t=1

rt(a1:t, ω)− zt(a1:t, ω;T,y)

}]
. (5)

We can obtain this value numerically via simulation: draw outcomes ω(1), ω(2), . . . , ω(S) indepen-
dently from I(y), solve the inner problem for each outcome separately, and then take the average of
the maximal values across these samples. The following theorem shows that W z is indeed a valid
performance bound of the stochastic MAB problem.

Theorem 1 (Weak duality and strong duality). If the penalty function zt is dual feasible, W z is an
upper bound on the optimal value V ∗: for any T and y,

(Weak duality) W z(T,y) ≥ V ∗(T,y). (6)

There exists a dual feasible penalty function, referred to as the ideal penalty zideal
t , such that

(Strong duality) W ideal(T,y) = V ∗(T,y). (7)

The ideal penalty function zideal
t has a following functional form:

zideal
t (a1:t, ω) , rt(a1:t, ω)− E [rt(a1:t, ω) |Ft−1(a1:t−1, ω) ] (8)

+ V ∗ (T − t,yt(a1:t, ω))− E [V ∗ (T − t,yt(a1:t, ω))| Ft−1(a1:t−1, ω)] .

A good penalty function precisely penalizes for the additional profit extracted from using the future
information ω. At extreme, the ideal penalty zideal

t , intractable however, removes any incentive to
deviate from OPT and results in the strong duality. In (8), yt(a1:t, ω) represents the posterior belief
that the DM would have at time t after observing the reward realizations associated with a1:t given ω.

1 As in usual probability theory, Z(ω) , E[X(ω)|Y (ω)] represents the expected value of a random variable
X(ω) given the information Y (ω), and Z(ω) is itself a random variable that has a dependency on ω.
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IRS policy. Given a penalty function zt, we characterize a randomized and non-anticipating IRS
policy πz ∈ ΠF as follows. The policy πz specifies “which arm to pull when the remaining time is
T and current belief is y.” Given T and y, it (i) first samples an outcome ω̃ from I(y) randomly,
(ii) solves the inner problem to find a best action sequence ã∗1:T with respect to ω̃ in the presence
of penalties zt, and (iii) takes the first action ã∗1 that the clairvoyant optimal solution ã∗1:T suggests.
Analogous to Thompson sampling, it repeats steps (i)–(iii) at every decision epoch, while updating
the remaining time T and belief y upon each reward realization.

Algorithm 1: Information relaxation sampling (IRS) policy
Function IRS(T,y; z)

1 Sample ω̃ ∼ I(y) (equivalently, θ̃a ∼ Pa(ya) and R̃a,n ∼ Ra(θ̃a), ∀a ∈ A, ∀n ∈ [T ])
2 Find the best action sequence with respect to ω̃ under penalties zt:

ã∗1:T ← argmaxa1:T∈AT
{∑T

t=1 rt(a1:t, ω̃)− zt(a1:t, ω̃;T,y)
}

3 return ã∗1
Procedure IRS-Outer(T,y; z)

1 y0 ← y
2 for t = 1, 2, . . . , T do
3 Play at ← IRS(T − t+ 1,yt−1; z)
4 Earn and observe a reward rt and update belief yt ← U(yt−1, at, rt)

end

Remark 1. The ideal penalty yields the Bayesian optimal policy: i.e., V (πideal, T,y) = V ∗(T,y).

Choice of penalty functions. IRS policies include Thompson sampling and the Bayesian optimal
policy as two extremal cases. We propose a set of penalty functions spanning these two. While
deferring the detailed explanations in §3.1 – §3.4, we briefly list the penalty functions:

zTS
t (a1:t, ω) , rt(a1:t, ω)− E [rt(a1:t, ω) |θ1, . . . , θK ] (9)

zIRS.FH
t (a1:t, ω) , rt(a1:t, ω)− E [rt(a1:t, ω) |µ̂1,T−1(ω), . . . , µ̂K,T−1(ω) ] (10)

zIRS.V-ZERO
t (a1:t, ω) , rt(a1:t, ω)− E [rt(a1:t, ω) |Ft−1(a1:t−1, ω) ] (11)

zIRS.V-EMAX
t (a1:t, ω) , rt(a1:t, ω)− E [rt(a1:t, ω) |Ft−1(a1:t−1, ω) ] (12)

+W TS (T − t,yt(a1:t, ω))− E
[
W TS (T − t,yt(a1:t, ω))

∣∣Ft−1(a1:t−1, ω)
]

To help understanding, we provide an identity as an example: E [rt(a1:t, ω) |Ft−1(a1:t−1, ω) ] =
E
[
µat(θat)

∣∣Rat,1, . . . , Rat,nt−1(a1:t−1,at)

]
= µ̂at,nt−1(a1:t−1,at)(ω) – they all represent the mean

reward that the DM expects to get from arm at right before making a decision at time t.
Remark 2. All penalty functions (8)–(12) are dual feasible.

As we sequentially increase its complexity, from zTS to zideal, the penalty function more accurately
penalizes the benefit of knowing the future outcomes, more explicitly preventing the DM from
exploiting the future information. As summarized in Table 1, it makes the inner problem closer to
the original stochastic optimization problem that results in a better performing policy and a tighter
performance bound. As a result, we achieve a family of algorithms that are intuitive and tractable,
exhibiting a trade-off between quality and computational efficiency.

3.1 Thompson Sampling

With the penalty function zTS
t (a1:t, ω) = rt(a1:t, ω)− µat(θat), the inner problem (∗) reduces to

max
a1:T∈AT

{
T∑
t=1

rt(a1:t, ω)− zTS
t (a1:t, ω)

}
= max

a1:T∈AT

{
T∑
t=1

µat(θat)

}
= T ×max

a∈A
µa(θa). (13)

The resulting performance bound W TS(T,y) is E [T ×maxa∈A µa(θa)] that is the conventional
benchmark in a Bayesian setting [15, 19]. The corresponding IRS policy πTS restores Thompson
sampling: when the sampled outcome ω̃ is used instead, it plays the arm ã∗1 = argmaxa µa(θ̃a)

where each θ̃a is sampled from Pa(ya). Recall that this sampling-based decision making is repeated
in each epoch, while updating the belief sequentially, as described in IRS-OUTER in Algorithm 1.
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Penalty
function Policy Performance

bound Inner problem Run time

zTS
t TS W TS Find a best arm given parameters. O(K)

zIRS.FH
t πIRS.FH W IRS.FH Find a best arm given finite observations. O(K)† or O(KT )

zIRS.V-ZERO
t πIRS.V-ZERO W IRS.V-ZERO Find an optimal allocation of T pulls. O(KT 2)
zIRS.V-EMAX
t πIRS.V-EMAX W IRS.V-EMAX Find an optimal action sequence. O(KTK)
zideal
t OPT V ∗ Solve Bellman equations. –

Table 1: List of algorithms associated with the penalty functions (8)–(12). Run time represents the
time complexity of solving one instance of inner problem, that is, the time required to obtain one
sample of performance bound W z or to make a single decision in policy πz . †In IRS.FH, O(K) is
achievable when the prior distribution Pa is a conjugate prior of the reward distributionRa.

3.2 IRS.FH

Recall that µ̂a,T−1(ω) is the Bayesian estimate on the mean reward of an arm a inferred from the first
T − 1 reward realizations Ra,1, . . . , Ra,T−1. Given (10), the optimal solution to the inner problem
(∗) is to pull an arm with the highest µ̂a,T−1(ω) from beginning to the end:

max
a1:T∈AT

{
T∑
t=1

rt(a1:t, ω)− zIRS.FH
t (a1:t, ω)

}
= max

a1:T∈AT

{
T∑
t=1

µ̂at,T−1(ω)

}
= T×max

a∈A
µ̂a,T−1(ω).

(14)
IRS.FH is almost identical to TS except that µa(θa) is replaced with µ̂a,T−1(ω). Note that µ̂a,T−1(ω)
is less informative than µa(θa) for the DM, since she will never be able to learn µa(θa) perfectly
within a finite horizon. In terms of estimation, knowing the parameters is equivalent to having the
infinite number of observations. The inner problem of TS asks the DM to “identify the best arm
based on the infinite number of samples” whereas that of IRS.FH asks her to “identify the best arm
based on the finite number of samples,” which takes into account the length of time horizon explicitly.

Focusing on the policies πIRS.FH and πTS (where the randomly generated µa(θ̃a) and µ̂a,T−1(ω̃)
are used), we observe that the distribution of µ̂a,T−1(ω̃) will be more concentrated while both
have the same mean µ̄a , E[µa(θ̃a)] = µ̂a,0. Since the variance of µ̂a,T−1(ω̃) and µa(θ̃a) govern
the degree of random exploration (deviating from the myopic decision of pulling an arm with
the largest µ̄a), πIRS.FH naturally explores less than TS, in particular when it approaches the end
of the horizon (T ↘ 1). For the performance bounds, by the same reason, we have W IRS.FH =
E[T×maxa µ̂a,T−1(ω)] ≤W TS = E[T×maxa µa(θa)],meaning that IRS.FH yields a performance
bound that is tighter than the conventional regret benchmark.

Sampling µ̂a,T−1(ω̃) at once. In order to obtain µ̂a,T−1(ω̃) for a synthesized outcome ω̃, one may
apply Bayes’ rule sequentially for each reward realization, which will take O(KT ) computations in
total. It can be done inO(K) when the belief can be updated in a batch by the use of sufficient statistics.
In Beta-Bernoulli and Gaussian MABs, for example, µ̂a,T−1(ω̃) can be represented as a convex
combination of the current estimate µ̄a and the sample mean 1

T−1

∑T−1
n=1 R̃a,n where

∑T−1
n=1 R̃a,n

is distributed with Binomial(T − 1, θ̃a) for Beta-Bernoulli case and N ((T − 1) · θ̃a, (T − 1) · σ2
a)

for Gaussian case (σ2
a represents the noise variance). After sampling the parameter θ̃a, we can

sample
∑T−1
n=1 R̃a,n directly from the known distribution, then use it to compute µ̂a,T−1(ω̃) without

sequentially updating the belief. In such cases, a single decision of πIRS.FH can be made within O(K)
operations, similar in complexity to TS.

3.3 IRS.V-ZERO

Under the penalty zIRS.V-ZERO
t , the DM at time t earns E [rt(a1:t, ω) |Ft−1(a1:t−1, ω) ], the expected

mean reward that she can infer from the observations prior to time t. As we defined Ra,n to be a
reward from the nth pull on arm a (not the pull at time n), the posterior belief associated with each
arm is determined only by the number of past pulls on that arm – from the nth pull on arm a, the DM
earns µ̂a,n−1(ω), irrespective of the detailed sequence of past actions.
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Following this observation, solving the inner problem (∗) is equivalent to “finding the optimal
allocation (n∗1, n

∗
2, . . . , n

∗
K) among T remaining opportunities”: omitting ω for brevity, it reduces to

max
a1:T∈AT

{
T∑
t=1

µ̂at,nt−1(a1:t−1,at)

}
= max

a1:T∈AT


K∑
a=1

nT (a1:T ,a)∑
n=1

µ̂a,n−1

 = max
n1:K∈NT

{
K∑
a=1

Sa,na

}
(15)

where Sa,n ,
∑n
m=1 µ̂a,m−1 is the cumulative payoff from the first n pulls of an arm a, and

NT , {(n1, . . . , nK) ∈ ZK+ :
∑K
a=1 na = T} is the set of all feasible allocations. Once the Sa,n’s

are computed, this inner problem can be solved within O(KT 2) operations by sequentially applying
sup convolution K times. The detailed implementation is provided in Appendix §B.1.

Given an optimal allocation ñ∗, the policy πIRS.V-ZERO needs to select which arm to pull next. In
principle, any arm a that was included in the solution of the inner problem, ñ∗a > 0, would be fine,
but we suggest a selection rule in which the arm that needs most pulls is chosen, i.e., argmaxa ñ

∗
a.

3.4 IRS.V-EMAX

Under perfect information relaxation, the DM perfectly knows not only (i) what she will earn at
future times but also (ii) how her belief will evolve as a result of her action sequence. The previous
algorithms focus on the former component by making the DM to adjust the future rewards by
conditioning (e.g., E[rt(at)|θ], E[rt(at)|µ̂1:K,T−1] and E[rt(at)|Ft−1]). IRS.V-EMAX also focuses
on the second component as well by charging an additional cost for using the information on her
future belief transitions.

Specifically, the penalty function zIRS.V-EMAX
t is obtained from zideal

t in (8) by replacing V ∗(T,y)
with W TS(T,y), which is a tractable alternative. The use of W TS(T,y) leads to a simple expression
for its conditional expectation: since θ|Ft−1 is distributed with P(yt−1), we have

E
[
W TS (T − t,yt)

∣∣Ft−1

]
= (T − t)× E

[
max
a

µa(θa)
∣∣∣Ft−1

]
(16)

= (T − t)× Eθ∼P(yt−1)

[
max
a

µa(θa)
]

= W TS (T − t,yt−1) . (17)

We further observe that, given ω, the future belief yt(a1:t, ω) depends only on how many times each
arm has been pulled, irrespective of the sequence of the pulls, and hence, the number of possible
future beliefs is O(TK), not O(KT ). Given the above observations, we can solve the inner problem
within O(KTK) computations by dynamic programming (i.e., by finding a best action at each future
belief while iterating over the beliefs in an appropriate order). See §B.2 for details.

4 Analysis

Remark 3 (Single period optimality). When T = 1, all πIRS.FH, πIRS.V-ZERO, and πIRS.V-EMAX take the
optimal action that is pulling the myopically best arm a∗ = argmaxa E[µa(θa)].
Proposition 1 (Asymptotic behavior). Assume that µi(θi) 6= µj(θj) almost surely for any two
distinct arms i 6= j. As T ↗∞, the distribution of IRS.FH’s and IRS.V-ZERO’s action2 converge to
that of Thompson sampling: for all a ∈ A,

lim
T→∞

P [IRS.FH(T,y) = a] = lim
T→∞

P [IRS.V-ZERO(T,y) = a] = P [TS(y) = a] . (18)

TS(y), IRS.FH(T,y) and IRS.V-ZERO(T,y) denote the action taken by policies πTS, πIRS.FH and
πIRS.V-ZERO, repsectively, when the remaining time is T and the prior belief is y. These are random
variables, since each of these policies uses a randomly sampled outcome ω̃ on its own.

Remark 3 and Proposition 1 state that IRS.FH and IRS.V-ZERO behave like TS during the initial
decision epochs, gradually shift toward the myopic scheme and end up with optimal decision; in
contrast, TS will continue to explore throughout. The transition from exploration to exploitation
under these IRS policies occurs smoothly, without relying on an auxiliary control parameter. While
maintaining their recursive structure, IRS policies take into account the horizon T , and naturally
balance exploitation and exploration.

2 For IRS.V-ZERO, we assume a particular selection rule such that ã∗ = argmaxa ñ
∗
a.
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Theorem 2 (Monotonicity in performance bounds). IRS.FH and IRS.V-ZERO monotonically improve
the performance bound: for any T and y,

W TS(T,y) ≥W IRS.FH(T,y) ≥W IRS.V-ZERO(T,y). (19)

Note that W TS(T,y) = Eθ∼P(y) [T ×maxa µa(θa)] is the conventional benchmark.

In addition, we have W IRS.V-EMAX ≥ W ideal since W ideal is the lowest attainable upper bound
(Theorem 1). Empirically, we also observe W IRS.V-ZERO ≥W IRS.V-EMAX.

Theorem 3 (Suboptimality gap). In the Beta-Bernoulli MAB, for any T and y,

W TS(T,y)− V (πTS, T,y) ≤ 3K + 2
√

log T × 2
√
KT, (20)

W IRS.FH(T,y)− V (πIRS.FH, T,y) ≤ 3K + 2
√

log T ×
(

2
√
KT − 1

3

√
T/K

)
, (21)

W IRS.V-ZERO(T,y)− V (πIRS.V-ZERO, T,y) ≤ 2K +
√

log T ×
(

2
√
KT − 1

3

√
T/K

)
. (22)

We do not have a theoretical guarantee for monotonicity in the actual performance V (πz, T,y)
among IRS policies. Instead, Theorem 3 indirectly shows the improvements in suboptmality gap,
W z(T,y)−V (πz, T,y): although all the bounds have the same asymptotic order ofO(

√
KT log T ),

the IRS policies improve the leading coefficient or the additional term.

Theorem 2 and 3 highlight that a better choice of penalty function zt leads to a tighter performance
bound W z and a better performing policy πz . Recall that the penalties are designed to penalize the
gain of having additional future information. While all IRS algorithms are basically optimistic in a
sense that the DM makes a decision believing that the informed outcome (ω or ω̃) will be realized,
a better penalty function prevents the DM from picking up an action that is overly optimized to a
particular future realization.

5 Numerical Experiment

We visualize the effectiveness of IRS policies and performance bounds in case of Gaussian MAB
with five arms (K = 5) with different noise variances. More specifically, each arm a ∈ A has
the unknown mean reward θa ∼ N (0, 12) and yields the stochastic rewards Ra,n ∼ N (θa, σ

2
a)

where σ1 = 0.1, σ2 = 0.4, σ3 = 1.0, σ4 = 4.0 and σ5 = 10.0. Our experiment includes the
state-of-the-art algorithms that are particularly suitable in a Bayesian framework: Bayesian upper
confidence bound [14] (BAYES-UCB, with a quantile of 1− 1

t ), information directed sampling [20]
(IDS), and optimistic Gittins index [9] (OGI, one-step look ahead approximation with a discount
factor γt = 1− 1

t ). In the simulation, we randomly generate a set of outcomes ω(1), . . . , ω(S) and
measure the performance of each policy π, V (π, T,y), and the performance bounds, W z(T,y), via
sample average approximation across these sampled outcomes (S = 20, 000).

Figure 1 plots the regret of policies (solid lines, W TS(T,y) − V (π, T,y)) and the regret bounds
(dashed lines,W TS(T,y)−W z(T,y)) that are measured at the different values of T = 5, 10, . . . , 500.
Our regret measure W TS−V (π) = E

[∑T
t=1 maxa µa(θa)− µaπt (θaπt )

]
is equivalent to the conven-

tional Bayesian regret [19], and the measure W TS −W z provides the lower bound on the achievable
regret since W TS − V (π) ≥W TS −W z for any policy π ∈ ΠF due to the weak duality. Despite the
fact that we cannot compute the Bayesian optimal policy directly, we can infer where its regret curve
is located in the shaded region of the plot.

Note that lower regret curves are better, and higher bound curves are better. As we incorporate
more complicated IRS algorithm from TS to IRS.V-ZERO, we observe a clear improvement in both
performances and bounds, as predicted in Theorem 2 and 3. In this particular example, it is crucial to
incorporate how much we can learn about each of the arms during the remaining time periods, which
heavily depends on the noise level σa and time horizon T . Accordingly, IRS policies outperform to
the others, since ours more explicitly incorporate the exploitation-exploration trade-off.
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Figure 1: Regret plot for Gaussian MAB with different noise variances. The solid lines represent
the (Bayesian) regret of policies, W TS(T,y) − V (π, T,y), and the dashed lines represent the
regret bounds that IRS algorithms produce, W TS(T,y)−W z(T,y). The lowest achievable regret
(W TS(T,y) − V ∗(T,y)) should be within the shaded area. The times in the legend represent the
average length of time required to simulate each policy for a single problem instance with T = 500.

6 Discussion

We have developed a unified framework providing a principled method of improving TS that does not
require any tuning or additional parameters. Despite the fact that this paper focuses on a finite-horizon
MAB with independent arms, the general idea of information relaxation sampling is not restricted to
this setting: we briefly illustrate how to extend the framework to a broader class of problems.

MAB with unknown time horizon. The framework (penalties, policies, and upper bounds) can
naturally incorporate the unknown T within the Bayesian setting: i.e., the horizon T is also a random
variable whose prior distribution is known. As a simple case, if T is independent of the DM’s actions,
we can reformulate the objective function of the inner problem as

∑∞
t=1 γt(rt(a1:t, ω)− zt(a1:t, ω))

where the discount factor γt , P[T ≥ t] is the survival probability, and rt(·) and zt(·) are the reward
and penalty terms used in the paper. Alternatively, we can treat the random variable T like the random
reward realizations – sample T from its prior distribution while a penalty function (additionally)
penalizes for the gain from knowing T (one can imagine that the outcome ω now includes the
realization of T ). Structural results such as weak duality and strong duality will continue to hold.

MAB in more complicated settings. Consider the following examples: (i) A finite-horizon MAB
with correlated arms (e.g., Ra,n ∼ N (x>a θ, σ

2
a) where θ ∈ Rd is shared across the arms, and

xa ∈ Rd is an arm’s feature vector): IRS.V-ZERO can be immediately implemented by adopting
the DP algorithm discussed in §B.2. (ii) MAB with the delayed reward realization: IRS.FH can be
immediately implemented by simulating the DM’s learning process in the presence of delay. (iii)
MAB with a budget constraint (in which each arm consumes a certain amount of budget and the
DM wants to maximize the total reward within a limited budget. See [8]): all IRS algorithms can be
implemented by solving a budget-constrained optimization problem instead of a horizon-constrained
optimization problem.

In these extensions, we can obtain not only the online decision making policies but also their
performance bounds as in this paper. Generally speaking, our framework provides a systemic
way of improving TS by taking into account the exploitation-exploration trade-off more carefully,
particularly in the presence of some constraint that incurs incomplete learning. The main challenge
would be to design a suitable penalty function that is tractable yet captures the problem-specific
exploration-exploitation trade-off precisely.
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