
We appreciate the careful reviews!1

Reviewer 1: (1) “Can this framework get rid of the knowledge of T ?” Some information about T is necessary, since2

the time horizon is an important ingredient in optimally balancing exploration and exploitation. That said, precise3

knowledge of T is not necessary. The framework (penalties, policies, and upper bounds) can naturally incorporate4

the unknown T within the Bayesian setting: i.e., the horizon T is also a random variable whose prior distribution is5

known. As a simple case, if T is independent of the DM’s actions, we can reformulate the objective function of the inner6

problem as
∑∞

t=1 γt(rt(a1:t;ω)− zt(a1:t;ω)) where the discount factor γt , P[T ≥ t] is the survivor probability, and7

rt(·) and zt(·) are the reward and penalty terms used in the paper. Alternatively, we can treat the random variable T like8

the random reward realizations – sample T from its prior distribution while a penalty function (additionally) penalizes9

for the gain from knowing T (you can imagine that the outcome ω now includes the realization of T ). Structural results10

such as weak duality and strong duality will continue to hold.11

(2) “In most cases, IRS has computational complexity that is linear (or even polynomial) in T for each round.” To12

be fair, the computational complexity of IRS.FH is independent of T (like TS). Moreover, we can construct a dual13

feasible penalty function that mixes IRS.FH and IRS.V-ZERO, which induces an algorithm whose complexity is14

O
(
Kmin{T, T0}2

)
for some predefined constant T0 (in the inner problem, IRS.V-ZERO-like penalties are applied15

for the initial bT0/Kc pulls and then IRS.FH-like penalties are applied for the later pulls). Such a practical variant16

has performance that does not scale with T beyond T0. In our experiments, this variant works well even for moderate17

values of T0. Other heuristic variations of IRS policies with bounded T dependence are also possible.18

(3) “Any theoretical results for IRS.V-EMAX?” We have the additional result that W IRS.V-EMAX(T,y) ≤19

WTS(T,y), this could be added to Theorem 2. We don’t have a suboptimality analysis for IRS.V-EMAX yet.20

Reviewer 2: Comparison with information-directed sampling (IDS). It is also remarkable to us that IDS performs21

well without the knowledge of T . The IRS policies outperform when the finite horizon creates a considerable tension in22

the exploitation-exploration trade-off. As illustrated in the numerical experiments, this would be the case when the23

arms are dissimilar and the time horizon is short relative to the number of arms.24

We believe that our algorithms have other advantages over IDS. First, IDS requires a significant amount of work25

that is specific to the application; e.g., it requires to compute the expected change in entropy, which is typically26

obtained by a numerical integration after doing some distribution-specific reformulation. For example, if some arms27

yield normally-distributed rewards and the others yield Bernoulli-distributed rewards, implementing IDS will be very28

challenging. Moreover, IDS’s computational complexity is O(K2) per decision, whereas IRS.FH and IRS.V-ZERO are29

linear in K. Finally, this framework can naturally deal with other constraints apart from the time-horizon one; see the30

answer for Reviewer 3 below.31

Reviewer 3: Additional discussion on our contributions. Respectfully, we believe that our generalization of TS32

to finite-horizon problems is novel and has not appeared in the literature. A common heuristic for the finite-horizon33

setting would be posterior reshaping, mentioned in Chapelle and Li (2011), which reduces the variance of the posterior34

distribution with an ad hoc parameter. Another relevant work is Russo, Tse and Van Roy (2017), in which the authors35

propose satisficing Thompson sampling for the discounted infinite-horizon setting, which also introduces an auxiliary36

parameter to control the degree of exploitation explicitly. In contrast to these heuristic proposals, this paper provides a37

principled method that does not require any tuning or additional parameters, and suggests a unified framework that38

includes TS and the Bayesian optimal policy as special cases. Also note that the decision making procedure of every39

IRS policy is recursive like TS: i.e., the decision at a certain moment depends only on the posterior distribution and the40

remaining horizon at that moment.41

We absolutely agree with the fact that the stochastic MAB with independent arms has already been studied extensively.42

That said, to the extent that this problem is practically interesting, we provide methods that are competitive with43

commonly employed solution methods such as TS. Moreover, even though this paper focuses on this simplest setting,44

our framework applies for more complicated settings. Consider the following examples: (a) Correlated arms in a45

finite-horizon setting (e.g., Ra,n ∼ N (x>
a θ, σ

2) where θ is shared across the arms): IRS.V-ZERO can be immediately46

implemented by adopting the DP algorithm discussed in §B.2. (b) MAB with the delayed reward realization: IRS.FH47

can be immediately implemented by simulating the DM’s learning process in the presence of delay. (c) MAB with a48

budget constraint (in which each arm consumes a certain amount of budget and the DM wants to maximize the total49

reward within a limited budget): all IRS algorithms can be implemented by solving a budget-constrained optimization50

problem instead of a horizon-constrained optimization problem. In these extensions, we obtain not only the online51

decision making policies but also their performance bounds as in this paper. Generally speaking, our framework52

provides a systemic way of improving TS by taking into account the exploitation-exploration trade-off more carefully,53

particularly in the presence of some constraint that incurs incomplete learning. We believe that this feature is novel in54

the literature and also very crucial in practice.55


