Which Algorithmic Choices Matter at Which Batch
Sizes? Insights From a Noisy Quadratic Model

Guodong Zhang'23* Lala Li3, Zachary Nado®, James Martens*,
Sushant Sachdeva', George E. Dahl®, Christopher J. Shallue®, Roger Grosse' 2
University of Toronto, 2Vector Institute, *Google Research, Brain Team, *DeepMind

Abstract

Increasing the batch size is a popular way to speed up neural network training,
but beyond some critical batch size, larger batch sizes yield diminishing returns.
In this work, we study how the critical batch size changes based on properties of
the optimization algorithm, including acceleration, preconditioning and averaging,
through two different lenses: large scale experiments, and analysis of a simple
noisy quadratic model (NQM). We experimentally demonstrate that optimization
algorithms that employ preconditioning, specifically Adam and K-FAC, result in
much larger critical batch sizes than stochastic gradient descent with momentum.
We also demonstrate that the NQM captures many of the essential features of
real neural network training, despite being drastically simpler to work with. The
NQM predicts our results with preconditioned optimizers and exponential moving
average, previous results with accelerated gradient descent, and other results around
optimal learning rates and large batch training, making it a useful tool to generate
testable predictions about neural network optimization.

1 Introduction

Increasing the batch size is one of the most appealing ways to accelerate neural network training
on data parallel hardware. Larger batch sizes yield better gradient estimates and, up to a point,
reduce the number of steps required for training, which reduces the training time. The importance of
understanding the benefits of modern parallel hardware has motivated a lot of recent work on training
neural networks with larger batch sizes [Goyal et al., 2017, Osawa et al., 2018, McCandlish et al.,
2018, Shallue et al., 2018]. To date, the most comprehensive empirical study of the effects of batch
size on neural network training is Shallue et al. [2018], who confirmed that increasing the batch size
initially achieves perfect scaling (i.e. doubling the batch size halves the number of steps needed) up
to a problem-dependent critical batch size, beyond which it yields diminishing returns [Balles et al.,
2017, Goyal et al., 2017, Jastrzgbski et al., 2018, McCandlish et al., 2018]. Shallue et al. [2018] also
provided experimental evidence that the critical batch size depends on the optimization algorithm,
the network architecture, and the data set. However, their experiments only covered plain SGD,
SGD with (heavy-ball) momentum, and SGD with Nesterov momentum, leaving open the enticing
possibility that other optimizers might extend perfect scaling to even larger batch sizes.

Empirical scaling curves like those in Shallue et al. [2018] are essential for understanding the effects
of batch size, but generating such curves, even for a single optimizer on a single task, can be very
expensive. On the other hand, existing theoretical analyses that attempt to analytically derive critical
batch sizes (e.g. Ma et al. [2018], Yin et al. [2018], Jain et al. [2018]) do not answer our questions
about which optimizers scale the best with batch size. They tend to make strong assumptions, produce
parameter-dependent results that are difficult to apply, or are restricted to plain SGD. It would be

*Work done as part of the Google Student Researcher Program. Email: gdzhang@cs.toronto.edu

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

ideal to find a middle ground between a purely empirical investigation and theoretical analysis by
building a model of neural network optimization problems that captures the essential behavior we
see in real neural networks, while still being easy to understand. Additionally, we need to study
optimizers beyond momentum SGD since they might provide us an approach to exploit speedups
from the very largest batch sizes. In this work, we make the following contributions:

1. We show that a simple noisy quadratic model (NQM) is remarkably consistent with the batch
size effects observed in real neural networks, while allowing us to run experiments in seconds,
making it a great tool to generate testable predictions about neural network optimization.

2. We show that the NQM successfully predicts that momentum should speed up training relative
to plain SGD at larger batch sizes, but have no benefit at small batch sizes.

3. Through large scale experiments with Adam [Kingma and Ba, 2014] and K-FAC [Martens and
Grosse, 2015], we confirm that, as predicted by the NQM, preconditioning extends perfect batch
size scaling to larger batch sizes than are possible with momentum SGD alone. Furthermore,
unlike momentum, preconditioning can help at small batch sizes as well.

4. Lastly, we show that, as predicted by the NQM, exponential moving averages reduce the number
of steps required for a specific batch size and can achieve the same acceleration with smaller
batch sizes, thereby saving computation.

2 Related Work

In a classic paper, Bottou and Bousquet [2008] studied the asymptotics of stochastic optimization
algorithms and found SGD to be competitive with fancier approaches. They showed that stochastic
optimization involves fundamentally different tradeoffs from full-batch optimization. More recently,
several studies have investigated the relationship between batch size and training time for neural
networks. Chen et al. [2018] studied the effect of network width on the critical batch size, and showed
experimentally that it depends on both the data set and network architecture. Golmant et al. [2018]
studied how various heuristics for adjusting the learning rate as a function of batch size affect the
relationship between batch size and training time. Shallue et al. [2018] conducted a comprehensive
empirical study on the relationship between batch size and training time with different neural network
architectures and data sets using plain SGD, heavy-ball momentum, and Nesterov momentum. Finally,
McCandlish et al. [2018] used the average gradient noise over training to predict the critical batch
size. All of these studies described a basic relationship between batch size and training steps to
a fixed error goal, which is comprised of three regions: perfect scaling initially, then diminishing
returns, and finally no benefit for all batch sizes greater than the critical batch size.

Other studies have attempted to characterize the critical batch size analytically in stochastic optimiza-
tion. Under varying assumptions, Ma et al. [2018], Yin et al. [2018], Jain et al. [2018] all derived
analytical notions of critical batch size, but to our knowledge, all for SGD.

Additionally, previous studies have shown that SGD and momentum SGD are equivalent for small
learning rates (after appropriate rescaling), both for the continuous limit [Leen and Orr, 1994] and
discrete settings Yuan et al. [2016]. However, they do not explain why momentum SGD (including
heavy-ball and Nesterov momentum) sometimes outperforms plain SGD in mini-batch training (as
observed by Kidambi et al. [2018] and Shallue et al. [2018]). Concurrently, Smith et al. [2019]
showed that momentum outperforms plain SGD at large batch sizes.

Finally, there are a few works studying average of the iterates, rather than working with the last iterate.
This is a classical idea in optimization, where it is known to provide improved convergence [Polyak
and Juditsky, 1992, Bach and Moulines, 2013, Dieuleveut and Bach, 2016]. However, most of
them focused on tail averaging, which you have to decide ahead of time the iteration to start
accumulating the running averaging. More commonly (especially in deep learning), exponential
moving average [Martens, 2014] is preferred for its simplicity and ability to handle non-convex
landscape. However, no analysis was done especially when mini-batch is used.

3 Analysis of the Noisy Quadratic Model (NQM)

In this section, we work with a noisy quadratic model (NQM), a stochastic optimization problem
whose dynamics can be simulated analytically, in order to reason about various phenomena en-

countered in training neural networks. In this highly simplified model, we first assume the loss
function being optimized is a convex quadratic, with noisy observations of the gradient. For analytic
tractability, we further assume the noise covariance is codiagonalizable with the Hessian. Because
we are not interested in modeling overfitting effects, we focus on the online training setting, where
the observations are drawn i.i.d. in every training iteration. Under these assumptions, we derive an
analytic expression for the risk after any number of steps of SGD with a fixed step size, as well as a
dynamic programming method to compute the risk following a given step size schedule.

Convex quadratics may appear an odd model for a complicated nonconvex optimization landscape.
However, one obtains a convex quadratic objective by linearizing the network’s function around a
given weight vector and taking the second-order Taylor approximation to the loss function (assuming
it is smooth and convex). Indeed, recent theoretical works [Jacot et al., 2018, Du et al., 2019, Zhang
et al., 2019a] show that for wide enough networks, the weights stay close enough to the initialization
for the linearized approximation to remain accurate. Empirically, linearized approximations closely
match a variety of training phenomena for large but realistic networks [Lee et al., 2019].

3.1 Problem Setup

1.0

We now introduce the noisy quadratic model [Schaul et al.,
2013, Martens, 2014, Wu et al., 2018], where the true function 08
being optimized is a convex quadratic. Because we analyze
rotation-invariant and translation-invariant optimizers such as

— lower curvature (0.01)
-- decay at step 100

— high curvature (0.5)
-- decay at step 100

0.6|

Risk

SGD and heavy-ball momentum, we assume without loss of 04

generality that the quadratic form is diagonal, and that the 02

optimum is at the origin. Hence, our exact cost function decom- N

poses as a sum of scalar quadratic functions for each coordinate: 07650 0 130200 250 300 350 400

Steps

1 1 d d Figure 1: Cartoon of the evolution of
_ AT _ 4t 02 A) risk for different coordinates with and

£(0) = 20 HO = 2 Zl hit; Zl 0(0:)- O without learning rate decay.

1= 1=

Without loss of generality, we assume hy > ho > ... > hgy. We consider a single gradient query
to have the form g(@) = HO + e where E[e] = 0 and Cov(e) = C. To reduce the variance
of gradient estimation, we can average over multiple independent queries, which corresponds to
"mini-batch training" in neural network optimization. We denote the averaged gradient as g (6) and

the covariance Cov(gp(0)) = C/B, where B is the number of queries (mini-batch size).

For analytical tractability, we make the nontrivial assumption that H and C are codiagonalizable.
(Since H is diagonal, this implies that C = diag(cy, ..., cq).) See Section 3.5 for justification of this
assumption. Under gradient descent with fixed step size «, each dimension evolves independently as

91(t+1) = (1—ahi)9i(t)+a\/ci/Bei, (2)
where « is the learning rate and ¢; is zero-mean unit variance iid noise. By treating 6; as a random

variable, we immediately obtain the dynamics of its mean and variance.
2

E[0;(t+1)] = (1 — ah))E [6:;(1)], V[0:(t + 1)] = (1 — ahs)2V [0:(1)] + O‘Bci. 3)
Based on eqn. (3), the expected risk after ¢ steps in a given dimension ¢ is
) 1 2t) 1 2t ac;
B 0)] = (L ah)* BIGOD) + (1 (- ah)*) 5o s @
convergence rate S————

steady state risk

where we have assumed that ah; < 2. (Note that this can be seen as a special case of the convergence
result derived for convex quadratics in Martens [2014].)

Remarkably, each dimension converges exponentially to a steady state risk. Unfortunately, there is
a trade-off in the sense that higher learning rates (up to 1/h;) give faster convergence to the steady
state risk, but also produce higher values of the steady-state risk. The steady state risk also decreases
proportionally to increases in batch size; this is important to note because in the following subsections,
we will show that traditional acceleration techniques (e.g., momentum and preconditioning) help
improve the convergence rate at the expense of increasing the steady state risk. Therefore, the NQM
implies that momentum and preconditioning would benefit more from large-batch training compared
to plain SGD, as shown in later sections.

3.2 Momentum Accelerates Training at Large Batch Sizes

Applied to the same noisy quadratic model as before, the update equations for momentum SGD are:

We show in the following theorem (see Appendix C for proof) that momentum SGD performs

similarly to plain SGD in the regime of small batch sizes but helps in the large-batch regime, which
can be viewed as a near-deterministic optimization problem.

Theorem 1. Given a dimension index i, and 0 < f < 1 with 8 # (1 — \/ahi)Q, the expected risk at
time t associated with that dimension satisfies the upper bound

(P —) — Bt — b))\ (14 B)ac;

(0.0 < AN B0+ g

where r1 and ro (With r1 > 13) are the two roots of the quadratic equation x> — (1—ah;+B)z+5 = 0.

&)

(6)

As with plain SGD (c.f. eqn. (4)), the loss associated with each dimension can be expressed as the
sum of two terms, where the first one decays exponentially and corresponds to the behavior of the
deterministic version of the algorithm, and the second remains constant.

Following the existing treatment of the deterministic version of the algorithm [Chiang, 1974, Qian,
1999, Yang et al., 2018, Goh, 2017], we divide our analysis two cases: overdamping and underdamp-
ing. In the case of overdamping, where 3 < (1 — /ah;)?, both roots 71 and r are real and therefore
the convergence rate is determined by the larger one (i.e. r1), which has the value

1—ah;+ B+ /(1 - B)2—2(1+ B)ah; +a2h? o
- 2

With a fixed learning rate, the steady state risk will be constant, and the best achievable expected risk
will be lower bounded by it. Thus, to achieve a certain target loss we must either drive the learning
rate down, or the batch size up. Assuming a small batch size and a low target risk, we are forced to
pick a small learning rate, in which case one can show? that 7; ~ 1 — @/1—g. In Figure 2 we plot the
convergence rate as a function of 3, and we indeed observe that the convergence rate closely matches
1 — ah/1_g, assuming a relative small learning rate. We further note that the convergence rate and
steady state risk of eqn. (6) are the same as the ones in plain SGD (eqn. (4)), except that they use an
"effective learning rate" of @/1—g. To help validate these predictions, in Appendix E.3 we provide a
comparison of momentum SGD with plain SGD using the effective learning rate.

In the case of underdamping where 3 > (1 — v/ah;)?, 100
both r; and ry will be complex and have norm /3. We oel| - optimal1-5
note that the optimal 3 should be equal to or smaller than =
(1 — /ahg)?, since otherwise all dimensions are under- =
damped, and we can easily improve the convergence rate 104
and steady state risk by reducing 5.

1

(-
1-(1—42)

underdamping

: cverdampinb‘\

02} — 55K of SGD with Momentum

Next we observe that the convergence of the total loss 1
will eventually be dominated by the slowest converging : : :

. . . 103t "7 SSK of SGD using effective LR |
dimension (which corresponds to the smallest curvature gL optmel 120 \
hq), and this will be in the overdamping regime as argued o s o
aboye. By our analysis of the overdamplpg case, We can pjoyre 2: Convergence rate and steady state
achieve the same convergence rate for this dimension by sk (SSK) as a function of momentum for
simply replacing the learning rate « in the bound for plain 4 single dimension with ah = 0.0005 and
SGD (eqn. (4)) with the effective learning rate «/1-3. batch size B = 1.

steady state risk (SSK)

So while momentum gives no long-term training acceleration for very low fixed learning rates (which
we are forced to use when the batch size is small), we note that it can help in large-batch training.
With 5 > 0, the steady state risk roughly amplifies by a factor of 1/1—3, and we note that steady state
risk also decreases proportionally to increases in batch size. Therefore, we expect momentum SGD
to exhibit perfect scaling up to larger batch sizes than plain SGD.

To see this, note that the term in the square root of eqn. (7) for r; can be written as (1 — 3 — (1+8)ahi/1_g) +
O(a?h?). Dropping the O(a?h?) term and simplifying gives the claimed expression for r;.

3.3 Preconditioning Further Extends Perfect Scaling to Larger Batch Sizes

Many optimizers, such as Adam and K-FAC, can be viewed as preconditioned gradient descent
methods. In each update, the gradient is rescaled by a PSD matrix P~!, called the preconditioner.

Ot +1)=0(t) —aP ' [HO + €. ®)
In lieu of trying to construct noisy quadratic analogues of particular optimizers, we analyze precondi-

tioners of the form P = HP with 0 < p < 1. Note that P remains fixed throughout training since the
Hessian H is constant in the NQM. We can recover standard SGD by setting p = 0.

Conveniently, for our NQM, the dynamics of preconditioned SGD are equivalent to the SGD dynamics
in an NQM with Hessian H = P~Y/2HP~'/2 and gradient covariance C = P~1/2CP~1/2,
Hence, the dynamics can be simulated using eqn. (4), exactly like the non-preconditioned case. We
immediately obtain the following bound on the risk:

p
] < ah{ PV 06, (_oah 9
Z L6 +ZZB(—ah!™?) ©

To qualitatively understand the effect of preconditioning, first consider the first term in eqn. (8).
The convergence of this term resembles that of gradient descent on a deterministic quadratic, which
(with optimal a = 2/h) converges exponentially at a rate of approximately 2/%, where & = hy/hq
is the condition number of the transformed problem. Since & = x'~P, this implies a factor of x?
improvement in the rate of convergence. Hence, for near-deterministic objectives where the first term
dominates, values of p closer to 1 correspond to better preconditioners, and result in much faster
convergence. Unfortunately, there is no free lunch, as larger values of p will also increase the second
term (steady state risk). Assuming an ill-conditioned loss surface (x > 1), the steady state risk of
each dimension becomes

L OLCILh p C; (h,‘,/hl)ip
2B 92— Ozh(1 p) 2Bh1 1 — (hi/hl)(l_p)7

which is a monotonically increasing function with respect to p. Even without this amplification effect,
the steady state risk will eventually become the limiting factor in the minimization of the expected
risk. One way to reduce the steady state risk, apart from using Polyak averaging [Polyak and Juditsky,
1992] or decreasing the learning rate (which will harm the rate of convergence), is to increase the
batch size. This suggests that the benefits of using stronger preconditioners will be more clearly
observed for larger batch sizes, which is an an effect that we empirically demonstrate in later sections.

(10)

3.4 Exponential Moving Average Reduces Steady State Risk

Following the same procedure as previous two sections, we analyze exponential moving averages

(EMA) on our NQM. The update rule of EMA can be written as
0(t+1)=0(t) —a[HO + €,
O(t+1)=~0(t) + (1 —)0(t +1).

The averaged iterate 0 is used at test time. The computational overhead is minimal (storing an

additional copy of the parameters, plus some cheap arithmetic operations). We now show that EMA
outperforms plain SGD by reducing the steady state risk term.

(1)

Theorem 2. Given a dimension index i, and 0 < v < 1, the expected risk at time t associated with
that dimension satisfies the upper bound
2

E[1d0)] < (“5“ i) ol —ah)(ri - DY ko))

L — 7Ty

ac; (I =141 —ahy)y)
2B(2 — ahy) (1+7)(1 = (1 — ahy)y)’
where 1 = 1 — ah; and ro = 7.

(12)
+

By properly choosing an averaging coefficient 7y < 1 — achg such that 71 > 79, one can show that
EMA reduces the steady state risk without sacrificing the convergence rate. To see this, we note
that the red part of eqn. (12) is strictly less than 1 given the fact 1 — ach; < 1 while the other part is
exactly the same as the steady state risk of plain SGD.

Q- BS 16

©

&5 BS 32
BS 64

BS 128
BS 256
BS 512
BS 1024

— pow0 p—

— pow0.25 —

& — pow 0.5 = L[| — powos
— pow 0.75 2°H — pow0.75 N

2°H .o lower bound 2°H == lower bound i 2°

pow 0 e S
pow 0.25 e g

BS 2048

BS 4096

2 -9

273 2 28 2 27 2% 2 v g 27 2% 27 2% 20 27 2% g’ g g 2 10 20 30 20 50
Batch size Batch size Pieces

(a) Momentum and Preconditioning (b) Fixed LR vs. Schedules (c) Optimized LR Schedules

Figure 3: (a) Effects of momentum and preconditioning. Steps required to reach target loss as a function of
batch size under different preconditioning power. Solid lines are momentum SGD while dashed lines are plain
SGD. The black dashed line is the information theoretic lower bound. (b) Effect of learning rate decay. The
solid lines use the optimized piecewise constant scheme, which are shown in (¢) for power 0. The dashed curves
in (b) are plain SGD for comparison. We observe that learning rate schedules close most of the gap between the
fixed learning rate performance and the information theoretic lower bound.

3.5 Choice of H and C

We’ve found that the qualitative behavior of optimizers in our NQM depends on the choices of H
and C. Therefore, we choose matrices motivated by theoretical and empirical considerations about
neural net training. First, we set the diagonal entries of H to be {%}le for some integer d, giving
a condition number of d. This closely matches the estimated eigenspectrum of the Hessian of a
convolutional network (see Figure 9 and Appendix E.4), and is also consistent with recent work
finding heavy tailed eigenspectra of neural network Hessians [Ubaru et al., 2017, Ghorbani et al.,
2019]. We choose d = 10*, which approximately matches the condition number of the K-FAC
Hessian approximation for ResNet8. (Qualitative behaviors were consistent for a wide range of d.)

We also set C = H (a nontrivial assumption). This was motivated by theoretical arguments that,
under the assumption that the implicit conditional distribution over the network’s output is close to
the conditional distribution of targets from the training distribution, the Hessian closely matches the
gradient covariance in neural network training [Martens, 2014]. Empirically, this relationship appears
to hold tightly for a convolutional network and moderately well for a transformer (see Appendix E.2).

3.6 Information Theoretic Lower Bound

Since our NQM assumes the infinite data (online optimization) setting, it’s instructive to compare
the performance of optimizers against an information theoretic lower bound. Specifically, under the
assumption that H = C, the NQM is equivalent to maximum likelihood estimation of the mean
vector for a multivariate Gaussian distribution with covariance H~!. Hence, the risk obtained by any
optimizer can be bounded below by the risk of the maximum likelihood estimator for the Gaussian,
which is d/2N, where d is the dimension and N is the total number of training examples visited. We
indicate this bound with a dashed black line in our plots.

3.7 Noisy Quadratic Experiments

In this section, we simulate noisy quadratic optimization using the closed-form dynamics. Our aim is
to formulate hypotheses for how different optimizers would behave for neural network optimization.
Our main metric is the number of steps required to achieve a target risk. For efficiency, rather than
explicitly representing all the eigenvalues of H, we quantize them into 100 bins and count the number
of eigenvalues in each bin. Unless otherwise specified, we initialize 6 as A/ (0, I) and use a target
risk of 0.01. (The results don’t seem to be sensitive to either the initial variance or the target risk;
some results with varying target risk thresholds are shown in Appendix E.5).

3.7.1 Effect of Momentum, Preconditioning and Exponential Moving Average

We first experiment with momentum and varying preconditioner powers on our NQM. We treat both
the (fixed) learning rate v and momentum decay parameter (3 as hyperparameters, which we tune
using a fine-grained grid search.

Consistent with the empirical results of Shallue et al. [2018], each optimizer shows two distinct
regimes: a small-batch (stochastic) regime with perfect linear scaling, and a large-batch (deterministic)

Data Set Size Model Remarks LR
MNIST 55,000

Same as Shallue et al. [2018] except

EMNIST _ 55.000 Simple CNN without dropout regularization. Constant
ResNet8 without BN Same as Shallue et al. [2018]. Constant

CIFARIO 45,000 ResNet32 with BN Ghost batch norm is used. Linear Decay
VGG11 with BN Ghost batch norm is used. Linear Decay

LMIB ~30M Two-layer Transformer ~ Shallow model in Shallue et al. [2018] Constant

Table 1: Data sets and models used in our experiments. See Appendix F.2 for full details.

regime insensitive to batch size. We call the phase transition between these regimes the critical batch
size. Consistent with the analysis of Section 3.2 and the observations of Smith et al. [2018], Shallue
et al. [2018], Kidambi et al. [2018], the performance of momentum-based optimizers matches that of
the plain SGD methods in the small-batch regime, but momentum increases the critical batch size
and gives substantial speedups in the large batch regime. Preconditioning also increases the critical
batch size and gives substantial speedups in the large batch regime, but interestingly, also improves
performance by a small constant factor even for very small batches. Combining momentum with
preconditioning extends both of these trends.

We next experiment with EMA and varying preconditioning pow- 25
ers on our NQM. Following the same procedure as before, we 23«
tune both learning rate o and averaging coefficient y using grid £,
search. As expected, EMA reduces the number of steps required £ 2
especially for plain SGD with preconditioning power 0. Another g

interesting observation is that EMA becomes redundant in the 20| . o bouna -
large batch (near-deterministic) regime since the main effect of FoEmo At e T I
EMA is reducing the steady-state risk, which can also be done by Figure 4: Effects of exponential
increasing the batch size. This implies that EMA would reduce moving average (EMA). Solid lines
the critical batch size and therefore achieve the same amount of ~are SGD with EMA while dashed
acceleration with less computation. lines are plain SGD.

— pow 0
— pow 0.25
— pow 0.5

0

3.7.2 Optimal Learning Rate and Decay Scheme

In the NQM, we can calculate the optimal constant learning rate given a specific batch size. Figure 14
shows the optimal learning rate as a function of batch size for a target risk of 0.01. Notably, the
optimal learning rate of plain (preconditioned) SGD (Figure 14a) scales linearly with batch size
before it hits the critical batch size, matching the scheme used in Goyal et al. [2017]. The linear
scaling also holds for the effective learning rate of momentum SGD. In the small batch regime, the
optimal effective learning rate for momentum SGD matches the optimal plain SGD learning rate,
suggesting that the momentum and learning rate are interchangeable in the small batch regime.

While a fixed learning rate often works well for simple problems, good performance on the ImageNet
benchmark [Russakovsky et al., 2015] requires a carefully tuned schedule. Here we explicitly
optimize a piecewise constant learning rate schedule for SGD (with 50 pieces), in terms of the number
of steps to reach the loss threshold.? In Figure 3b, we show that optimized learning rate schedules
help significantly in the small batch regime, consistent with the analysis in Wu et al. [2018]. We
observe the same linear scaling as with fixed-learning-rate SGD, but with a better constant factor.
In fact, optimized schedules nearly achieve the information theoretic optimum. However, learning
rate schedules do not improve at all over fixed learning rates in the large batch regime. Figure 3c
shows optimized schedules for different batch sizes; interestingly, they maintain a large learning
rate throughout training followed by a roughly exponential decay, consistent with commonly used
neural network training schedules. Additionally, even though the different batch sizes start with the
same learning rate, their final learning rates at the end of training scale linearly with batch size (see
Figure 15 in Appendix E.7).

3For a given schedule and number of time steps, we obtain the exact risk using dynamic programming with
eqn. (3). For stability, the learning rates are constrained to be at most 2/h;. For a fixed number of time steps, we
minimize this risk using BFGS. We determine the optimal number of time steps using binary search.

214 Target Accuracy: 0.992 21 Target Accuracy: 0.920 217 Target Accuracy: 0.800
13p 00 sgd
2 N o1 16
27 . 2R 25 oo
T ,n]] o a
2 ‘\”‘!
o2 \ o2 o2 ©-0 kfac wfo momentum
o2 o © o] ®-e Kfac
1 80 8,5
o 2° . o o
g2 '\ g SSSES 2 a1
o o7 n\‘ — g o 28 oo
2 2 £
& %] @ S i, & 50
25 TTO g 26 (N o 20
2% T T s 2% 5 Ryt Tt 2% 3 5T 3
27 27 20 2 27 2% 27 2% 2 2720 2 2 20 2T 27 2 27 20 20 2 202 2% 2

2 2 2 22
Batch size Batch size Batch size

(a) Simple CNN on MNIST (b) Simple CNN on Fashion MNIST (c¢) ResNet8 on CIFAR10

218 Target Accuracy: 0.910 Pry Target Accuracy: 0.930 Target cross entropy: 3.90

10
23

2 2 2 2 27 20 27 2" 2° 20 2f
Batch size Batch Size

27 2
Batch size

(d) VGG11 on CIFAR10 (e) ResNet32 on CIFAR10 (f) Transformer on LM1B

Figure 5: Empirical relationship between batch size and steps to result. Key observations: 1) momentum
SGD has no benefit over plain SGD at small batch sizes, but extends the perfect scaling to larger batch sizes; 2)
preconditioning also extends perfect scaling to larger batch sizes, i.e. K-FAC > Adam > momentum SGD. This
is most noticeable in the Transformer model; 3) preconditioning (particularly K-FAC) reduces the number of
steps needed to reach the target even for small batch sizes. All of these agree with the predictions by NQM.

4 Neural Network Experiments

We investigated whether the predictions made by the NQM hold in practice by running experiments
with five neural network architectures across three image classification tasks and one language
modeling task (see Table 1). For each model and task, we compared a range of optimizers: SGD,
momentum SGD, Adam (with and without momentum), and K-FAC (with and without momentum).
For K-FAC, preconditioning is applied before momentum. See Appendix F for more details.

The primary quantity we measured is the number of steps required to reach a target accuracy (for
image classification tasks) or cross entropy (for language modeling). Unless otherwise specified, we
measured steps to target on the validation set. We chose the target metric values based on an initial
set of experiments with practical computational budgets. For each model, task, optimizer, and batch
size, we independently tuned the learning rate «, the parameters governing the learning rate schedule
(where applicable), and optimizer-specific metaparameters (see Appendix F.4). We manually chose
the search spaces based on our initial experiments, and we verified after each experiment that the
optimal metaparameter values were far from the search space boundaries. We used quasi-random
search [Bousquet et al., 2017] to tune the metaparameters with fixed budgets of non-divergent* trials
(100 for Simple CNN, ResNet8, and Transformer, and 200 for ResNet32 and VGG11). We chose the
trial that reached the target metric value using the fewest number of steps.

4.1 Critical Batch Size Depends on the Optimizer

Figure 5 shows the relationship between batch size and steps to target for each model, task, and
optimizer. In each case, as the batch size grows, there is an initial period of perfect scaling where
doubling the batch size halves the steps to target, but once the batch size exceeds a problem-dependent
critical batch size, there are rapidly diminishing returns, matching the results of [Goyal et al., 2017,
McCandlish et al., 2018, Shallue et al., 2018]. K-FAC has the largest critical batch size in all
cases, highlighting the usefulness of preconditioning. Momentum SGD extends perfect scaling to
larger batch sizes than plain SGD, but for batch sizes smaller than the plain SGD critical batch size,
momentum SGD requires as many steps as plain SGD to reach the target. This is consistent with
both the empirical results of Shallue et al. [2018] and our NQM simulations. By contrast, Adam and
K-FAC can reduce the number of steps needed to reach the target compared to plain SGD even for the
smallest batch sizes, although neither optimizer does so in all cases. Finally, we see some evidence
that the benefit of momentum diminishes with preconditioning (Figures 5a and 5b), as predicted by
our NQM simulations, although we do not see this in all cases (e.g. Figure 5c¢ and 5f).

*We discarded trials with a divergent training loss, which occurred when the learning rate was too high.

4.2 Exponential Moving Average Improves Convergence with Minimal Computation Cost

To verify the predictions of NQM on
exponential moving average (EMA),
we conducted some experiments on
comparing EMA with plain SGD. We
follow the same protocol of Figure 5
and report the results in Figure 6. As
expected, the results on real neural net-
works closely match our predictions

Target Accuracy: 0.800 212 Target Accuracy: 0.990

a—a sgd
a—a sgd with ema

[RN VIRV
N

Steps to target
Steps to target

N

N

7
2 2 2 1

27 2 2 i T B 27 2 2 2 22
Batch size

2
Batch size

Figure 6: Steps to training accuracy versus batch size. Left:

based on NQM analysis. In particular, p i1 o
> ResNet8 on CIFAR10; Right: Simple CNN on MNIST.
SGD with EMA appears to reach the 8 P

same target with fewer steps than plain SGD at small batch sizes, though the benefit of EMA dimin-
ishes with large batch sizes. Besides, we note that EMA leads to smaller critical batch sizes and
achieves the same acceleration with less computation.

4.3 Optimal Learning Rate

The NQM predicts that the optimal
constant learning rate for plain SGD
(or effective learning rate for momen-
tum SGD) scales linearly with batch / <—
size initially, and then levels off after /‘ e

a certain batch size. Figure 7 shows N s s I ———

the empirical optimal (effective) learn- Batchsize] Batch size
ing rate as a function of batch size for Figure 7: Optimal learning rates for plain SGD and momentum

simple CNN on MNIST and ResNet8 SGD. Left: Simple CNN on MNIST; Right: ResNet8 on CIFAR10

4
s{[ee sod

a-a heavy ball
2

;,-;;';,,, " N

Optimal (effective) LR

Optimal (effective) LR
NNNN Y NN NN NN

NNNNNNG NN N
AR
D\

n
o

Nb b

on CIFARI1O0. For small batch sizes, the optimal learning rate of plain SGD appears to match the
optimal effective learning rate of momentum SGD. However, after a certain batch size, the optimal
learning rate for plain SGD saturates while the optimal effective learning rate of momentum SGD
keeps increasing. Interestingly, plain SGD and momentum SGD appear to deviate at the same batch
size in the optimal effective learning rate and steps to target plots (Figures 5 and 7).

4.4 Steps to Target on the Training Set

Figure 8 shows the empirical rela- . Target Accuracy: 0.830
tionship between batch size and steps S e e
to target, measured on the training :
set, for ResNet8 and ResNet32 on CI-
FAR10. For ResNet8, the curves are
almost identical to those using vali- ,
dation accuracy (Figure 5c), but for B S A A L A A A
ResNe}tS’Z, the gaps between different Figure 8: Steps to training accuracy versus batch size on CIFAR10.
optimizers become much smaller than Left: ResNet8; Right: ResNet32

in Figure Se and the effects of momen- ’ ’

tum and preconditioning appear to become less significant. Nevertheless, the qualitative differences
between optimizers are consistent with the validation set measurements.

216 Target Accuracy: 0.990

5 Conclusion

In this work, we analyzed the interactions between the batch size and the optimization algorithm
from two perspectives: experiments with real neural networks, and a noisy quadratic model with
parameters chosen based on empirical observations about neural networks. Despite its simplicity, the
noisy quadratic model agrees remarkably well with a variety of neural network training phenomena,
including learning rate scaling, critical batch sizes, and the effects of momentum, preconditioning
and averaging. More importantly, the noisy quadratic model allows us to run experiments in seconds,
while it can take weeks, or even months, to conduct careful large-scale experiments with real neural
networks. Therefore, the noisy quadratic model is a convenient and powerful way to quickly formulate
testable predictions about neural network optimization.

Acknowledgements

RG acknowledges support from the CIFAR Canadian AI Chairs program and the Ontario MRIS Early
Researcher Award.

References

Jimmy Ba, Roger Grosse, and James Martens. Distributed second-order optimization using Kronecker-
factored approximations. In International Conference on Learning Representations, 2017.

Francis Bach and Eric Moulines. Non-strongly-convex smooth stochastic approximation with
convergence rate o (1/n). In Advances in neural information processing systems, pages 773-781,
2013.

Juhan Bae, Guodong Zhang, and Roger Grosse. Eigenvalue corrected noisy natural gradient. In
Workshop of Bayesian Deep Learning, Advances in neural information processing systems, 2018.

Lukas Balles, Javier Romero, and Philipp Hennig. Coupling adaptive batch sizes with learning rates.
In Conference on Uncertainty in Artificial Intelligence (UAI) 2017. AUAI Press, 2017.

Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In Advances in neural
information processing systems, pages 161-168, 2008.

Olivier Bousquet, Sylvain Gelly, Karol Kurach, Olivier Teytaud, and Damien Vincent. Critical
hyper-parameters: No random, no cry. arXiv preprint arXiv:1706.03200, 2017.

Lingjiao Chen, Hongyi Wang, Jinman Zhao, Dimitris Papailiopoulos, and Paraschos Koutris. The
effect of network width on the performance of large-batch training. In Advances in Neural
Information Processing Systems, pages 9302-9309, 2018.

A.C. Chiang. Fundamental Methods of Mathematical Economics. International student edition.
McGraw-Hill, 1974. ISBN 9780070107809.

Aymeric Dieuleveut and Francis Bach. Nonparametric stochastic approximation with large step-sizes.
THE ANNALS, 44(4):1363-1399, 2016.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=S1eK3i09YQ.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast
approximate natural gradient descent in a Kronecker-factored eigenbasis. In Advances in Neural
Information Processing Systems, pages 9550-9560, 2018.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
via hessian eigenvalue density. In Proceedings of the 36th International Conference on Machine
Learning, pages 2232-2241, 2019.

Gabriel Goh. Why momentum really works. Distill, 2(4):e6, 2017.

Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir Feinberg, Amir Gholami, Kai Rothauge,
Michael W Mahoney, and Joseph Gonzalez. On the computational inefficiency of large batch sizes
for stochastic gradient descent. arXiv preprint arXiv:1811.12941, 2018.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Priya Goyal, Piotr Dollér, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training
Imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In International Conference on Machine Learning, pages 573-582, 2016.

10

https://openreview.net/forum?id=S1eK3i09YQ
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 770-778, 2016.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: Closing the generaliza-
tion gap in large batch training of neural networks. In Advances in Neural Information Processing
Systems, pages 1731-1741, 2017.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine Learning, pages
448-456, 2015.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems, pages

8571-8580, 2018.

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Parallelizing
stochastic gradient descent for least squares regression: mini-batching, averaging, and model
misspecification. Journal of Machine Learning Research, 18(223):1-42, 2018.

Stanistaw Jastrzgbski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio,
and Amos Storkey. Three factors influencing minima in SGD. In International Conference on
Artificial Neural Networks, 2018.

Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham Kakade. On the insufficiency of existing
momentum schemes for stochastic optimization. In 2018 Information Theory and Applications
Workshop (ITA), pages 1-9. IEEE, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2014.

Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Jascha Sohl-Dickstein, and Jeffrey

Pennington. Wide neural networks of any depth evolve as linear models under gradient descent.
arXiv preprint arXiv:1902.06720, 2019.

Todd K. Leen and Genevieve B. Orr. Optimal stochastic search and adaptive momentum. In
J. D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing
Systems 6, pages 477-484. Morgan-Kaufmann, 1994. URL http://papers.nips.cc/paper/
772-optimal-stochastic-search-and-adaptive-momentum.pdf.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the
effectiveness of SGD in modern over-parametrized learning. In International Conference on
Machine Learning, pages 3331-3340, 2018.

James Martens. New insights and perspectives on the natural gradient method. arXiv preprint
arXiv:1412.1193, 2014.

James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approximate
curvature. In International Conference on Machine Learning, pages 2408-2417, 2015.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAl Dota Team. An empirical model of
large-batch training. arXiv preprint arXiv:1812.06162, 2018.

Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, and Satoshi Matsuoka.
Second-order optimization method for large mini-batch: Training resnet-50 on imagenet in 35
epochs. arXiv preprint arXiv:1811.12019, 2018.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 30(4):838-855, 1992.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks, 12(1):
145-151, 1999.

11

http://papers.nips.cc/paper/772-optimal-stochastic-search-and-adaptive-momentum.pdf
http://papers.nips.cc/paper/772-optimal-stochastic-search-and-adaptive-momentum.pdf

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. ImageNet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211-252, 2015.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singularity
and beyond. arXiv preprint arXiv:1611.07476, 2016.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In International
Conference on Machine Learning, pages 343-351, 2013.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural computation, 14(7):1723-1738, 2002.

Christopher J Shallue, Jachoon Lee, Joe Antognini, Jascha Sohl-Dickstein, Roy Frostig, and George E
Dahl. Measuring the effects of data parallelism on neural network training. arXiv preprint
arXiv:1811.03600, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t decay the learning rate, increase
the batch size. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=B1Yy1BxCZ.

Samuel L Smith, Erich Elsen, and Soham De. Momentum enables large batch training. In Theoretical
Physics for Deep Learning Workshop, International Conference on Machine Learning., 2019.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2818-2826, 2016.

Shashanka Ubaru, Jie Chen, and Yousef Saad. Fast estimation of tr(f(a)) via stochastic lanczos
quadrature. SIAM Journal on Matrix Analysis and Applications, 38(4):1075-1099, 2017.

Twan van Laarhoven. L2 regularization versus batch and weight normalization. arXiv preprint
arXiv:1706.05350, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998-6008, 2017.

Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. Eigendamage: Structured pruning
in the Kronecker-factored eigenbasis. In Proceedings of the 36th International Conference on
Machine Learning, pages 6566—6575, 2019.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in
stochastic meta-optimization. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=H1MczcgR-.

Lin Yang, Raman Arora, Tuo Zhao, et al. The physical systems behind optimization algorithms. In
Advances in Neural Information Processing Systems, pages 4372-4381, 2018.

Dong Yin, Ashwin Pananjady, Max Lam, Dimitris Papailiopoulos, Kannan Ramchandran, and Peter
Bartlett. Gradient diversity: a key ingredient for scalable distributed learning. In International
Conference on Artificial Intelligence and Statistics, pages 1998-2007, 2018.

Kun Yuan, Bicheng Ying, and Ali H. Sayed. On the influence of momentum acceleration on
online learning. Journal of Machine Learning Research, 17(192):1-66, 2016. URL http:
//jmlr.org/papers/v17/16-157 .html.

Guodong Zhang, James Martens, and Roger Grosse. Fast convergence of natural gradient descent for
overparameterized neural networks. arXiv preprint arXiv:1905.10961, 2019a.

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight
decay regularization. In International Conference on Learning Representations, 2019b. URL
https://openreview.net/forum?id=B11z-3Rct7.

12

https://openreview.net/forum?id=B1Yy1BxCZ
https://openreview.net/forum?id=B1Yy1BxCZ
https://openreview.net/forum?id=H1MczcgR-
http://jmlr.org/papers/v17/16-157.html
http://jmlr.org/papers/v17/16-157.html
https://openreview.net/forum?id=B1lz-3Rct7

