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Abstract

In many scientific settings there is a need for adaptive experimental design to guide
the process of identifying regions of the search space that contain as many true
positives as possible subject to a low rate of false discoveries (i.e. false alarms).
Such regions of the search space could differ drastically from a predicted set
that minimizes 0/1 error and accurate identification could require very different
sampling strategies. Like active learning for binary classification, this experimental
design cannot be optimally chosen a priori, but rather the data must be taken
sequentially and adaptively. However, unlike classification with 0/1 error, collecting
data adaptively to find a set with high true positive rate and low false discovery
rate (FDR) is not as well understood. In this paper we provide the first provably
sample efficient adaptive algorithm for this problem. Along the way we highlight
connections between classification, combinatorial bandits, and FDR control making
contributions to each.

1 Introduction

As machine learning has become ubiquitous in the biological, chemical, and material sciences, it
has become irresistible to use these techniques not only for making inferences about previously
collected data, but also for guiding the data collection process, closing the loop on inference and
data collection [10, 38, 41, 39, 33, 31]. However, though collecting data randomly or non-adaptively
can be inefficient, ill-informed ways of collecting data adaptively can be catastrophic: a procedure
could collect some data, adopt an incorrect belief, collect more data based on this belief, and leave
the practitioner with insufficient data in the right places to infer anything with confidence.

In a recent high-throughput protein synthesis experiment [33], thousands of short amino acid se-
quences (length less than 60) were evaluated with the goal of identifying and characterizing a subset
of the pool of all possible sequences ( ≈ 1080) containing many sequences that will fold into stable
proteins. That is, given an evaluation budget that is just a minuscule proportion of the total number
of sequences, the researchers sought to make predictions about individual sequences that would
never be evaluated. An initial first round of sequences uniformly sampled from a predefined subset
were synthesized to observe whether each sequence was in the set of sequences that will fold,H1,
or inH0 = Hc1. Treating this as a classification problem, a linear logistic regression classifier was
trained, using these labels and physics based features. Then a set of sequences to test in the next
round were chosen to maximize the probability of folding according to this empirical model - a
procedure repeated twice more. This strategy suffers two flaws. First, selecting a set to maximize
the likelihood of hits given past rounds’ data is effectively using logistic regression to perform
optimization similar to follow-the-leader strategies [14]. While more of the sequences evaluated
may fold, these observations may provide little information about whether sequences that were not
evaluated will fold or not. Second, while it is natural to employ logistic regression or the SVM
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Figure 1: The distribution of a feature that is highly correlated with the fitted logistic model (bottom plot) and
the proportion of sequences that fold (top plot). The distribution of this feature for the sequences drifts right.

to discriminate between binary outcomes (e.g., fold/not-fold), in many scientific applications the
property of interest is incredibly rare and an optimal classifier will just predict a single class e.g.
not fold. This is not only an undesirable inference for prediction, but a useless signal for collecting
data to identify those regions with higher, but still unlikely, probabilities of folding. Consider the
data of [33] reproduced in Figure 1, where the proportion of sequences that fold along with their
distributions for a particularly informative feature (Buried NPSA) are shown in each round for two
different protein topologies (notated βαββ and ααα). In the last column of Figure 1, even though
most of the sequences evaluated are likely to fold, we are sampling in a small part of the overall
search space. This limits our overall ability to identify under-explored regions that could potentially
contain many sequences that fold, even though the logistic model does not achieve its maximum
there. On the other hand, in the top plot of Figure 1, sequences with topology βαββ (shown in blue)
so rarely folded that a near-optimal classifier would predict “not fold” for every sequence.

Instead of using a procedure that seeks to maximize the probability of folding or classifying sequences
as fold or not-fold, a more natural objective is to predict a set of sequences π in such a way as to
maximize the true positive rate (TPR) |H1 ∩π|/|H1| while minimizing the false discovery rate (FDR)
i.e. |H0 ∩ π|/|π|. That is, π is chosen to contain a large number of sequences that fold while the
proportion of false-alarms among those predicted is relatively small. For example, if a set π for βαββ
was found that maximized TPR subject to FDR being less than 9/10 then π would be non-empty
with the guarantee that at least one in every 10 suggestions was a true-positive; not ideal, but making
the best of a bad situation. In some settings, such as for topology ααα (shown in orange), training
a classifier to minimize 0/1 loss may be reasonable. Of course, before seeing any data we would
not know whether classification is a good objective so it is far more conservative to optimize for
maximizing the number of discoveries.

Contributions. We propose the first provably sample-efficient adaptive sampling algorithm for
maximizing TPR subject to an FDR constraint. This problem has deep connections to active binary
classification (e.g., active learning) and pure-exploration for combinatorial bandits that are necessary
steps towards motivating our algorithm. We make the following contributions:

1. We improve upon state of the art sample complexity for pool-based active classification in the
agnostic setting providing novel sample complexity bounds that do not depend on the disagreement-
coefficient for sampling with or without replacement. Our bounds are more granular than previous
results as they describe the contribution of a single example to the overall sample complexity.

2. We highlight an important connection between active classification and combinatorial bandits.
Our results follow directly from our improvements to the state of the art in combinatorial bandits,
extending methods to be near-optimal for classes that go beyond matroids where one need not
sample every arm at least once.

3. Our main contribution is the development and analysis of an adaptive sampling algorithm that
minimizes the number of samples to identify the set that maximizes the true positive rate subject
to a false discovery constraint. To the best of our knowledge, this is the first work to demonstrate a
sample complexity for this problem that is provably better than non-adaptive sampling.

1.1 Pool Based Classification and FDR Control

Here we describe what is known as the pool-based setting for active learning with stochastic labels.
Throughout the following we assume access to a finite set of items [n] = {1, · · · , n} with an
associated label space {0, 1}. The items can be fixed vectors {xi}ni=1 ∈ Rd but we do not restrict

2



to this case. Associated to each i ∈ [n] there is a Bernoulli distribution Ber(ηi) with ηi ∈ [0, 1].
We imagine a setting where in each round a player chooses It ∈ [n] and observes an independent
random variable YIt,t. For any i, Yi,t ∼ Ber(ηi) are i.i.d. Borrowing from the multi-armed bandit
literature, we may also refer to the items as arms, and pulling an arm is receiving a sample from
its corresponding label distribution. We will refer to this level of generality as the stochastic noise
setting. The case when ηi ∈ {0, 1}, i.e. each point i ∈ [n] has a deterministic label Yi,j = ηi
for all j ≥ 1, will be referred to as the persistent noise setting. In this setting we can define
H1 = {i : ηi = 1},H0 = [n] \ H1. This is a natural setting if the experimental noise is negligible
so that performing the same measurement multiple times gives the same result. A classifier is a
decision rule f : [n]→ {0, 1} that assigns each item i ∈ [n] a fixed label. We can identify any such
decision rule with the set of items it maps to 1, i.e. the set π = {i : i ∈ [n], f(i) = 1}. Instead of
considering all possible sets π ⊂ [n], we will restrict ourselves to a smaller class Π ⊂ 2[n]. With this
interpretation, one can imagine Π being a combinatorial class, such as the collection of all subsets of
[n] of size k, or if we have features, Π could be the sets induced by the set of all linear separators
over {xi}.
The classification error, or risk of a classifier is given by the expected number of incorrect labels, i.e.

R(π) = Pi∼Unif([n]),Yi∼Ber(ηi) (π(i) 6= Yi) =
1

n
(
∑
i 6∈π

ηi +
∑
i∈π

(1− ηi))

for any π ∈ Π. In the case of persistent noise the above reduces toR(π) = |π∩H0|+|πc∩H1|
n = |H1∆π|

n
where A∆B = (A ∪B)− (A ∩B) for any sets A,B.

Problem 1:(Classification) Given a hypothesis class Π ⊆ 2[n] identify π∗ := argmin
π∈Π

R(π) by

requesting as few labels as possible.

As described in the introduction, in many situations we are not interested in finding the lowest risk
classifier, but instead returning π ∈ Π that contains many discoveries π ∩H1 without too many false
alarms π ∩H0. Define ηπ :=

∑
i∈π ηx. The false discovery rate (FDR) and true positive rate (TPR)

of a set π in the stochastic noise setting are given by

FDR(π) := 1− ηπ
|π|

and TPR(π) :=
ηπ
η[n]

In the case of persistent noise, FDR(π) = |H0∩π|
|π| = 1 − |H1∩π|

|π| and TPR(π) = |H1∩π|
|H1| . A

convenient quantity that we can use to reparametrize these quantities is the true positives: TP (π) :=∑
i∈π ηi. Throughout the following we let Πα = {π ∈ Π : FDR(π) ≤ α}.

Problem 2:(Combinatorial FDR Control) Given an α ∈ (0, 1) and hypothesis class Π ⊆ 2[n]

identify π∗α = argmax
π∈Π,FDR(π)≤α

TPR(π) by requesting as few labels as possible.

In this work we are agnostic about how η relates to Π, ala [2, 20]. For instance we do not assume the
Bayes classifier, argminB∈{0,1}nR(B) is contained in Π.

2 Related Work

Active Classification. Active learning for binary classification is a mature field (see surveys [36, 25]
and references therein). The major theoretical results of the field can coarsely be partitioned into the
streaming setting [2, 6, 20, 26] and the pool-based setting [19, 24, 32], noting that algorithms for the
former can be used for the latter, [2], an inspiration for our algorithm, is such an example. These
results rely on different complexity measures known as the splitting index, the teaching dimension,
and (arguably the most popular) the disagreement coefficient.

Computational Considerations. While there have been remarkable efforts to make some of these
methods more computationally efficient [6, 26], we believe even given infinite computation, many of
these previous works are fundamentally inefficient from a sample complexity perspective. This stems
from the fact that when applied to common combinatorial classes (for example the collection of all
subsets of size k), these algorithms have sample complexities that are off by at least log(n) factors
from the best algorithms for these classes. Consequently, in our work we focus on sample complexity
alone, and leave matters of computational efficiency for future work.
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Other Measures. Given a static dataset, the problem of finding a set or classifier that maximizes
TPR subject to FDR-control in the information retrieval community is also known as finding a
binary classifier that maximizes recall for a given precision level. There is extensive work on the
non-adaptive sample complexity of computing measures related to precision and recall such as AUC,
and F-scores [35, 9, 1]. However, there have been just a few works that consider adaptively collecting
data with the goal of maximizing recall with precision constraints [34, 5], with the latter work being
the most related. We will discuss it further after the statement of our main result. In [34], the problem
of adaptively estimating the whole ROC curve for a threshold class is considered under a monotonicity
assumption on the true positives; our algorithm is agnostic to this assumption.

Combinatorial Bandits: The pure-exploration combinatorial bandit game has been studied for the
case of all subsets of [n] of size k known as the Top-K problem [22, 29, 30, 28, 37, 17], the bases of a
rank-k matroid (for which Top-K is a particular instance) [18, 23, 15], and in the general case [11, 16].
The combinatorial bandit component of our work (see Section 3.2) is closest to [11]. The algorithm
of [11] uses a disagreement-based algorithm in the spirit of Successive Elimination for bandits [22],
or the A2 for binary classification [2]. Exploring precisely what log factors are necessary has been an
active area. [16] demonstrates a family of instances in which they show in the worst-case, the sample
complexity must scale with log(|Π|). However, there are many classes like best-arm identification
and matroids where sample complexity does not scale with log(|Π|) (see references above). Our own
work provides some insight into what log factors are necessary by presenting our results in terms
of VC dimension. In addition, we discuss situtations when a log(n) could potentially be avoided by
appealing to Sauer’s lemma in the supplementary material.

Multiple Hypothesis Testing. Finally, though this work shares language with the adaptive multiple-
hypothesis testing literature [12, 27, 42, 40], the goals are different. In that setting, there is a set of
n hypothesis tests, where the null is that the mean of each distribution is zero and the alternative is
that it is nonzero. [27] designs a procedure that adaptively allocates samples and uses the Benjamini-
Hochberg procedure [4] on p-values to return an FDR-controlled set. We are not generally interested
in finding which individual arms have means that are above a fixed threshold, but instead, given a
hypothesis class we want to return an FDR controlled set in the hypothesis class with high TPR. This
is the situation in many structured problems in scientific discovery where the set of arms corresponds
to an extremely large set of experiments and we have feature vector associated with each arm. We
can’t run each one but we may have some hope of identifying a region of the search space which
contains many discoveries. In summary, unlike the setting of [27], Π encodes structure among the
sets, we do not insist each item is sampled, and we are allowing for persistent labels - overall we are
solving a different and novel problem.

3 Pool Based Active Classification

We first establish a pool based active classification algorithm that motivates our development of an
adaptive algorithm for FDR-control. For each i define µi := 2ηi − 1 ∈ [−1, 1] so ηi = 1+µi

2 . By a
simple manipulation of the definition of R(π) above we have

R(π) =
1

n

n∑
i=1

ηi +
1

n

∑
i∈π

(2ηi − 1) =
1

n

n∑
i=1

ηi −
1

n

∑
i∈π

µi

so that argmin
π∈Π

R(π) = argmax
π∈Π

∑
i∈π µi. Define µπ :=

∑
i∈π µi. If for some i ∈ [n] we map the jth

draw of its label Yi,j 7→ 2Yi,j − 1, then E[2Yi,j − 1] = µi and returning an optimal classifier in the
set is equivalent to returning π ∈ Π with the largest µπ . Algorithm 1 exploits this.

The algorithm maintains a collection of active setsAk ⊆ Π and an active set of items Tk ⊆ [n] which
is the symmetric difference of all sets in Ak. To see why we only sample in Tk, if i ∈ ∩π∈Akπ then
π and π′ agree on the label of item i, and any contribution of arm i is canceled in each difference
µ̂π − µ̂π′ = µ̂π\π′ − µ̂π′\π for all π, π′ ∈ Ak so we should not pay to sample it. In each round sets
π with lower empirical means that fall outside of the confidence interval of sets with higher empirical
means are removed. There may be some concern that samples from previous rounds are reused. The
estimator µ̂π′,k − µ̂π,k = n

t

∑t
s=1RIt,s(1(Is ∈ π′ \ π)− 1(Is ∈ π \ π′)) depends on all t samples

up to the t-th round, each of which is uniformly and independently drawn at each step. Thus each
summand is an unbiased estimate of µπ′ − µπ. However, for π, π′ active in round k, as explained

4



above, a summand is only non-zero if Is ∈ π∆π′ ⊂ Tk hence we only need to observe RIt,s if
It ∈ Tk so the estimate of µ̂π′,k − µ̂π,k is unbiased.

In practice, since the number of samples that land in Tk follow a binomial distribution, instead of
using rejection sampling we could instead have drawn a single sample from a binomial distribution
and sampled that many uniformly at random from Tk.

Input: δ, Π ⊂ 2[n], Confidence bound C(π′, π, t, δ).
Let A1 = Π, T1 = (∪π∈A1π)− (∩π∈A1π), k = 1, Ak will be the active sets in round k
for t = 1, 2, · · ·

if t == 2k:
Set δk = .5δ/k2. For each π, π′ let
µ̂π′,k − µ̂π,k = n

t
(
∑t
s=1 RIs,s1{Is ∈ π

′ \ π} −
∑t
s=1 RIs,s1{Is ∈ π \ π

′})
Set Ak+1 = Ak −

{
π ∈ Ak : ∃π′ ∈ Akwith µ̂π′,k − µ̂π,k > C(π′, π, t, δk)

}
.

Set Tk+1 =
(
∪π∈Ak+1π

)
−
(
∩π∈Ak+1π

)
.

k ← k + 1
endif
Stochastic Noise:

If Tk = ∅, Break. Otherwise, draw It uniformly at random from [n] and if It ∈ Tk receive an

associated reward RIt,t = 2YIt,t − 1, YIt,t
iid∼ Ber(ηIt).

Persistent Noise:
If Tk = ∅ or t > n, Break. Otherwise, draw It uniformly at random from [n] \ {Is : 1 ≤ s < t}
and if It ∈ Tk receive associated reward RIt,t = 2YIt,t − 1, YIt,t = ηIt .

Output: π′ ∈ Ak such that µ̂π′,k − µ̂π,k ≥ 0 for all π ∈ Ak \ π′

Algorithm 1: Action Elimination for Active Classification

For any A ⊆ 2[n] define V (A) as the VC-dimension of a collection of sets A. Given a family of sets,
Π ⊆ 2[n], define B1(k) := {π ∈ Π : |π| = k}, B2(k, π′) := {π ∈ Π : |π∆π′| = k}. Also define
the following complexity measures:

Vπ := V (B1(|π|)) ∧ |π| and Vπ,π′ := max{V (B2(|π∆π′|, π), V (B2(|π∆π′|, π′))} ∧ |π∆π′|
In general Vπ, Vπ,π′ ≤ V (Π). A contribution of our work is the development of confidence intervals
that do not depend on a union bound over the class but instead on local VC dimensions. These are
described carefully in Lemma 1 in the supplementary materials.

Theorem 1 For each i ∈ [n] let µi ∈ [−1, 1] be fixed but unknown and assume {Ri,j}∞j=1 is an
i.i.d sequence of random variables such that E[Ri,j ] = µi and Ri,j ∈ [−1, 1]. Define ∆̃π =
|µπ − µπ∗ |/|π∆π∗|, and

τπ =
Vπ,π∗

|π∗∆π|
1

∆̃2
π

log
(
n log(∆̃−2

π )/δ
)
.

UsingC(π, π′, t, δ) :=

√
8|π∆π′|nVπ,π′ log(nδ )

t +
4nVπ,π′ log(nδ )

3t for a fixed constant c, with probability
greater than 1− δ, in the stochastic noise setting Algorithm 1 returns π∗ after a number of samples
no more than c

∑n
i=1 maxπ∈Π:i∈π∆π∗ τπ and in the persistent noise setting the number of samples

needed is no more than c
∑n
i=1 min{1,maxπ∈Π:i∈π∆π∗ τπ}

Heuristically, the expression 1/|π∆π∗|∆̃2
π roughly captures the number of times we would have to

sample each i ∈ π∆π∗ to ensure that we can show µπ∗ > µπ. Thus in the more general case, we
may expect that we can stop pulling a specific i once each set π such that i ∈ π∆π∗ is removed -
accounting for the expression maxπ∈Π,i∈π∆π∗ τπ. The VC-dimension and the logarithmic term in
τπ is discussed further below and primarily comes from a careful union bound over the class Π. One
always has 1/|π∗∆π| ≤ Vπ,π∗/|π∗∆π| ≤ 1 and both bounds are achievable by different classes Π.

In addition, in terms of risk ∆̃π = |µπ−µπ∗ |/|π∆π∗| = n|R(π)−R(π∗)|/|π∆π∗|. Since sampling
is done without replacement for persistent noise, there are improved confidence intervals that one
can use in that setting described in Lemma 1 in the supplementary materials. Finally, if we had
sampled non-adaptively, i.e. without rejection sampling, we would have had a sample complexity of
O(nmaxi∈[n] maxπ:Π:i∈π∆π∗ τπ).
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3.1 Comparison with previous Active Classification results.

One Dimensional Thresholds: In the bound of Theorem 1, a natural question to ask is whether
the log(n) dependence can be improved. In the case of nested classes, such as thresholds on a
line, we can replace the log(n) with a log log(n) using empirical process theory. This leads to
confidence intervals dependent on log log(n) that can be used in place of C(π′, π, t, δ) in Algorithm 1
(see sections C for the confidence intervals and 3.2 for a longer discussion). Under specific noise
models we can give a more interpretable sample complexity. Let h ∈ (0, 1], α ≥ 0, z ∈ [0, 1]

for some i ∈ [n − 1] and assume that ηi = 1
2 + sign(z−i/n)

2 h|z − i/n|α so that µi = h|z −
i/n|αsign(z − i/n) (this would be a reasonable noise model for topology ααα in the introduction).
Let Π = {[k] : k ≤ n}. In this case, inspecting the dominating term of Theorem 1 for i ∈ π∗

we have arg maxπ∈Π:i∈π∆π∗
Vπ,π∗

|π∆π∗|
1

∆̃2
π

= [i] and takes a value of
(

1+α
h

)2
n−1(z − i/n)−2α−1.

Upper bounding the other terms and summing, the sample complexities can be calculated to be
O(log(n) log(log(n)/δ)/h2) if α = 0, and O(n2α log(log(n)/δ)/h2) if α > 0. These rates match
the minimax lower bound rates given in [13] up to log log factors. Unlike the algorithms given there,
our algorithm works in the agnostic setting, i.e. it is making no assumptions about whether the Bayes
classifier is in the class. In the case of non-adaptive sampling, the sum is replaced with the max times
n yielding n2α+1 log(log(n)/δ)/h2 which is substantially worse than adaptive sampling.

Comparison to previous algorithms: One of the foundational works on active learning is the DHM
algorithm of [20] and the A2 algorithm that preceded it [2]. Similar in spirit to our algorithm, DHM
requests a label only when it is uncertain how π∗ would label the current point. In general the
analysis of the DHM algorithm can not characterize the contribution of each arm to the overall sample
complexity leading to sub-optimal sample complexity for combinatorial classes. For example in
the the case when Π = {[i]}ni=1, with i∗ = arg maxi∈[n] µi, ignoring logarithmic factors, one can
show for this problem the bound of Theorem 1 of [20] scales like n2 maxi 6=i∗(µi∗ − µ−2

i ) which is
substantially worse than our bound for this problem which scales like

∑
i 6=i∗ ∆−2

i . Similar arguments
can be made for other combinatorial classes such as all subsets of size k. While we are not particularly
interested in applying algorithms like DHM to this specific problem, we note that the style of its
analysis exposes such a gross inconsistency with past analyses of the best known algorithms that the
approach leaves much to be desired. For more details, please see A.2 in the supplementary materials.

3.2 Connections to Combinatorial Bandits

A closely related problem to classification is the pure-exploration combinatorial bandit problem. As
above we have access to a set of arms [n], and associated to each arm is an unknown distribution νi
with support in [−1, 1] - which is arbitrary not just a Bernoulli label distribution. We let {Ri,j}∞j=1
be a sequence of random variables where Ri,j ∼ νi is the jth (i.i.d.) draw from νi satisfying
E[Ri,j ] = µi ∈ [−1, 1]. In the persistent noise setting we assume that νi is a point mass at
µi ∈ [−1, 1]. Given a collection of sets Π ⊆ 2[n], for each π ∈ Π we define µπ :=

∑
i∈π µi the

sum of means in π. The pure-exploration for combinatorial bandit problem asks, given a hypothesis
class Π ⊆ 2[n] identify π∗ = argmax

π∈Π
µπ by requesting as few labels as possible. The combinatorial

bandit extends many problems considered in the multi-armed bandit literature. For example setting
Π = {{i} : i ∈ [n]} is equivalent to the best-arm identification problem.

The discussion at the start of Section 3 shows that the classification problem can be mapped to
combinatorial bandits - indeed minimizing the 0/1 loss is equivalent to maximizing µπ. In fact,
Algorithm 1 gives state of the art results for the pure exploration combinatorial bandit problem
and furthermore Theorem 1 holds verbatim. Algorithm 1 is similar to previous action elimination
algorithms for combinatorial bandits in the literature, e.g. Algorithm 4 in [11]. However, unlike
previous algorithms, we do not insist on sampling each item once, an unrealistic requirement for
classification settings - indeed, not having this constraint allows us to reach minimax rates for
classification in one dimensions as discussed above. In addition, this resolves a concern brought up in
[11] for elimination being used for PAC-learning. We prove Theorem 1 in this more general setting
in the supplementary materials, see A.3.

The connection between FDR control and combinatorial bandits is more direct: we are seeking to
find π ∈ Π with maximum ηπ subject to FDR-constraints. This already highlights a key difference
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Input: Confidence bounds C1(π, t, δ), C2(π, π′, t, δ)
Ak ⊂ Π will be the set of active sets in round k. Ck ⊂ Π is the set of FDR-controlled policies in round k.
A1 = Π, C1 = ∅, S1 = ∪π∈Ππ, T1 =

⋃
π∈Π π −

⋂
π∈Π π, k = 1.

for t = 1, 2, · · ·
if t = 2k:

Let δk = .25δ/k2

For each set π ∈ Ak, and each pair π′, π ∈ Ak update the estimates:
F̂DR(π) := 1− n

|π|t
∑t
s=1 YIs,s1{Is ∈ π}

T̂P (π′)− T̂P (π) := n
t

(∑t
s=1 Y

′
Js,s1{Js ∈ π

′\π} −
∑t
s=1 Y

′
Js,s1{Js ∈ π\π

′}
)

Set Ck+1 = Ck ∪ {π ∈ Ak \ Ck : F̂DR(π) + C1(π, t, δk)/|π| ≤ α}
Set Ak+1 = Ak
Remove any π from Ak+1 and Ck+1 such that one of the conditions is true:
1. F̂DR(π)− C1(π, t, δk)/|π| > α

2. ∃π′ ∈ Ck+1 with T̂P (π′)− T̂P (π) > C2(π, π′, t, δk) and add π to a set R
Remove any π from Ak+1 and Ck+1 such that:
3. ∃π′ ∈ Ck+1 ∪R, such that π ⊂ π′.

Set Sk+1 :=
⋃
π∈Ak+1\Ck+1

π, and Tk+1 =
⋃
π∈Ak+1

π −
⋂
π∈Ak+1

π.
k ← k + 1

endif
Stochastic Noise:

if |Ak| = 1, Break. Otherwise:
Sample It ∼ Unif([n]). If It ∈ Sk, then receive a label YIt,t ∼ Ber(ηIt).
Sample Jt ∼ Unif([n]). If Jt ∈ Tk, then receive a label Y ′

Jt,t ∼ Ber(ηJt).
Persistent Noise:

If |Ak| = 1 or t > n, Break. Otherwise:
Sample It ∼ [n]\{Is : 1 ≤ s < t}. If It ∈ Sk, then receive a label YIt,t = ηIt .
Sample Jt ∼ [n]\{Js : 1 ≤ s < t}. If Jt ∈ Tk, then receive a label Y ′

Jt,t = ηJt .
Return maxt∈Ck+1 T̂P (π)

Algorithm 2: Active FDR control in persistent and bounded noise settings.

between classification and FDR-control. In one we choose to sample to maximize ηπ subject to FDR
constraints where each ηi ∈ [0, 1], whereas in classification we are trying to maximize µπ where
each µi ∈ [−1, 1]. A major consequence of this difference is that ηπ ≤ ηπ′ whenever π ⊆ π′, but
such a condition does not hold for µπ, µπ′ .

Motivating the sample complexity: As mentioned above, the general combinatorial bandit problem
is considered in [11]. There they present an algorithm with sample complexity,

C

n∑
i=1

max
π:i∈π∆π∗

1

|π∆π∗|
1

∆̃2
π

log
(

max(|B(|π∆π∗|, π)|, |B(|π∆π∗|, π∗)|)n
δ

)
This complexity parameter is difficult to interpret directly so we compare it to one more familiar
in statistical learning - the VC dimension. To see how this sample complexity relates to ours in
Theorem 1, note that log2 |B(k, π∗)| ≤ log2

(
n
k

)
. k log2(n). Thus by the Sauer-Shelah lemma,

V (B(r, π∗)) . log2(|B(r, π∗)|) . min{V (B(r, π∗)), r} log2(n) where . hides a constant. The
proof of the confidence intervals in the supplementary effectively combines these two facts along
with a union bound over all sets in B(r, π∗).

4 Combinatorial FDR Control

Algorithm 2 provides an active sampling method for determining π ∈ Π with FDR(π) ≤ α
and maximal TPR, which we denote as π∗α. Since TPR(π) = TP (π)/η[n], we can ignore the
denominator and so maximizing the TPR is the same as maximizing TP . The algorithm proceeds in
epochs. At all times a collection Ak ⊆ Π of active sets is maintained along with a collection of FDR-
controlled sets Ck ⊆ Ak. In each time step, random indexes It and Jt are sampled from the union
Sk = ∪π∈Ak\Ckπ and the symmetric difference Tk = ∪π∈Akπ − ∩π∈Akπ respectively. Associated
random labels YIt,t, YJt,t ∈ {0, 1} are then obtained from the underlying label distributions Ber(ηIt)
and Ber(ηJt). At the start of each epoch, any set with a FDR that is statistically known to be

7



Figure 2: Example run of Algorithm 2, showing the evolution of sampling regions Sk (blue stripes), Tk (pink
stripes) and FDR controlled sets Ck (orange fill) at each time kt.

under α is added to Ck, and any sets whose FDR are greater than α are removed from Ak in
condition 1. Similar to the active classification algorithm of Figure 1, a set π ∈ Ak is removed in
condition 2 if TP (π) is shown to be statistically less than TP (π′) for some π′ ∈ Ck that, crucially,
is FDR controlled. In general there may be many sets π ∈ Π such that TP (π) > TP (π∗α) that are
not FDR-controlled. Finally in condition 3, we exploit the positivity of the ηi’s: if π ⊂ π′ then
deterministically TP (π) ≤ TP (π′), so if π′ is FDR controlled it can be used to eliminate π. The
choice of Tk is motivated by active classification: we only need to sample in the symmetric difference.
To determine which sets are FDR-controlled it is important that we sample in the entirety of the union
of all π ∈ Ak \ Ck, not just the symmetric difference of the Ak, which motivates the choice of Sk.
In practical experiments persistent noise is not uncommon and avoids the potential for unbounded
sample complexities that potentially occur when FDR(π) ≈ α. Figure 2 demonstrates a model run
of the algorithm in the case of five sets Π = {π1, . . . , π5}.
Recall that Πα is the subset of Π that is FDR-controlled so that π∗α = arg maxπ∈Πα TP (π). The
following gives a sample complexity result for the number of rounds before the algorithm terminates.

Theorem 2 Assume that for each i ≤ n there is an associated ηi ∈ [0, 1] and {Yi,j}∞j=1 is an i.i.d.
sequence of random variables such that Yi,j ∼ Ber(ηi). For any π ∈ Π define ∆π,α = |FDR(π)−α|,
and ∆̃π = |TP (π∗α)− TP (π)|/|π∆π∗| = |TP (π∗α \ π)− TP (π \ π∗α)|/|π∆π∗|, and

sFDRπ =
Vπ
|π|

1

∆2
π,α

log
(
n log(∆−2

π,α)/δ
)
, sTPπ =

Vπ,π∗α
|π∆π∗α|

1

∆̃2
π

log
(
n log(∆̃−2

π )/δ
)

In addition define TFDRπ = min{sFDRπ , max{sTPπ , sFDRπ∗α
}, minπ′∈Πα

π⊂π′
sFDRπ′ } and

TTPπ = min{max{sTPπ , sFDRπ∗α
}, minπ′∈Πα

π⊂π′
sFDRπ′ }. Using C1(π, t, δ) :=

√
4|π|nVπ log(nδ )

t +

4nVπ log(nδ )
3t and C2 = C for C defined in Theorem 1, for a fixed constant c, with probability at least

1− δ, in the stochastic noise setting Algorithm 2 returns π∗α after a number of samples no more than

c

n∑
i=1

max
π∈Π:i∈π

TFDRπ︸ ︷︷ ︸
FDR−Control

+c

n∑
i=1

max
π∈Πα:i∈π∆π∗α

TTPπ︸ ︷︷ ︸
TPR−Elimination
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and in the persistent noise setting returns π∗α after no more than

c
∑n
i=1 min

{
1,
(

maxπ∈Π:i∈π T
FDR
π + maxπ∈Πα:i∈π∆π∗α

TTPπ

)}
Though this result is complicated, each term is understood by considering each way a set can be
removed and the time at which an arm i will stop being sampled. Effectively the sample complexity
decomposes into two parts, the complexity of showing that a set is FDR-controlled or not, and
how long it takes to eliminate it based on TPR. To motivate sFDRπ , if we have a single set π then
1/(|π|∆2

π,α) roughly captures the number of times we have to sample each element in π to decide
whether it is FDR-controlled or not - so in particular in the general case we have to roughly sample an
arm i, maxπ∈Π,i∈π sπ times. However, we can remove a set before showing it is FDR controlled using
other conditions which TFDRπ captures. The term in the sample complexity for elimination using
TPR is similarly motivated. We now unpack the underbraced terms more carefully simultaneously
explaining the sample complexity and the motivation for the proof of Theorem 2.

Sample Complexity of FDR-Control In any round where there exists a set π ∈ Ak \ Ck with arm
i ∈ π, i.e. π is not yet FDR controlled, there is the potential for sampling i ∈ Sk. A set π only leaves
Ak if i) it is shown to not be FDR controlled (condition 1 of the algorithm), ii) because an FDR
controlled set eliminates it on the basis of TP (condition 2), or iii) it is contained in an FDR controlled
set (condition 3). These three cases reflect the three arguments of the min in the defined quantity
TFDRπ , respectively. Taking the maximum over all sets containing an arm i and summing over all i
gives the total FDR-control term. This is a large savings relative to naive non-adaptive algorithms that
sample until every set π in Π was FDR controlled which would take O(nmaxπ∈Π s

FDR
π ) samples.

Sample Complexity of TPR-Elimination An FDR-controlled set π ∈ Πα is only removed from Ck
when eliminated by an FDR-controlled set with higher TP or if it is removed because it is contained
in an FDR-controlled set. In general we can upper bound the former time by the samples needed for
π∗α to eliminate π once we know π∗α is FDR controlled - this gives rise to maxπ∈Πα:i∈π∆π∗α

TTPπ .
Note that sets are removed in a procedure mimicking active classification and so the active gains
there apply to this setting as well. A naive passive algorithm that continues to sample until both the
FDR of every set is determined, and π∗α has higher TP than every other FDR-controlled set gives a
significantly worse sample complexity of O(nmax{maxπ∈Πα s

FDR
π ,maxπ 6∈Πα s

TP
π }).

Comparison with [5]. Similar to our proposed algorithm, [5] samples in the union of all active sets
and maintains statistics on the empirical FDR of each set, along the way removing sets that are not
FDR-controlled or have lower TPR than an FDR-controlled set. However, they fail to sample in the
symmetric difference, missing an important link between FDR-control and active classification. In
particular, the confidence intervals they use are far looser as a result. They also only consider the
case of persistent noise. Their proven sample complexity results are no better than those achieved by
the passive algorithm that samples each item uniformly, which is precisely the sample complexity
described at the end of the previous paragraph.

One Dimensional Thresholds Consider a stylized modeling of the topology βαββ from the introduc-
tion in the persistent noise setting where Π = {[t] : t ≤ n}, ηi ∼ Ber(β1{i ≤ z}) with β < .5, and
z ∈ [n] is assumed to be small, i.e., we assume that there is only a small region in which positive labels
can be found and the Bayes classifier is just to predict 0 for all points. Assuming α > 1− β, one can
show the sample complexity of Algorithm 2 satisfiesO((1−α)−2(log(n/(1−α))+(1+β)z/(1−α)))
while any naive non-adaptive sampling strategy will take at least O(n) samples.

Implementation. For simple classes Π such as thresholds or axis aligned rectangles, our algorithm
can be made computationally efficient. But for more complex classes there may be a wide gap
between theory and practice, just as in classification [36, 20]. However, the algorithm motivates
two key ideas - sample in the union of potentially good sets to learn which are FDR controlled, and
sample in the symmetric difference to eliminate sets. The latter insight was originally made by A2 in
the case of classification and has justified heuristics such as uncertainty sampling [36]. Developing
analogous heuristics for the former case of FDR-control is an exciting avenue of future work.
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