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Abstract

Local differential privacy is a strong notion of privacy in which the provider of
the data guarantees privacy by perturbing the data with random noise. In the
standard application of local differential privacy the distribution of the noise is
constant and known by the learner. In this paper we generalize this approach by
allowing the provider of the data to choose the distribution of the noise without
disclosing any parameters of the distribution to the learner, under the constraint
that the distribution is symmetrical. We consider this problem in the unconstrained
Online Convex Optimization setting with noisy feedback. In this setting the learner
receives the subgradient of a loss function, perturbed by noise, and aims to achieve
sublinear regret with respect to some competitor, without constraints on the norm
of the competitor. We derive the first algorithms that have adaptive regret bounds
in this setting, i.e. our algorithms adapt to the unknown competitor norm, unknown
noise, and unknown sum of the norms of the subgradients, matching state of the art
bounds in all cases.

1 Introduction

In learning, a natural tension exists between learners and the providers of data. The learner aims to
make optimal use of the data, perhaps even at the cost of the privacy of the providers. To nevertheless
ensure sufficient privacy the provider can add random noise to the data that he sends to the learner.
This idea is called e-local differential privacy (Wasserman and Zhou, 2010;|Duchi et al.,[2014) and the
standard implementation has constant e for all providers. However, not all providers care equivalently
about their privacy (Song et al.l 2015). Some providers may wish to aid the learner in making optimal
use of their data, while other providers value their privacy over helping the learner. For instance,
celebrities might care more for their privacy than others because they want to preserve the privacy
they have left. To complicate things further, the providers of the data may not wish to reveal how
much they care about their privacy, because when privacy levels differ between providers these
privacy levels become privacy sensitive themselves. Furthermore, not all parts of the data are equally
privacy sensitive. For example, tweets are already publicly available, but browsing history may
contain sensitive information that should be kept private. To capture these varying privacy constraints
we allow each provider to choose how much noise is added for each dimension of the data.

In this paper, we consider these problems in the Online Convex Optimization (OCO) setting (Hazan,
2016) with local differential privacy guarantees. The OCO framework is a popular and successful
framework to design and analyse many algorithms used to train machine learning models. The OCO
setting proceeds in rounds ¢ = 1,...,7. In a given round ¢ the learner is to provide a prediction
w; € R An adversary then chooses a convex loss function ¢; and sends a subgradient g; € 9¢;(w;)
to the learner. We work with an unconstrained domain for w, which has recently grown in popularity
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(seeMcMahan and Orabonal (2014); |[Foster et al.|(2015)); Orabona and Pal| (2016); [Foster et al.|(2017);
Cutkosky and Boahen| (2017); [Kottowski (2017); Cutkosky and Orabonal (2018)); Foster et al.| (2018));
Jun and Orabona) (2019)). We aim to develop online learning methods that make the best use of
data providers who wish to help the learner while at the same time guaranteeing the desired level of
privacy for providers that care about their privacy, without knowing how much each each provider
adds to the data.

We consider the local differential privacy model with varying levels of privacy unknown to the
learner. Differential privacy (Dwork and Rothl 2014)) is a privacy model that is used in many recent
machine-learning applications. The local differential privacy model is a variant of differential privacy
in which the learner can only access the data of the provider via noisy estimates (Wasserman and
Zhou, 2010; |Duchi et al., |2014). The local differential privacy model with varying levels of privacy
appeared before inSong et al.| (2015])), but with known levels of noise and only two levels of noise.

Learning in our setting is modelled by the OCO framework with noisy estimates of the subgradient
(see alsoJun and Orabona|(2019)). To ensure local differential privacy the provider adds zero-mean
noise &; € R? to the subgradient g;. The learner then receives the perturbed subgradient g; = g; + &;.
We allow each &; to follow a different distribution each round to satisfy different privacy guarantees.
In the standard OCO framework the goal of the learner is to minimize the regret with respect to some
parameter u € R%:

T
Re(u) =Y fi(wy) — Li(w).

However, since the learner receives perturbed subgradients we consider the expected regret E[R(u)],
where the expectation is over the randomness in w; due to the noisy subgradients. The setting
will be formally introduced in section Because §; € R, standard algorithms for unconstrained
domains do not work since they require bounded g;. Initial work in this setting by |Jun and Orabona
(2019) was motivated by a lower bound of (Cutkosky and Boahen| (2017)), which shows that one
can suffer an exponential penalty when both the domain and subgradients are unbounded. They
replace the boundedness assumption on g; by a boundedness assumption on E[g;] and an assumption
on the tails of the noise distribution. Jun and Orabona) (2019)) achieved expected regret guarantees
of O(|lul|\/(G%+ ¢2)T In(1 + [|u||T)), where o2 is a uniform upper bound on E[||&;]|2], G? is a
uniform upper bound on ||g;||2, and || - || and || - || are dual norms. This bound is useful when the
distribution of the noise is constant and known and an adversary selects g;. We derive an algorithm
that satisfies

T
E[Rr(u)] =0 (IIUII (G2T+) of)In(1+ uT))) ; (1)

t=1

where o7 = E[||&/|?]. This bound can be smaller in cases where only a few o are large but most are
small. In fact, we will prove something stronger than (I):

T
E[Rr(u)] = 0<1E[u > llgel2 (1 + IIUIIT))}> ; 2)

t=1

which implies (T via Jensen’s inequality and E[||g;||?] < 3E[||&:]|?] + 3 E[||g:||?]. This bound was

motivated by work in the noiseless setting, where O(||u|| \/ZL lg:l12 In(1 + ||u||T"))) bounds

are possible (Cutkosky and Orabona, 2018). With these type of bounds, when the sum of the
squared norms of the subgradients is small the regret is also small. To achieve (2) we require two
assumptions: bounded ||g; ||« and zero-mean symmetrical noise &;. The assumption on g; is common
in standard OCO. The symmetrical noise assumption is satisfied for common mechanisms to ensure
local differential privacy. The dependence on E[||€;]|2] and E[||g;||?] is unimprovable, which is shown
by the lower bound for this setting by Jun and Orabona| (2019)).

The algorithms in this paper are built using the recently developed wealth-regret duality approach
(Mcmahan and Streeter] 2012). We provide two algorithms. The first achieves the bound in (2)). The
second algorithm satisfies (2)) for each dimension separately. This second algorithm can exploit sparse
privacy structures, which combined with sparse subgradients yields low expected regret bounds.



Contributions We extend the known results in several directions. Many common local differential
privacy applications use symmetric additive noise (laplace mechanism, normal mechanism). We use
the symmetry of the noise to adapt to unknown levels of privacy and achieve adaptive expected regret
bounds. We also adapt to privacy for dimension specific dimension requirements, again without
requiring knowledge of the structure of the noise other than symmetry in each dimension. Our
algorithms interpolate between no noise and maximum noise, matching state of the art bounds in both
cases. This can reduce the cost of privacy in some cases, outlined in section[d] Our work partially
answers two problems left open by Jun and Orabonal (2019). The first question asks whether or not
data-dependent bounds are possible in the noisy OCO setting, which we answer affirmatively. The
second question is how to adapt to different levels of noise without using extra parameters compared
to the noiseless setting, which we do for symmetric noise.

Related work There has been significant work on unconstrained and adaptive methods in OCO
with noiseless subgradients g; Foster et al.| (2015)); (Orabona and Pal| (2016); [Foster et al.| (2017);
Cutkosky and Boahen|(2017)); Kottowskil (2017); |Cutkosky and Orabonal (2018); [Foster et al.| (2018).
However, these results do not extend to the setting with noisy unbounded subgradients g;, which is

possible with our work. For bounded domains regret bounds of O(D+/ Ethl lg:1|2) are possible

without knowledge of the noise (Duchi et al.| 2011} |Orabona and Pal, [2018)), where D is an upper
bound on ||u||. However, these bounds do not adapt to unknown ||w||, which may be costly for large
D but small ||u||. We provide an algorithm that both scales with ||u|| instead of D and does not
require knowledge of the noise.

There is a body of literature in the differential privacy setting with online feedback (Jain et al.| [2012;
Jain and Thakurta, 2014; Thakurta and Smith} 2013} |/Agarwal and Singh, 2017} |/Abernethy et al.,
2017). In this paper we consider local differential privacy (Wasserman and Zhou, |2010; |[Duchi et al.|
2014), which is a stronger notion of privacy than differential privacy. |Duchi et al.|(2014)) provide
an algorithm with constant local differential privacy that learns by using SGD. (Song et al., [2015))
derive how to use knowledge of several levels of local differential privacy for SGD, but only with
two different levels of noise. Jun and Orabonal (2019) consider local privacy with an unbounded
domain and constant noise. With knowledge of the noise it is possible to extend the results of Jun and
Orabona (2019) to achieve (TJ), but not (2)).

Outline In section [2| we introduce our problem formally and introduce the key techniques. In
section 3] we derive a one-dimensional algorithm that achieves our goals, which we use in a black-
box reduction in section [3.1 and we apply it coordinate-wise in section [3.2] Section [4] contains
two scenarios in which our new algorithm achieves improvements compared to current algorithms.
Finally, in section[5] we present our conclusions.

2 Problem Formulation and Preliminaries

In this section we describe our notation, introduce the version of local differential privacy we use,
briefly introduce the OCO setting with noisy subgradients, and provide some background to the
reward-regret duality paradigm.

Notation. Random variable z is called symmetric if the density function p of the random variable
z = x — E[x] satisfies p(z) = p(—=z). The inner product between vectors g € R? and w € R?
is denoted by (w, g). The Fenchel conjugate of a convex function F', F'* is defined as F*(w) =
supg(w,g) — F(g). || - || denotes a norm and ||g[|x = Sup,,.w|<1(w;g) denotes the dual norm.

g,; indicates the 7™ component of vector g;.

2.1 User-Specified Local Differential Privacy

In the local differential privacy setting each datum is kept private from the learner. The standard
definition of local privacy requires a randomiser R that perturbs g; with random noise &;, where
&1, ..., & are independently distributed (Wasserman and Zhou! [2010; [Kasiviswanathan et al., 2011}
Duchi et al., 2014)). The amount of perturbation is controlled by ¢, where smaller ¢ means more
privacy. We allow the provider to specify his desired level of privacy, so in a given round ¢ we have
€;-local differential privacy.



Definition 1. [Duchi et al.|(2014)] Let A = (X1,...,Xr) be a sensitive dataset where each
X € A corresponds to data about individual t. A randomiser R which outputs a disguised version
of S = (Ux,...,Ur) of A is said to provide e-local differential privacy to individual t, if for all
z,x' € Aandforall S C S,

Pr(U; € S|X; = z) < exp(e) Pr(U; € S|X; = 2).

In this paper we make use of randomisers of the form R;(g:) = g: + &;, where &; is generated
by a zero-mean symmetrical distribution p;. A common choice for p; is p;(z) o< exp(—%||z]|)
(Song et al., 2015). This randomiser is e;-local differentially private for ||g:|| < 1 (Song et al.;[2015]
Theorem 1). We make use a small variation of this randomiser, which we call the local Laplace

randomiser: p;(z) o exp(— ijl 52 |z;|), where Zj’:l Tt,j = €, Tt,; > 0. The following result

shows that the local Laplace randomiser preserves e;-local differential privacy.

Lemma 1. Suppose |g; ;| < 1, then the local Laplace randomiser is €;-local differentially private,

where €, =3 i, Tt j.

The proof follows from applying Theorem 1 of[Song et al.|(2015)) to each dimension and summing
the 7; ;. For completeness the proof is provided in Appendix [A] This randomiser is the Laplace
randomiser (Dwork and Roth| [2014)) applied to each dimension with a possibly different e per
dimension. The local Laplace randomiser gives the user more control over the details of the privacy
guarantees: with the local Laplace randomiser each dimension j is 7; j-local differentially private.
This can also lead to lower regret in some cases, of which we give an example in section 4]

2.2 Online Convex Optimization with Noisy Subgradients

The analysis of many efficient online learning tools has been influenced by the Online Convex
Optimization framework. As mentioned in the introduction, the OCO setting with noisy subgradients
proceeds inrounds ¢ = 1,...,7T". In each round ¢

tth

1. The learner sends w; € R? to the provider of the t" subgradient.

2. The provider samples &; from zero-mean and symmetrical p; and computes subgradient
gt € 00;(wy), where ||g:]|x < G.

3. The provider sends g; = g; + &; € R? to the learner.

This protocol is a slight adaptation of the protocol of Duchi et al.|(2014)), where we allow a different
p¢ in each round ¢ instead of using a constant p. In each round the provider only sends g; to the
learner. The learner has no information about p; other than that p; is symmetrical and zero-mean.
Also note that p, is allowed to change with each round ¢, complicating things even further. Since
the feedback the learner receives is random we are interested in the expected regret. To bound the
expected regret we upper bound the losses by their tangents:

T

E[Rr(w)] <E[> (w; —u,g:)] =E[Y_(w; — u,§¢)] 3)

t=1 t=1

where the equality holds because of the law of total expectation. The analysis focusses on bounding
the rh.s of (@), which is a standard approach in OCO. In the following we introduce a recently
popularized method to control the regret when w; and u are unbounded.

2.3 Reward Regret Duality
For noisy g;, the formal result is found in the following lemma (see also Theorem 3 of Jun and
Orabonal (2019))).

Lemma 2. If — ]E[Z (wy, gt)] > E[Fr(— Zt 1 §t) — cr] for some convex function Fr and
cr € R, then E[Rr(u )] < Eler] + Fi(uw).

Proof. From the definition of Fenchel conjugates we have E[Fr(— ZtT:l g1)] > E[-Fr(u) —

i (w,90)] = —Fi(w) = 30, (u,g0). Using B[S, (wy. g0)] > E[Fr(= .2, 41) — er]
and reordering the terms completes the proof. O



The difficulty lies in finding a suitable F7r and cr. For example, we could use gradient descent

with learning rate 7 to find Fr(—30/_, :) = 2[| /-, gl and cr = 31, 311g¢[13. However,
1t would be impossible to tune 7 optimally due to the dependence on the unknown w in F7}(u) =

5 o ||u||2. For noiseless subgradients g; (Cutkosky and Orabona, 2018) provide a route to find a

suitable F7r, with a constant c7. Jun and Orabona| (2019) extend this idea to noisy subgradients
g:: one needs to find an Fy, Fy_1, and w, that satisfy Fy_;(x) — (wy, g¢) > Eg,[Fi(x — g¢)]. By
assuming that — E[>""_, (ws, g.)] > E[Fi(— Y!_, §,)] holds one can show that if F; and F}_,

satisfy Fy1(x) — (wi, g¢) > Bg, [Fy(x — o)), — E[,_, (wr, g0)] > E[Pr(—>,_, g:)] holds by
induction. The result is given in the following lemma, of which the proof can be found in Appendix

[Al
Lemma 3. Suppose that Fy_1(x) — (wy, g:) > Eg,[Fi(x — g¢)] holds for all t, then

T T
Zwt,gt )] > E[Fr(— Zg

t=1

3 One-Dimensional Private Adaptive Potential Function

Algorithm 1 Local Differentially Private Adaptive Potential Function

Require: G such that | E[g;]| < G and prior Ponv € [—:5, =5].
I: fort=1,...,7T do
2: Play w; = EUNP[U exp(— 22;11 vgs — (v7s)?)].
3: Receive symmetric g; € R.
4: end for

In this section we derive a suitable potential function for a one-dimensional problem. In the remainder
of this paper we use this one-dimensional potential to derive new algorithms. To derive our one-
dimensional potential function we we rely on a property of symmetric random variables with bounded
means. The following Lemma is key deriving our potential function Fr.

Lemma 4. Suppose x is a symmetrical random variable with | E[(v,z)]| < 1 for some v. Then
Elexp({(v,x) — (v,z)?)] <1+ E[(v, z)].

The proof of Lemma [ can be found in Appendix [B] We can now use Lemma 4] to derive a one-
dimensional potent1a1 functlon Suppose g: € Risa symmetrlcal random variable with E[g;] < G.
Then vg; with v € | )5 G | satisfies the assumptions in Lemma@ Multiplying the lower bound of
Lemmalfor 1-— ng] fort =1,...,T, yields a potential function via Lemma The potential

we find is
t

- Z gs)] = v~P exp Z vgs — Ugé 1]]; €]
s=1

where P is an (improper) prior on v € [— lc, G] the first expectation is over gi, ..., J:, and
Fy(0) = 0. This kind of potential function has been used before by (Chernov and Vovk| (2010);
Koolen and Van Erven| (2015)); Jun and Orabonal (2019). The novelty in this particular potential
function is the incorporation of the symmetrical noise. The ZS 1(vgs)? term is unique to our
potential function and allows us to derive adaptive regret bounds for unconstrained w. Note that the
cr = 1 term has moved inside the definition of Fir. While this does not influence the analysis for
proper priors it does influence the analysis for improper priors. The corresponding prediction strategy
is given by

wy = E [vexp(— ngb (v7s)?)]- 5)
Algorithm[I| summarizes the strategy. Note that Algorlthmﬂ] does not require any extra parameters

compared to the setting with noiseless subgradients.

The following result shows that Fr defined by @) and w; defined by (5) satisfy our assumptions.
Lemma 5. Suppose g, is a symmetrical random variable with E[G;] < G. Then F; defined by (@)
and w;, defined by (@) satisfy Eg, [Fy(— ', §s)] < Fr1(— 3220 Gs) — wi E[g)-



The proof follows from an application of Lemma]and can be found in Appendix [B] We consider
two types of priors. The first type are proper priors that are of the form:

dP(v)  v(v)exp(—bv?)

v 7 ) (6)

a
Where b > 0, v : [~25, 5] — Ry, and Z = [5G V(v)e*l”ﬂdv is a normalizing constant. This
5G

captures several priors used in literature, including the conjugate prior - aP _ M (Koolen and
'Van Erven, 2015), a variant of the CV prior ‘Z—f = W (for G > 5) (Chernov and Vovk,

2010; [Koolen and Van Erven, 2015), and the uniform prior on [— 51@ = G] (Jun and Orabonal 2019).

The second type of prior is an improper prior: df = | A variant of this prior was previously used

by (Koolen and Van Erven, [2015)). For all priors we derive a regret bound by computing an upper
bound on the convex conjugate of Fr, Fi7.. For conciseness we only present the regret bound for the
conjugate prior in the main text. In Appendix [C|we present the analysis of the regret of the improper
prior, for which a slightly different analysis is required compared to the proper priors. The analysis
for all priors can be seen as performing a Laplace approximation of the integral over v to show that
the prior places sufficient mass in a neighbourhood of the optimal v

Abbrev1at1ng By = b+ Zt 11 g3, Ly = — Zt 11 Js, and C = 5G’ the predictions (B) with the
conjugate prior are given by:

VbL; exp ((L+fg:3")2) (erf (LtQ_\/QB%B*) —erf (L’QL\/B%B’)) +2v/B; (exp(2CLy) — 1)
= 3 .

erf(Cvb) exp(C (L; + CB;))4B/

(7
These w; can be computed efficiently, but see Koolen and Van Erven|(2015) for numerically stable
evaluation. With the conjugate prior we find the following result:

Theorem 1. Suppose G is a symmetrical random variable with | E[g:]| < G for all t. The predictions

satisfy:

ERr(u)] <14+ |u|max {11G <ln(|u|11G) 14 (Ji?/\g/%)) ’

E <b+z >ln16u|2<b+z~2> \\/gﬂ) }

t=1

The proof of Theorem | can be found in Appendix [B.1I]and follows from computing the Fenchel
conjugate of the potential function. For noisy subgradients this is the first bound that is adaptive to
the sum of the squares of the noisy subgradients. Compared to the expected regret bound for the
improper prior (see Theorem [3]in Appendix [C)) this bound has worse constants. However, with the
conjugate prior all non-constant terms scale with |u|, which is not the case with the improper prior.
For all proper priors of the form (6 a similar regret bound can be computed. This can be seen from
Lemma §]in Appendix [B.T] which shows that the convex conjugate of the potential function for these

priors is O(E |u\\/2t 1 G2 In(|u|T + 1))]).

3.1 Black-Box Reductions

In this section we use our potential function in a black-box reduction: we take a constrained noisy
OCO algorithm Az and turn it into an unconstrained algorithm using our potential function. The
same reduction is used by |Cutkosky and Orabona| (2018) and Jun and Orabona|(2019). The algorithm
can be found in Figure[2] The potential function and the OCO algorithm each have their task: the
potential function is to learn the norm of w and the constrained OCO algorithm is to learn the direction
of u. In each round ¢ we play wy = vz, where z; € Z, Z = {z: Hz|| < 1}, is the prediction
of the OCO algorithm and v, is the predlctlon of Algorlthmm We feed g, as feedback to Az and
(24, G¢) as feedback to Algorithm[I] Since g, is a symmetrical random variable and E[(z;, g¢)] < G,



Algorithm 2 Black-Box Reduction

Require: G such that || E[g;]||» < G and Algorithm Az with domain Z = {z : ||z|| < 1}
1: fort=1,...,Tdo
2: Get z; € Z from Az

3 Get v; € R from Algorithm

4 Play w; = v, z;, receive symmetrical g; such that || E[g:]||« < G

5: Send g; to Az

6

7:

Send (2, g;) to Algorithm[l|
end for

(21, gq) satisfies the assumptions in Lemma 4] This allows us to control the regret for learning the
norm of u using Theorem I]

As outlined by [Cutkosky and Orabona) (2018) the expected regret of Algorithm [2|decomposes into
two parts. The first part of the regret is for learning the norm of u, and is controlled by Algorithm 1]
The second part of the regret for learning the direction of u and is controlled by Az. The proof is
given by (Cutkosky and Orabonal(2018)), but for completeness we provide the proof in Appendix

Lemma 6. Suppose G: is a symmetrical random variable with ||E[g:]|l. < G for all t. Let
RY(||ul)) = E[Zthl(vt — |lu|){z¢, gt)] be the regret for learning ||ul|| by Algorithmand let
RE(&:) = E[ZtT:1<zt — 12, g1)] be the regret for learning Tay by Az. Then Algorithm

Tull llwll”
satisfies E[R (w)] = RY(Jul)) + [u|RF (727).
Orabona and P4l (2018) show that Mirror Descent with learning rates 7, = (4/ 22:1 llgs|1?)~1
yields R%(‘u ) = O(E] Zthl g:]|2]).  Since Algorithm [I| satisfies RY(|lu|) =

]

O(Ellully/S1, 1012 (el 1, G112 + 1)) the total regret of Algorithm|gis

T T
E[Rr(w)] = O [I[wllE || D g2 mn(lal Y llge2 +1)| |- ®
t=1 t=1

This bound matches state of the art bounds for for noiseless subgradients and is never worse than the
bound of Jun and Orabonal (2019) for noisy subgradients, but can be substantially better.

3.2 Private Unconstrained Adaptive Sparse Gradient Descent

Algorithm 3 Private Unconstrained Adaptive Sparse Gradient Descent

Require: G such that |E[g, ;]|. < G.
1: fort=1,...,7T do

2: Play wy

3: forj=1,...,ddo

4: Receive symmetrical §; ; such that |g; ;| < G

5: Send g; ; to Algorithm 1]

6: Receive v;41 € R from Algorithm I with the conjugate prior
7: Set wiy1,j = Vit1

8: end for

9: end for

In this section we propose a noisy unconstrained OCO algorithm that can exploit sparse subgradients.
The algorithm is summarized in Algorithm [3] Algorithm [3|runs a copy of Algorithm [T with the
conjugate prior coordinate-wise. A similar strategy is used by |Orabona and Tommasi| (2017). This
strategy can exploit sparse privacy structures, which, combined with sparse subgradients, may yield
low regret (see section ). Its expected regret bound is given below. The proof follows from applying
Theorem |I|per dimension.



Theorem 2. Suppose . ; is a symmetric random variable with | E[g, ;|| < G for all t and j. Then
the expected regret of Algorithm[3|satisfies

d
E[Rr(u)] <d+ ; || max {nc; <1n(|uj|11G> —1+In <\/fjg—7>> ;

E (b +thg> In(16u;[? <b +thg> \\/f;"i'l)) }

t=1

4 Motivating Examples

In this section we present two scenarios in which our algorithms provide better expected regret
guarantees than standard algorithms. The first scenario concerns a case where many providers do not
care for their privacy (so they do not perturb the subgradients) and few providers care substantially
for their privacy. Suppose that the providers who care for their privacy are [In(7)] of the total
number of providers 7'. Suppose that ||g;||3 < 1 and that the providers who care for their privacy use

p(z) o exp( £|lz|l2), then E[[|&[13] < 4+ 4d2 (Song et al.; 2015, Theorem 1). Using Algorithm
[l Jensen’s 1nequa11ty, and the fact that the square root is subadditive we see from (8] that the expected

regret is upper bounded by O HU‘HQ\/Zt:l llgell3In(1 + [|wl[2T) +[[ull22 In(||w||2T +T)) instead

of O(||ull2¢\/TIn(1 + [[ul[>T)) had we used the maximum privacy guarantee for all providers
instead of letting the providers choose their desired level of privacy.

In the second scenario the providers use the local Laplace randomiser. Suppose that g;
is sparse. A standard algorithm that has good performance for sparse g, is AdaGrad

(Duchi et al., 2011). AdaGrad achieves O(E[D Z;l:l Zthl |G¢,j1?]) expected regret, where

max; |uj| < D, and D has to be guessed prior to running AdaGrad. Using Jensen’s
inequality and the fact that the square root is subadditive the expected regret can be up-

per bounded by O(D ZJ 1 ( \/3 Zt 1 Elg? ;] \/Zt , 3E[€7,])).  Algorithm [3| achieves

O(Zj:l | ( \/3 Et:l [gt,j] In(|u;|T+ 1) + \/3 Et:l [ét,j] In(|u;|T + 1))) regret, which
can be significantly smaller than the bound of AdaGrad if D is much larger than u; or if w is
sparse. Furthermore, since we allow the provider of the data to choose 7; ;, §& can be sparse as
well. While this does not give local differential privacy guarantees for all attributes it does give
local differential privacy guarantees for attributes with 7; < oo. If instead we would have used the
standard application of local differential privacy there would be no hope in exploiting sparse g; since

ijl lujl4/3 Zle E[&7 ;] would be the dominant term in the regret bound.

5 Conclusions

In this paper, we extended the local differential privacy framework in unconstrained Online Convex
Optimization by allowing the provider of the data to choose their privacy guarantees. Standard
algorithms do not yield satisfactory regret bounds in this setting, either due to dependence on the
unknown parameters of the noise or dependence on bounded subgradients. Hence, we proposed
two new algorithms that match state of the art regret algorithms in both the noisy and noiseless
setting, without requiring knowledge of the noise other than symmetry. Our algorithms do not require
parameters other than a bound on the norm of expectation of the subgradients, which allows the
privacy requirements of all providers to be private itself. The new algorithms are a step towards
practically useful algorithms with local differential privacy guarantees that have sound theoretical
guarantees. Our algorithms are the first adaptive unconstrained algorithms in the noisy OCO setting
without requiring extra parameters compared to the standard OCO setting, solving two problems left
open by [Jun and Orabona| (2019).
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