
We thank all reviewers for their thorough assessment of our paper.1
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Figure 1: Leftmost and middle-left panel: Type I error and power as a function of sample size for data generated
under scenario (3) with dimensionality of Z set to 100; Middle-right panel: Empirical p-value variance of the GCIT
as a function of sample size (computed by generating 100 p-values for each GAN trained on data with the specified
size); Rightmost panel: Illustration of the convergence of the GCIT’s p-values as a function of generated samples.

Response to Reviewer #1.2

• On the robustness of the GCIT for practical applications - Indeed, our test does depend to some extent on the3

hyperparameter configurations. However, note that this dependence also exists in alternative tests such as the KCIT and4

RCoT (e.g. see Figure 1 in [1]), and the CCIT (given that it uses "parametrizable" classifiers). Recall that no ground5

truth is available to optimize hyperparameters using conventional methods, but we argue that the following procedure6

can be used to guide hyperparameter selection. We consider artificially inducing conditional independence (X |= Y |Z)7

by permuting variables X and Y such as to preserve the marginal dependence in (X,Z) and (Y, Z), as in [2] (further8

details are also described in our related work). On this data, a well calibrated test is expected to produce uniformly9

distributed p-values, i.e. the empirical distribution of p-values should be approximately uniform. Our recommendation10

would be to choose GCIT’s hyperparameters with lowest Kolmogorov-Smirnov statistic in comparison to the uniform11

distribution. This ensures the resulting test produces "well-behaved" p-values and thus prevents to some extent p-value12

cheating. We will discuss this further in the revised manuscript, thank you for raising this point.13

Response to Reviewer #3.14

• On increasing Type I error with λ - λ determines the influence of Linfo in the optimization of the generator (eq. 8).15

We do discuss the trade-off between power and type I error from a more qualitative, and perhaps intuitive, perspective16

in Section 3.3. However, insights can also be derived by considering the bound in Theorem 1. Theorem 1 shows that17

optimal control of the type I error is achieved by optimizing for LG in isolation, i.e. λ = 0. Then, for λ 6= 0, optimizing18

for the additional Linfo term may converge in practice to a higher LG, resulting in a higher upper-bound on type I error.19

• On the quality of generated samples and stability of p-values - We investigate the influence of sample size on the20

three leftmost panels of Figure 1. The GCIT, as well as most competing tests, have slightly higher type I error in low21

sample sizes but control type I error successfully with 500 samples or more. In terms of power, our experiments show22

that we can expect the GCIT to outperform competing tests with 500 samples or more (for dimension of Z = 100).23

Next, we investigate the stability of p-values as a function of sample size; the variance of the empirical p-values quickly24

drops to 0. This means that for say 500 samples, we can expect the p-values of two independently trained GCITs to25

be within 0.005 of each other with approximately 95% confidence. The last panel on the right illustrates how quickly26

the p-value approximation (eq. 3) converges to its population quantity as a function of the number of samples used to27

compute the approximation i.e. M in eq. 3. The convergence should be at least of order M−1/2 by the central limit28

theorem. As an alternative to a default number of generated samples (previously M = 1000), this last experiment led29

us to modify our implementation to stop sampling from the trained GAN whenever the computed p-value is within30

1e−3 of the mean of the previous 100 computed p-values. This has reduced the computational complexity of the overall31

procedure while giving better or similar performance, thank you for the suggestion.32

Response to Reviewer #4.33

• On the use of GANs as generative models - From a practical perspective, algorithms based on other generative models34

can be constructed based on our proposed procedure. However, we chose GANs as they have analytical properties35

that allow deriving the error bounds in Theorem 1 and enable us to maximize power explicitly with the addition of the36

information network. In practice, good performance may also be achieved using other flexible generative models. We37

will mention this as interesting future research.38

• On the quality of generated samples and stability of p-values - Please kindly refer to the response to Reviewer #3.39
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