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Abstract

We propose to learn deep undirected graphical models (i.e., MRFs) with a non-
ELBO objective for which we can calculate exact gradients. In particular, we
optimize a saddle-point objective deriving from the Bethe free energy approxima-
tion to the partition function. Unlike much recent work in approximate inference,
the derived objective requires no sampling, and can be efficiently computed even
for very expressive MRFs. We furthermore amortize this optimization with trained
inference networks. Experimentally, we find that the proposed approach compares
favorably with loopy belief propagation, but is faster, and it allows for attaining
better held out log likelihood than other recent approximate inference schemes.

1 Introduction

There has been much recent work on learning deep generative models of discrete data, in both the
case where all the modeled variables are observed [35, 58, inter alia], and in the case where they are
not [37, 36, inter alia]. Most of this recent work has focused on directed graphical models, and when
approximate inference is necessary, on variational inference. Here we consider instead undirected
models, that is, Markov Random Fields (MRFs), which we take to be interesting for at least two
reasons: first, some data are more naturally modeled using MRFs [25]; second, unlike their directed
counterparts, many intractable MRFs of interest admit a learning objective which both approximates
the log marginal likelihood, and which can be computed exactly (i.e., without sampling). In particular,
log marginal likelihood approximations that make use of the Bethe Free Energy (BFE) [4] can be
computed in time that effectively scales linearly with the number of factors in the MRF, provided that
the factors are of low degree. Indeed, loopy belief propagation (LBP) [33], the classic approach to
approximate inference in MRFs, can be viewed as minimizing the BFE [66]. However, while often
quite effective, LBP is also an iterative message-passing algorithm, which is less amenable to GPU
parallelization and can therefore slow down the training of deep generative models.

To address these shortcomings of LBP in the context of training deep models, we propose to train
MRFs by minimizing the BFE directly during learning, without message-passing, using inference
networks trained to output approximate minimizers. This scheme gives rise to a saddle-point learning
problem, and we show that learning in this way allows for quickly training MRFs that are competitive
with or outperform those trained with LBP.

We also consider the setting where the discrete latent variable model to be learned admits both
directed and undirected variants. For example, we might be interested in learning an HMM-like
model, but we are free to parameterize transition factors in a variety of ways, including such that all the
transition factors are unnormalized and of low-degree (see Figure 1). Such a parameterization makes
BFE minimization particularly convenient, and indeed we show that learning such an undirected
model with BFE minimization allows for outperforming the directed variant learned with amortized
variational inference in terms of both held out log likelihood and speed. Thus, when possible, it may
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Figure 1: Factor graphs of (a) a full 3rd order HMM, and (b) a 3rd order HMM-like model with only pairwise
factors.

in fact be advantageous to consider transforming a directed model into an undirected variant, and
learning it with BFE minimization.

2 Background

Let G= (V ∪ F , E) be a factor graph [11, 26], with V the set of variable nodes, F the set of factor
nodes, and E the set of undirected edges between elements of V and elements of F ; see Figure 1 for
examples. We will refer collectively to variables in V that are always observed as x, and to variables
which are never observed as z. We will take all variables to be discrete.

In a Markov Random Field (MRF), the joint distribution over x and z factorizes as
P (x, z;θ) = 1

Z(θ)

∏
α Ψα(xα, zα;θ), where the notation xα and zα is used to denote the (pos-

sibly empty) subvectors of x and z that participate in factor Ψα, the factors Ψα are as-
sumed to be positive and are parameterized by θ, and where Z(θ) is the partition function:
Z(θ) =

∑
x′
∑

z′
∏
α Ψα(x′α, z

′
α;θ).

In order to simplify the exposition we will assume all factors are either unary (functions of a
single variable in V) or pairwise (functions of two variables in V), and we lose no generality
in doing so [67, 60]. Thus, if a node v1 ∈V may take on one of K1 discrete values, we view
a unary factor Ψα(xα, zα;θ) = Ψα(v1;θ) as a function Ψα : {1, . . . ,K1} → R+. Similarly, if
nodes v1 and v2 may take on K1 and K2 discrete values respectively, we view a binary factor
Ψβ(xβ , zβ ;θ) = Ψβ(v1, v2;θ) as a function Ψβ : {1, . . . ,K1}× {1, . . . ,K2} → R+. It will also be
convenient to use the (bolded) notation Ψα to refer to the vector of a factor’s possible output values
(in RK1

+ and RK1·K2
+ for unary and binary factors, respectively), and the notation |Ψα| to refer to the

length of this vector. We will consider both scalar and neural parameterizations of factors.

When the model involves unobserved variables, we will also make use of the “clamped” partition func-
tion Z(x,θ) =

∑
z′
∏
α Ψα(xα, z

′
α;θ), with x clamped to a particular value. The clamped partition

function gives the unnormalized marginal probability of x, the partition function of P (z |x;θ).

2.1 The Bethe Free Energy

Because calculation ofZ(θ) orZ(x,θ) may be intractable, maximum likelihood learning of MRFs of-
ten makes use of approximations to these quantities. One such approximation makes use of the Bethe
free energy (BFE), due to Bethe [4] and popularized by Yedidia et al. [66], which is defined in terms of
the factor and node marginals of the corresponding factor graph. In particular, let τα(x′α, z

′
α)∈ [0, 1]

be the marginal probability of the event x′α and z′α, which are again (possibly empty) settings of the
subvectors associated with factor Ψα. We will refer to the vector consisting of the concatenation of
all possible marginals for each factor in G as τ ∈ [0, 1]M(G), where M(G) =

∑
α∈F |Ψα|, the total

number of values output by all factors associated with the graph. As a concrete example, consider
the 10 factors in Figure 1 (b): if each variable can take on only two possible values, then since each
factor is pairwise (i.e., considers only two variables), there are 22 possible settings for each factor,
and thus 22 corresponding marginals. In total, we then have 10× 4 marginals and so τ ∈ [0, 1]40.

Following Yedidia et al. [67], the BFE is then defined as

F (τ ,θ) =
∑
α

∑
x′
α,z

′
α

τα(x′α, z
′
α) log

τα(x′α, z
′
α)

Ψα(x′α, z
′
α)
−
∑
v∈V

(|ne(v)| − 1)
∑
v′

τv(v
′) log τv(v

′), (1)
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where ne(v) gives the set of factor-neighbors node v has in the factor graph, and τv(v′) is the marginal
probability of node v taking on the value v′.

Importantly, in the case of a distribution Pθ representable as a tree-structured model, we have
minτ F (τ ,θ) = − logZ(θ), since (1) is precisely KL[Q||Pθ]− logZ(θ), where Q is another tree
representable distribution with marginals τ [17, 60, 13]. In the case where Pθ is not tree-structured
(i.e., it has a loopy factor graph), we no longer have a KL divergence, and minτ F (τ ,θ) will in
general give only an approximation, but not a bound, on the partition function: minτ F (τ ,θ) ≈
− logZ(θ) [60, 65, 61, 62].

Although minimizing the BFE only provides an approximation to − logZ(θ), it is attractive for our
purposes because while the BFE is exponential in the degree of each factor (since it sums over all
assignments), it is only linear in the number of factors. Thus, evaluating (1) for a factor graph with a
large number of small-degree (e.g., pairwise) factors remains tractable. Moreover, while restricting
models to have low-degree factors severely limits the expressiveness of directed graphical models,
it does not so limit the expressiveness of MRFs, since MRFs are free to have arbitrary pairwise
dependence, as in Figure 1 (b). Indeed, the idea of establishing complex dependencies through many
pairwise factors in an MRF is what underlies product-of-experts style modeling [18].

2.2 Minimizing the Bethe Free Energy
Historically, the BFE has been minimized during learning with loopy belief propagation (LBP) [41,
33]. Yedidia et al. [66] show that the fixed points found by LBP correspond to stationary points
of the optimization problem minτ∈C F (τ ,θ), where C contains vectors of length M(G), and in
particular the concatenation of “pseudo-marginal” vectors τα(xα, zα) for each factor, subject to
each pseudo-marginal vector being positive and summing to 1, and the pseudo-marginal vectors
being locally consistent. Local consistency requires that the pseudo-marginal vectors associated with
any two factors α, β sharing a variable v agree:

∑
x′
α,z

′
α\v

τα(x′α, z
′
α) =

∑
x′
β ,z

′
β\v

τβ(x′β , z
′
β); see

also Heskes [17]. Note that even if τ satisfies these conditions, for loopy models it may still not
correspond to the marginals of any distribution [60].

While LBP is quite effective in practice [33, 38, 67, 34], it does not integrate well with the current
GPU-intensive paradigm for training deep generative models, since it is a typically sequential message-
passing algorithm (though see Gonzalez et al. [12]), which may require a variable number of iterations
and a particular message-passing scheduling to converge [10, 13]. We therefore propose to drop the
message-passing metaphor, and instead directly minimize the constrained BFE during learning using
inference networks [51, 23, 22, 56], which are trained to output approximate minimizers. This style
of training gives rise to a saddle-point objective for learning, detailed in the next section.

3 Learning with Amortized Bethe Free Energy Minimization
Consider learning an MRF consisting of only observed variables x via maximum like-
lihood, which requires minimizing − logP (x;θ) =− log P̃ (x;θ) + logZ(θ), where
log P̃ (x;θ) =

∑
α log Ψα(xα;θ). Using the Bethe approximation to logZ(θ) from the pre-

vious section, we then arrive at the objective:

`F (θ) = − log P̃ (x;θ)−min
τ∈C

F (τ ) ≈ − log P̃ (x;θ) + logZ(θ), (2)

and thus the saddle-point learning problem:

min
θ
`F (θ) = min

θ

[
− log P̃ (x;θ)−min

τ∈C
F (τ ,θ)

]
= min

θ
max
τ∈C

[
− log P̃ (x;θ)− F (τ ,θ)

]
. (3)

While `F is neither an upper nor lower bound on − logP (x;θ), it is an approximation, and indeed
its gradients are precisely those that arise from approximating the true gradient of − logP (x;θ) by
replacing the factor marginals in the gradient with pseudo-marginals; see Sutton et al. [53].

In the case where our MRF contains unobserved variables z, we wish to learn by minimizing
− logZ(x,θ) + logZ(θ). Here we can additionally approximate the clamped partition function
− logZ(x,θ) using the BFE. In particular, we have minτx∈Cx F (τx,θ) ≈ − logZ(x,θ), where
τx contains the marginals of the MRF with its observed variables clamped to x (which is equivalent
to replacing these variables with unary factors, and so τx will in general be smaller than τ ). We thus
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arrive at the following saddle point learning problem for MRFs with latent variables:

min
θ
`F,z(θ) = min

θ

[
min

τx∈Cx
F (τx,θ)−min

τ∈C
F (τ ,θ)

]
= min

θ,τx

max
τ∈C

[F (τx,θ)− F (τ ,θ)] . (4)

3.1 Inference Networks
Optimizing `F and `F,z requires tackling a constrained, saddle-point optimization problem. While
we could in principle optimize over τ or τx directly, we found this optimization to be difficult, and
we instead follow recent work [51, 23, 22, 56] in replacing optimization over the variables of interest
with optimization over the parameters φ of an inference network f(·;φ) outputting the variables of
interest. Thus, an inference network consumes a graph G and predicts a pseudo-marginal vector; we
provide additional details below.

We also note that because our inference networks consume graphs they are similar to graph neural
networks [47, 29, 24, 68, inter alia]. However, because we are interested in being able to quickly
learn MRFs, our inference networks do not do any iterative message-passing style updates; they
simply consume either a symbolic representation of the graph or, in the “clamped” setting, a symbolic
representation of the graph together with the observed variables. We provide further details of our
inference network parameterizations in Section 4 and in the Supplementary Material.

Handling Constraints on Predicted Marginals The predicted pseudo-marginals output by our
inference network f must respect the positivity, normalization, and local consistency constraints
described in Section 2.2. Since the normalization and local consistency constraints are linear equality
constraints, it is possible to optimize only in the subspace they define. However, such an approach
requires the explicit calculation of a basis for the null space of the constraint matrix, which becomes
unwieldy as the graph gets large. We accordingly adopt the much simpler and more scalable approach
of handling the positivity and normalization constraints by optimizing over the “softmax basis” (i.e.,
over logits), and we handle the local consistency constraints by simply adding a term to our objective
that penalizes this constraint violation [7, 40].

In particular, let f(G, α;φ)∈RK1·K2 be the vector of scores given by inference network f to all
configurations of variables associated with factor α. We define the predicted factor marginals to be

τα(xα, zα;φ) = softmax(f(G, α;φ)). (5)

We obtain predicted node marginals for each node v by averaging all the associated factor-level
marginals:

τ v(v;φ) =
1

|ne(v)|
∑

α∈ne(v)

∑
x′
α,z

′
α\v

τα(x′α, z
′
α;φ). (6)

We obtain our final learning objective by adding a term penalizing the distance between the marginal
associated with node v according to a particular factor, and τ v(v;φ). Thus, the optimization
problem (3) becomes

min
θ

max
φ

[
− log P̃ (x;θ)− F (τ (φ),θ)− λ

|F|
∑
v∈V

∑
α∈ne(v)

d
(
τ v(v;φ),

∑
x′
α,z

′
α\v

τα(x′α, z
′
α;φ)

)]
,

(7)

where d(·, ·) is a non-negative distance or divergence calculated between the marginals (typically L2

distance in experiments), λ is a tuning parameter, and the notation τ (φ) refers to the entire vector of
concatenated predicted marginals. We note that the number of penalty terms in (7) scales with |F|,
since we penalize agreement with node marginals; an alternative objective that penalizes agreement
between factor marginals is possible, but would scale with |F|2.

Finally, we note that we can obtain an analogous objective for the latent variable saddle-point
problem (4) by introducing an additional inference network fx which additionally consumes x, and
adding an additional set of penalty terms.

3.2 Learning
We learn by alternating I1 steps of gradient ascent on (7) with respect to φ with one step of gradient
descent on (7) with respect to θ. When the MRF contains latent variables, we take I2 gradient
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Algorithm 1 Saddle-point MRF Learning
for i = 1, . . . , I1 do

Obtain τ (φ) from f(·;φ) using Equations (5) and (6)
φ← φ+∇φ[−F (τ (φ),θ)− λ

|F|
∑
v∈V

∑
α∈ne(v) d(τ v(v;φ),

∑
x′
α,z

′
α\v τα(x

′
α, z

′
α;φ))]

if there are latents then
for i = 1, . . . , I2 do

Obtain τx(φx) from fx(·;φx) using Equations (5) and (6)
φx ← φx−∇φx

[F (τx(φx),θ)+
λ

|F|
∑
v∈z

∑
α∈ne(v) d(τx(v;φx),

∑
x′
α,z

′
α\v τx,α(x

′
α, z

′
α;φx))]

θ ← θ −∇θ[F (τx(φx),θ)− F (τ (φ),θ)]
else

θ ← θ −∇θ[− log P̃ (x;θ)− F (τ (φ),θ)]

descent steps to minimize the objective with respect to φx before updating θ. We show pseudo-code
describing this procedure for a single minibatch in Algorithm 1.

Before moving on to experiments we emphasize two of the attractive features of the learning scheme
described in (7) and Algorithm 1, which we verify empirically in the next section. First, because there
is no message-passing and because minimization with respect to the τ and τx pseudo-marginals is
amortized using inference networks, we are often able to reap the benefits of training MRFs with
LBP but much more quickly. Second, we emphasize that the objective (7) and its gradients can be
calculated exactly, which stands in contrast to much recent work in variational inference for both
directed models [43, 23] and undirected models [27], where the ELBO and its gradients must be
approximated with sampling. As the variance of ELBO gradient estimators is known to be an issue
when learning models with discrete latent variables [37], if it is possible to develop undirected analogs
of the models of interest it may be beneficial to do so, and then learn these models with the `F or
`F,z objectives, rather than approximating the ELBO. We consider one such case in the next section.

4 Experiments

Our experiments are designed to verify that amortizing BFE minimization is an effective way
of performing inference, that it allows for learning models that generalize, and that we can do
this quickly. We accordingly consider learning and performing inference on three different kinds
of popular MRFs, comparing amortized BFE minimization with standard baselines. We provide
additional experimental details in the Supplementary Material, and code for duplicating experiments
is available at https://github.com/swiseman/bethe-min.

4.1 Ising Models

We first study our approach as applied to Ising models. An n×n grid Ising model gives
rise to a distribution over binary vectors x∈{−1, 1}n2

via the following parameterization:
P (x;θ) = 1

Z(θ) exp(
∑

(i,j)∈E Jijxixj +
∑
i∈V hixi), where Jij are the pairwise log potentials

and hi are the node log potentials. The generative model parameters are thus given by θ =
{Jij}(i,j)∈E ∪ {hi}i∈V . While Ising models are conceptually simple, they are in fact quite gen-
eral since any binary pairwise MRF can be transformed into an equivalent Ising model [50].

In these experiments, we are interested in quantifying how well we can approximate the true marginal
distributions with approximate marginal distributions obtained from the inference network. We
therefore experiment with model sizes for which exact inference is reasonably fast on modern
hardware (up to 15× 15).1

Our inference network associates a learnable embedding vector ei with each node and
applies a single Transformer layer [59] to obtain a new node representation hi, with
[h1, . . . ,hn2 ] = Transformer([e1, . . . , en2 ]). The distribution over xi, xj for (i, j)∈E is given
by concatenating hi,hj and applying an affine layer followed by a softmax: τ ij(xi, xj ;φ) =
softmax(W[hi; hj ] + b). The parameters of the inference network φ are given by the node embed-

1The calculation of the partition function in grid Ising models is exponential in n, but it is possible to reduce
the running time from O(2n

2

) to O(2n) with dynamic programming (i.e., variable elimination).
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Table 1: Correlation and Mean L1 distance between the true vs. approximated marginals for the various methods.

Correlation Mean L1 distance
n Mean Field Loopy BP Inference Network Mean Field Loopy BP Inference Network

5 0.835 0.950 0.988 0.128 0.057 0.032
10 0.854 0.946 0.984 0.123 0.064 0.037
15 0.833 0.942 0.981 0.132 0.065 0.040

Figure 2: For each method, we plot the approximate marginals (x-axis) against the true marginals (y-axis) for a
15× 15 Ising model. Top shows the node marginals while bottom shows the pairwise factor marginals, and ρ
denotes the Pearson correlation coefficient.

dings and the parameters of the Transformer/affine layers. The node marginals τ i(xi;φ) then are
obtained from averaging the pairwise factor marginals (Eq (6)).2

We first examine whether minimizing the BFE with an inference network gives rise to reasonable
marginal distributions. Concretely, for a fixed θ (sampled from spherical Gaussian with unit variance),
we minimize F (τ (φ),θ) (Eq (1)) with respect to φ, where τ (φ) denotes the full vector of marginal
distributions obtained from the inference network. Table 1 shows the correlation and the mean L1

distance between the true marginals and the approximated marginals, where the numbers are averaged
over 100 samples of θ. We find that compared to approximate marginals obtained from mean field and
LBP the inference network produces marginal distributions that are more accurate. Figure 2 shows
a scatter plot of approximate marginals (x-axis) against the true marginals (y-axis) for a randomly
sampled 15× 15 Ising model. Interestingly, we observe that both loopy belief propagation and the
inference network produce accurate node marginals (top), but the pairwise factor marginals from
the inference network are much better (bottom). We find that this trend holds for Ising models with
greater pairwise interaction strength as well; see the additional experiments in the Supplementary
Material where pairwise potentials are sampled from N (0, 3) and N (0, 5).

In Table 2 we show results from learning the generative model alongside the inference network. For
a randomly generated Ising model, we obtain 1000 samples each for train, validation, and test sets,
using a version of the forward-filtering backward-sampling algorithm to obtain exact samples in
O(2n). We then train a (randomly-initialized) Ising model via the saddle point learning problem in
Eq (7). While models trained with exact inference perform best, models trained with an inference
network’s approximation to logZ(θ) perform almost as well, and outperform both those trained with
mean field and even with LBP. See the Supplementary Material for additional details.

4.2 Restricted Boltzmann Machines (RBMs)

We next consider learning Restricted Boltzmann Machines [49], a classic MRF model with latent
variables. A binary RBM parameterizes the joint distribution over observed variables x ∈ {0, 1}V

2As there are no latent variables in these experiments, inference via the inference network is not amortized in
the traditional sense (i.e., across different data points as in Eq (4)) since it does not condition on x. However,
inference is still amortized across each optimization step, and thus we still consider this to be an instance of
amortized inference.
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Table 2: Held out NLL of learned Ising models. True entropy refers to NLL under the true model (i.e.
EP (x;θ)[− logP (x;θ)]), and ‘Exact’ refers to an Ising model trained with the exact partition function.

n True Entropy Rand. Init. Exact Mean Field Loopy BP Inference Network

5 6.27 45.62 6.30 7.35 7.17 6.47
10 25.76 162.53 25.89 29.70 28.34 26.80
15 51.80 365.36 52.24 60.03 59.79 54.91

Table 3: Held out average NLL of learned RBMs, as estimated by AIS [46]. Neural Variational Inference results
are taken from Kuleshov and Ermon [27].

NLL `F Epochs to Converge Seconds/Epoch

Loopy BP 25.47 53.02 8 21617
Inference Network 23.43 23.11 38 14
PCD 21.24 N/A 29 1

Neural Variational Inference [27] ≥ 24.5

and latent variables z ∈ {0, 1}H as P (x, z;θ) = 1
Z(θ) exp(x>Wz + x>b + z>a). Thus, there is a

pairwise factor for each (xi, zj) pair, and a unary factor for each xi and zj .

It is standard when learning RBMs to marginalize out the latent variables, which can be done tractably
due to the structure of the model, and so we may train with the objective in (7). Our inference
network is similar to that used in our Ising model experiments: we associate a learnable embedding
vector with each node in the model, which we concatenate with an embedding corresponding to an
indicator feature for whether the node is in x or z. These V + H embeddings are then consumed
by a bidirectional LSTM [20, 15], which outputs vectors hx,i and hz,j for each node.3 Finally, we
obtain τ ij(xi, zj ;φ) = softmax(MLP[hx,i; hz,j ]). We set the d(·, ·) penalty function to be the KL
divergence, which worked slightly better than L2 distance in preliminary experiments.

We follow the experimental setting of Kuleshov and Ermon [27], who recently introduced a neural
variational approach to learning MRFs, and train RBMs with 100 hidden units on the UCI digits
dataset [1], which consists of 8 × 8 images of digits. We compare with persistent contrastive
divergence (PCD) [54] and LBP, as well as with the best results reported in Kuleshov and Ermon
[27].4 We used a batch size of 32, and selected hyperparameters through random search, monitoring
validation expected pseudo-likelihood [3] for all models; see the Supplementary Material.

Table 3 reports the held out average NLL as estimated with annealed importance sampling (AIS) [39,
46], using 10 chains and 103 intermediate distributions; it also reports average seconds per epoch,
rounded to the nearest second.5 We see that while amortized BFE minimization is able to outperform
all results except PCD, it does lag behind PCD. These results are consistent with previous claims in
the literature [46] that LBP and its variants do not work well on RBMs. Amortizing BFE minimization
does, however, again outperform LBP. We also emphasize that PCD relies on being able to do fast
block Gibbs updates during learning, which will not be available in general, whereas amortized BFE
minimization has no such requirement.

4.3 High-order HMMs

Finally, we consider a scenario where both Z(θ) and Z(x,θ) must be approximated, namely, that of
learning 3rd order neural HMMs [55] (as in Figure 1) with approximate inference. We consider this
setting in particular because it allows for the use of dynamic programs to compare the true NLL at-
tained when learning with approximate inference. However, because these dynamic programs scale as
O(TKL+1), where T, L,K are the sequence length, Markov order, and number of latent state values,
respectively, considering even higher-order models becomes difficult. A standard 3rd order neural
HMM parameterizes the joint distribution over observed sequence x∈{1, . . . , V }T and latent se-
quence z∈{1, . . . ,K}T as P (x, z;θ) = 1

Z(θ) exp(
∑T
t=1 log Ψt,1(zt−3:t;θ) + log Ψt,2(zt, xt;θ)).

3We found LSTMs to work somewhat better than Transformers for both the RBM and HMM experiments.
4The corresponding NLL number reported in Table 3 is derived from a figure in Kuleshov and Ermon [27].
5While it is difficult to exactly compare the speed of different learning algorithms, speed results were

measured on the same 1080 Ti GPU, averaged over 10 epochs, and used our fastest implementations.
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Directed 3rd Order HMMs To further motivate the results of this section let us begin by
considering using approximate inference techniques to learn directed 3rd order neural HMMs,
which are obtained by having each factor output a normalized distribution. In particular, we
define the emission distribution Ψt,2(zt=k, xt;θ) = softmax(W LayerNorm(ek + MLP(ek))),
where ek ∈Rd is an embedding corresponding to the k’th discrete value zt can take on,
W∈RV×d is a word embedding matrix with a row for each word in the vocabulary, and
layer normalization [2] is used to stabilize training. We also define the transition distribu-
tion Ψt,1(zt, zt−1=k1, zt−2=k2) = softmax(U LayerNorm([ek1 ; ek2 ]+MLP([ek1 ; ek2 ]))), where
U∈RK×2K and the ek are shared with the emission parameterization.

We now consider learning a K = 30 state 3rd order directed neural HMM on sentences from the Penn
Treebank [32] (using the standard splits and preprocessing by Mikolov et al. [35]) of length at most
30. The top part of Table 4 compares the average NLL on the validation set obtained by learning
such an HMM with exact inference against learning it with several variants of discrete VAE [43, 23]
and the REINFORCE [64] gradient estimator. In particular, we consider two inference network
architectures:

• Mean Field: we obtain approximate posteriors q(zt |x1:T ) for each timestep t as
softmax(Q LayerNorm(ext + ht)), where ht ∈ Rd2 is the output of a bidirectional
LSTM [19, 15] run over the observations x1:T , ext is the embedding of token xt, and
Q ∈ RK×d2 .

• 1st Order: Instead of assuming the approximate posterior q(z1:T |x1:T ) factorizes indepen-
dently over timesteps, we assume it is given by the posterior of a first-order (and thus more
tractable) HMM. We parameterize this inference HMM identically to the neural directed
HMM above, except that it conditions on the observed sequence x1:T by concatenating the
averaged hidden states of a bidirectional LSTM run over the sequence onto the ek.

For the mean field architecture we consider optimizing either the ELBO with the REINFORCE
gradient estimator together with an input dependent baseline [37] for variance reduction, or the
corresponding 10-sample IWAE objective [5]. When the 1st Order HMM inference network is used,
we sample from it exactly using quantities calculated with the forward algorithm [42, 6, 48, 69]. We
provide more details in the Supplementary Material.

As the top of Table 4 shows, exact inference significantly outperforms the approximate methods,
perhaps due to the difficulty in controlling the variance of the ELBO gradient estimators.

Undirected 3rd Order HMMs An alternative to learning a 3rd order HMM with vari-
ational inference, then, is to consider an analogous undirected model, which can be
learned using BFE approximations, and therefore requires no sampling. In particular,
we will consider the 3rd order undirected product-of-experts style HMM in Figure 1 (b),
which contains only pairwise factors, and parameterizes the joint distribution of x and
z as P (x, z;θ) = 1

Z(θ) exp(
∑T
t=1

∑t−1
s=max(t−3,1) log Ψt,1,s(zs, zt;θ) +

∑T
t=1 log Ψt,2(zt, xt;θ)).

Note that while this variant captures only a subset of the distributions that can be represented
by the full parameterization (Figure 1 (a)), it still captures 3rd order dependencies using pairwise
factors.

In our undirected parameterization the transition factors Ψt,1,s are homogeneous (i.e., independent
of the timestep) in order to allow for a fair comparison with the standard directed HMM, and are
given by r>k2LayerNorm([a|t−s|; ek1 ] + MLP([a|t−s|; ek1 ])), where a|t−s| is the embedding vector
corresponding to factors relating two nodes that are |t− s| steps apart, and where ek1 and rk2 are
again discrete state embedding vectors. The emission factors Ψt,2 are those used in the directed case.

We train inference networks f and fx to output pseudo-marginals τ and τx as in Algorithm 1, using
I1 = 1 and I2 = 1 gradient updates per minibatch. Because Z(θ) and Z(x,θ) depend only on the
latent variables (since factors involving the xt remain locally normalized), f and fx are bidirectional
LSTMs consuming embeddings corresponding to the zt, where fx also consumes x. In particular,
fx is almost identical to the mean field inference network described above, except it additionally
consumes an embedding for the current node (as did the RBM and Ising model inference networks)
and an embedding indicating the total number of nodes in the graph. The inference network f
producing unclamped pseudo-marginals is identical, except it does not consume x. As the bottom of
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Table 4: Average NLL of 3rd Order HMM variants learned with approximate and exact inference.

NLL -ELBO/`F,z Epochs to Converge Seconds/Epoch

Directed

Exact 105.66 105.66 20 137
Mean-Field VAE + BL 119.27 175.46 14 82
Mean-Field IWAE-10 119.20 167.71 5 876
1st Order HMM VAE 118.35 118.88 12 187

Undirected

Exact 104.07 104.07 20 122
LBP 108.74 99.89 20 247
Inference Network 115.86 114.75 11 70

Table 4 shows, this amortized approach manages to outperform all the VAE variants both in terms of
held out average NLL and speed. It performs less well than true LBP, but is significantly faster.

5 Related Work

Using neural networks to perform approximate inference is a popular way to learn deep generative
models, leading to a family of models called variational autoencoders [23, 44, 37]. However, such
methods have generally been employed in the context of learning directed graphical models. Moreover,
applying amortized inference to learn discrete latent variable models has proved challenging due to
potentially high-variance gradient estimators that arise from sampling, though there have been some
recent advances [21, 31, 57, 14].

Outside of directed models, several researchers have proposed to incorporate deep networks directly
into message-passing inference operations, mostly in the context of computer vision applications.
Heess et al. [16] and Lin et al. [30] train neural networks that learn to map input messages to output
messages, while inference machines [45, 9] also directly estimate messages from inputs. In contrast,
Li and Zemel [28] and Dai et al. [8] instead approximate iterations of mean field inference with
neural networks.

Closely related to our work, Yoon et al. [68] employ a deep network over an underlying graphical
model to obtain node-level marginal distributions. However, their inference network is trained against
the true marginal distribution (i.e., not Bethe free energy as in the present work), and is therefore
not applicable to settings where exact inference is intractable (e.g. RBMs). Also related is the early
work of Welling and Teh [63], who also consider direct (but unamortized) minimization of the BFE,
though only for inference and not learning. Finally, Kuleshov and Ermon [27] also learn undirected
models via a variational objective, cast as an upper bound on the partition function.

6 Conclusion

We have presented an approach to learning MRFs which amortizes the minimization of the Bethe free
energy by training inference networks to output approximate minimizers. This approach allows for
learning models that are competitive with loopy belief propagation and other approximate inference
schemes, and yet takes less time to train.
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