
We thank all reviewers for the constructive critique and would be happy to follow their suggestions, in particular,1

improve the presentation of our theoretical analysis.2

Insights beyond mean field analysis. Our analysis provides full distribution information on the joint outputs. All3

other works study averages (or usually approx. thereof) and mostly focus on parts of the output distribution only (e.g.,4

they either study single inputs or the correlation for two typical inputs). They never provide the full picture and cannot5

exclude other parameter choices to improve on the initialization with Gaussian weights. In addition, we explain why the6

squared signal norm is the relevant variable to study - because it is the only information that is transmitted from one7

layer to the other. While the He initialization preserves this quantity layer-wise on average, the distribution becomes8

more skewed for increasing depths and the center of max. probability decreases (see Fig. 1 (a)). Furthermore, the9

distribution of the cosine similarity explains why moderately deep and wide ReLU networks can be trained despite10

negative results by mean field (MF) analysis based on correlations. In addition, we hypothesize that reducing the11

effective number of nodes in a layer contributes to the success of DropOut and DropConnect. Next, we explain why an12

initialization with parameter sharing leads to improved signal propagation.13

A detailed comment for Reviewer #3: Thm. 2 is not difficult to derive but certainly not standard in MF theory. There,14

the normal distribution originates from the MF limit. In contrast, here we understand that the output distribution is15

completely determined by the empirical covariance matrix of inputs. Higher order moments in the input distribution16

have no influence on the output distribution.17

Relation between the theoretical analysis and our initialization proposal. Our theoretical analysis holds for general18

activation function φ. Our specialization to ReLUs identifies several problems that we first try to mitigate by different19

parameter choices σw,l, σb,l. This turns out to be impossible. Hence, we solve it with the GSM by effectively setting20

φ(x) = x at initialization for half of the nodes, while we disregard the other zero half. Note that the entries in W0 are21

iid Gaussian and fulfill our assumptions. We could repeat our analysis for linear φ and show that, e.g., input correlations22

are preserved. This is rather obvious however. Instead, we refer to the rich literature on linear neural networks at23

initialization. Especially, [SX] suggests the choice of orthogonal W0 for dynamical isometry. We therefore test this24

choice in addition.25

Additional literature discussion. We agree that we have to extend our literature discussion. Closest to our work26

is [B] about gradient shattering. Yet, its main focus is on resNets and convNets. We compare with the few results27

on fully-connected feed forward layers here. They observe a phenomenon that relates to cosine similarity by an28

argument that links signal forward propagation with gradient descent. However, they study it in a setting where they29

cannot distinguish between the effect of vanishing gradients and increasing correlations (see Fig. 4 in [B] belonging30

to σ2 = 1/N ). As a result, they observe decreasing correlations, while we have a problem with increasing ones.31

Furthermore, they make a claim about the exponentially decaying covariance (Thm. 1 in [B], now with He σ2 = 2/N )32

without regarding layer width and for typical inputs, while we consider finite layer width and all possible inputs.33

“Typical” is defined as required for their proving strategy and seems to be common in networks with batch normalization,34

but not in networks without, which we study. Yet, [B] provides a parameter sharing solution similar to ours, but for35

convolutional neural networks. It is based on an idea by [S] that was inspired by empirical observations of trained36

convolutional filters that learn linear networks. Thus, [B] and [S] provide two additional arguments for the proposed37

parameter sharing solution: batch normalization cannot avoid the problems related to shattered gradients and linear38

models are good starting points because some layers might need only little adjustment during training.39

[HR] and [H] are rigorous studies of the average signal or gradient properties in finite width networks for single inputs40

to avoid vanishing/expoding gradients, while we study the whole joint output distribution, thus also with respect to41

different inputs. In consequence, they do not encounter the problems associated with the cosine similarity. Indeed,42

Cor. 1 on p. 8 of [HR] is similar to our Eq. (6). Yet, [HR] assumes the same σw and σb on all layers and therefore43

does not ask for alternative parameter choices as we do. [CS] studies with Eq. (1) a similar integral as required for our44

Thm. 5, but considers the MF limit (in the paragraph after Eq. (8)). [Y] discusses an alternative initialization by shifting45

the ReLU with a non-zero bias bi in a MF context with batch normalization. Initially, we thought about following a46

similar approach, but the main problem is that the bias must depend on the input batch and is thus similar to batch47

normalization and computationally more intensive.48
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