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Abstract

In the context of stochastic continuum-armed bandits, we present an algorithm
that adapts to the unknown smoothness of the objective function. We exhibit
and compute a polynomial cost of adaptation to the Hölder regularity for regret
minimization. To do this, we first reconsider the recent lower bound of Locatelli
and Carpentier [21], and define and characterize admissible rate functions. Our new
algorithm matches any of these minimal rate functions. We provide a finite-time
analysis and a thorough discussion about asymptotic optimality.

1 Introduction

Multi-armed bandits are a well-known sequential learning problem. When the number of available
decisions is large, some assumptions on the environment have to be made. In a vast line of work
(see the literature discussion in Section 1.1), these assumptions show up as nonparametric regularity
conditions on the mean-payoff function. If this function is Hölder continuous with constant L and
exponent ↵, and if the values of L and ↵ are given to the player, then natural strategies can ensure
that the regret is upper bounded by

L1/(2↵+1)T (↵+1)/(2↵+1) . (1)
Of course, assuming that the player knows ↵ and L is often not realistic. Thus the need for
adaptive methods, that are agnostic with respect to the true regularity of the mean-payoff function.
Unfortunately, Locatelli and Carpentier [21] recently showed that full adaptation is impossible, and
that no algorithm can enjoy the same minimax guarantees as when the regularity is given to the player.
We persevere and address the question:

What can the player achieve when the true regularity is completely unknown?

A polynomial cost of adaptation In statistics, minimax adaptation for nonparametric function
estimation is a deep and active research domain. In many contexts, sharp adaptation is possible;
often, an additional logarithmic factor in the error has to be paid when the regularity is unknown:
this is known as the cost of adaptation. See e.g., Lepskii [20], Birgé and Massart [4], Massart
[22] for adaptive methods, and Cai [9] for a detailed survey of the topic. Under some more exotic
assumptions —see e.g., Example 3 of Cai and Low [10] — adapting is significantly harder: there
may be a polynomial cost of adaptation.

In this paper, we show that in the sequential setting of multi-armed bandits, the necessary exploration
forces a similar phenomenon, and we exhibit this polynomial cost of adaptation. To do so, we revisit
the lower bounds of Locatelli and Carpentier [21], and design a new algorithm that matches these
lower bounds.

As a representative example of our results, our algorithm can achieve, without the knowledge of ↵
and L, an unimprovable (up to logarithmic factors) regret bound of order

L1/(1+↵)T (↵+2)/(2↵+2) . (2)
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1.1 Related work

Continuum-armed bandits Continuum-armed bandits, with nonparametric regularity assumptions,
were introduced by Agrawal [1]. Kleinberg [16] established the minimax rates in the Hölder setting
and introduced the CAB1 algorithm. Auer et al. [3] studied the problem with additional regularity
assumptions under which the minimax rates are improved. Via different roads, Bubeck et al. [7] and
Kleinberg et al. [17] explored further generalizations of these types of regularity, namely the zooming
dimension and the near-optimality dimension. Bull [8] exhibited an algorithm that essentially adapts
to some cases when the near-optimality dimension is zero.

In all these articles, the mean-payoff function needs to satisfy simultaneously two sets of regularity
conditions. The first type is a usual Hölder condition, which ensures that the function does not vary
too much around (one of) its maxima. The second type is a “margin condition” that lower bounds the
number of very suboptimal arms; in the literature these are defined in many technically different ways.
Adapting to the margin conditions is often possible when the Hölder regularity is known. However,
all these algorithms require some prior knowledge about the Hölder regularity.

In this paper, we focus on the problem of adapting to Hölder regularity. Accordingly, we call adaptive
the algorithms that assume no knowledge of the Hölder exponent nor of the Lipschitz constant.

Adaptation for cumulative regret Bubeck et al. [5] introduced the problem of adaptation, and
adapted to the Lipschitz constant under extra requirements. An important step was made in Locatelli
and Carpentier [21], where it is shown that adaptation at the classical minimax rates is impossible. In
the same paper, the authors exhibited some conditions under which full adaptation is achievable, e.g.,
with knowledge of the value of the maximum, or when the near-optimality dimension is zero.

Other settings For simple regret, the objections against adaptation do not hold, as the objective does
not penalize exploration. Adaptation up to polylog factors is done with various (meta-)algorithms.
Locatelli and Carpentier [21] sketch out an aggregation approach inspired by Lepski’s method, while
Valko et al. [24], Grill et al. [14], Shang et al. [23] describe cross-validation methods thanks to which
they adapt to the near-optimality dimension with unknown smoothness. As it turns out, this last
approach yields clean results with our smoothness assumptions; we write the details in Appendix E.

Recently, Krishnamurthy et al. [18] studied continuum-armed contextual bandits and use a sophisti-
cated aggregation scheme to derive an algorithm that adapts to the Lipschitz constant when L > 1.

1.2 Contributions and outline

In this paper, we fully compute the cost of adaptation for bandits with Hölder regularity. In Section 2
we discuss the adaptive (and nonadaptive) lower bounds. We take an asymptotic stance in order
to precisely define the objective of adaptation. Doing so, we uncover a family of noncomparable
lower bounds for adaptive algorithms (Theorem 1), and define the corresponding notion of optimality:
admissibility.

Section 3 contains our main contribution: an admissible adaptive algorithm. We first recall the CAB1
algorithm, which is nonadaptive minimax, and use it as a building block for our new algorithm
(Subsection 3.1). This algorithm works in a regime-based fashion. Between successive regimes of
doubling lengths, we reset the algorithm and use a new discretization with fewer arms. In order to
carry information between the different stages, we use CAB1 in a clever way: besides partitioning
the arm space, we add summaries of previous regimes by allowing the algorithm to play according to
the empirical distributions of past plays. This is formally described in Subsection 3.2.

A salient difference with all previous approaches is that we zoom out by using fewer and fewer arms.
To our knowledge, this is unique, as all other algorithms for bandits zoom in in a way that crucially
depends on the regularity parameters. Another important feature of our analysis is that we adapt both
to the Hölder exponent ↵ and to the Lipschitz constant L. On a technical level, this is thanks to the
fact that we do not explicitly choose a grid of regularity parameters, which means that we implicitly
handle all values (L, ↵) simultaneously.

We first give a regret bound in the known horizon case (Subsection 3.2), then we provide an anytime
version and we show that they match the lower bounds of adaptation (Subsection 3.3). Finally
Section 4 provides the proof of our main regret bound.
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2 Setup, preliminary discussion

2.1 Notation and known results

Let us reintroduce briefly the standard bandit terminology. We consider the arm space X = [0, 1].
The environment sets a reward function f : X ! [0, 1]. At each time step t, the player chooses an arm
Xt 2 X , and the environment then displays a reward Yt such that E[Yt | Xt] = f(Xt), independently
from the past. We assume that the variables Yt � f(Xt) are (1/4)-subgaussian conditionnally on Xt;
this is satisfied if the payoffs are bounded in [0, 1] by Hoeffding’s lemma.

The objective of the player is to find a strategy that minimizes her expected cumulative (pseudo-)regret.
If M(f) denotes the maximum value of f , the regret at time T is defined as

RT = TM(f) � E
"

TX

t=1

Yt

#
= TM(f) � E

"
TX

t=1

f(Xt)

#
. (3)

In this paper, we assume that the function f satisfies a Hölder assumption around one of its maxima:
Definition 1. For ↵ > 0 and L > 0, we denote by H(L, ↵) the set of functions that satisfy

9 x? 2 [0, 1] s.t. f(x?
) = M(f) and 8 x 2 [0, 1] |f(x?

) � f(x)| 6 L |x? � x|↵ . (4)

We are interested in minimax rates of regret when the mean-payoff function f belongs to these
Hölder-type classes, i.e., the quantity inf

algorithms
sup

f2H(L,↵)

RT .

MOSS Throughout this paper, we exploit discretization arguments and use a minimax optimal
algorithm for finite-armed bandits: MOSS, from Audibert and Bubeck [2]. When run for T rounds
on a K-armed bandit problem with (1/4)-subgaussian noise, and when T > K, its regret is upper-
bounded by 18

p
KT (the improved constant is from Garivier et al. [12]).

Non-adaptive minimax rates When the regularity is given to the player, for any ↵, L and T :
0.001 L1/(2↵+1)T (↵+1)/(2↵+1) 6 inf

algorithms
sup

f2H(L,↵)

RT 6 28 L1/(2↵+1)T (↵+1)/(2↵+1) . (5)

This is well-known since Kleinberg [16]. For completeness, we recall how to derive the upper bound
in Section 3.1, and the lower bound in Section 2.2.

2.2 Lower bounds: adaptation at usual rates is not possible

Locatelli and Carpentier [21] prove a version of the following theorem; see our reshuffled and slightly
improved proof in Appendix F.
Theorem (Variation on Th.3 from [21]). Let B > 0 be a positive number. Let ↵, � > 0 and L, ` > 0

be regularity parameters that satify ↵ 6 � and L > `.

Assume moreover that 2

�3

12

↵B�1 6 L 6 `1+↵ T↵/2
2

(1+↵)(8�2�). If an algorithm is such that
supf2H(`,�) RT 6 B , then the regret of this algorithm is lower bounded on H(L, ↵):

sup

f2H(L,↵)

RT > 2

�10 TL1/(↵+1)B�↵/(↵+1) . (6)

Remark (Bibliographical note). Locatelli and Carpentier [21] consider a more general setting
where additional margin conditions are exploited. In our setting, we slightly improve their result by
dealing with the dependence on the Lipschitz constant, and by removing a requirement on B.

In a different context, Krishnamurthy et al. [18] show a variation of this bound where the Lipschitz
constant is considered, but only in the case where ↵ = � = 1, for ` = 1 and L > 1.

As explained in Locatelli and Carpentier [21] this forbids adaptation at the usual minimax rates over
two regularity classes; we recall how in the paragraph that follows Theorem 1. However this is not
the end of the story, as one naturally wonders what is the best the player can do.

To further investigate this question, we discuss it asymptotically by considering the rates at which the
minimax regret goes to infinity, therefore focusing on the dependence on T . Our main results are
completely nonasymptotic, yet we feel the asymptotic analysis of optimality is clearer.
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Definition 2. Let ✓ : [0, 1] ! [0, 1] denote a nonincreasing function. We say an algorithm achieves
adaptive rates ✓ if

8 " > 0 , 8 ↵, L > 0 , lim sup

T!1

supf2H(L,↵) RT

T ✓(↵)+"
< +1 .

We include the " in the definition in order to neglect the potential logarithmic factors.

As rate functions are not always comparable for pointwise order, the good notion of optimality is the
standard statistical notion of admissibility (akin to “Pareto optimality” for game-theorists).
Definition 3. A rate function is said to be admissible if it is achieved by some algorithm, and if no
other algorithm achieves stricly smaller rates for pointwise order. An algorithm is admissible if it
achieves an admissible rate function.

We recall that a function ✓0 is stricly smaller than ✓ for pointwise order if ✓0(↵) 6 ✓(↵) for all ↵ and
✓0(↵

0

) < ✓(↵
0

) for at least one value of ↵
0

.

It turns out we can fully characterize the admissible rate functions by inspecting the lower bounds (6).
Theorem 1. The admissible rate functions are exactly the family

✓m : ↵ 7! max

✓
m , 1 � m

↵

↵ + 1

◆
, m 2 [1/2, 1] . (7)

This theorem contains two assertions. The lower bound side states that no smaller rate function may
be achieved by any algorithm. This side is derived from an asymptotic rewording of lower bound (6),
see Proposition 1 stated below (proofs are in Appendix A). The second statement is that the ✓m’s are
indeed achieved by an algorithm, which is the subject of Section 3.2.

Figure 1 illustrates how these admissible rates compare to each other, and to the usual minimax rates.

Figure 1: The lower bounds on adaptive rates: plots of the admissible rate functions ↵ 7! ✓m(↵). If an
algorithm has regret of order O

�
T ✓(↵)

�
, then ✓ is everywhere above one of these curves.

In particular, we see that reaching the nonadaptive minimax rates for multiple values of ↵ is impossible.
Moreover, at m = (� +1)/(2� +1), we have ✓m(�) = (� +1)/(2� +1), which is the usual minimax
rate (1) when � is known. This yields an alternative parameterization of the family ✓m: one may
choose to parameterize the functions either by their value at infinity m 2 [1/2, 1], or by the only
point � 2 [0, +1] at which they coincide with the usual minimax rates function (1).
Proposition 1. Assume an algorithm achieves adaptive rates ✓. Then ✓ satisfies the functional
inequation

8 � > 0 , 8 ↵ 6 � , ✓(↵) > 1 � ✓(�)

↵

↵ + 1

. (8)
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2.3 Yet can we adapt in some way?

We have described in (7) the minimal rate functions that are compatible with the lower bounds of
adaptation: no algorithm can enjoy uniformly better rates. Of course, at this point, the next natural
question is whether any of these adaptive rate functions may indeed be reached by an algorithm.

All previous algorithms for continuum-armed bandits require the regularity as an input in some way
(see the literature discussion in Section 1.1). Such algorithms are flawed: if the true regularity is
underestimated then we only recover the guarantees that correspond to the smaller regularity, which
is often far worse than the lower bounds of Theorem 1. More dramatically, if the true regularity is
overestimated, then, a priori, no guarantees hold at all.

We prove that all these rate functions may be achieved by a new algorithm. More precisely, if the
player wishes to reach one of the lower bounds ✓m, she may select a value of the input accordingly
and match the chosen ✓m. This is our main contribution and is described in the next section.

3 An admissible adaptive algorithm and its analysis

We discuss in Section 3.1 how the well-known CAB1 algorithm can be generalized for our purpose.
In Section 3.2 we describe our algorithm and the main upper bound on its regret. Section 3.3 is
devoted to the anytime version of the algorithm and to a discussion on optimality.

3.1 An abstract version of CAB1 as a building block towards adaptation

We describe a generalization of the CAB1 algorithm from Kleinberg [16], where we include arbitrary
measures in the discretization. Although this extension is straightforward, we detail it as we will use
this algorithm repeatedly further in this paper. In the original CAB1, the space of arms is discretized
into a partition of K subsets, and an algorithm for finite-armed bandits plays on the K midpoints of
the sets. Auer et al. [3] replace the midpoints by a random point uniformly chosen in the subset.

We introduce a generic version of this algorithm we call CAB1.1. We consider K arbitrary probability
distributions over X , which we denote by (⇡i)16i6K . Denote also by ⇡(f) the expectation of f(X)

when X ⇠ ⇡. At each time step, the decision maker chooses one distribution, ⇡It , and plays an arm
picked according to that distribution. By the tower rule, she receives a reward such that

E[Yt | It] = E[f(Xt) | It] = ⇡It(f) .

As the player uses a finite-arm algorithm A to select It, the regret she suffers can be decomposed as
the sum of two terms (denoting by ˜RT the expected regret of the finite-armed algorithm):

RT = T
�
M(f) � max

i=1,...,K
⇡i(f)

�
+

˜RT

��
⇡i(f)

�
16i6K

; A
�
. (9)

This identity is central to the construction of our algorithm. Using terminology from Auer et al. [3],
the first term measures an approximation error of the maximum of f , and the other the actual cost of
learning in the approximate problem. Parameters are chosen to balance these two sources of error.

Algorithm 1 CAB1.1 (Continuum-Armed Bandit, adapted from Kleinberg [16])
1: Input: T the time horizon, K probability measures over X denoted by ⇡

1

, . . . , ⇡K , discrete
K-armed bandit algorithm A

2: for t = 1, 2, . . . , T do
3: Define It the arm in {1, . . . , K} recommended by A
4: Play Xt 2 X drawn according to ⇡It , and receive Yt such that E[Yt|Xt] = f(Xt)

5: Give Yt as input to A corresponding to It
6: end for

The canonical example is that for which the space of arms is cut into a partition. Denote by Disc(K)

the family of the uniform measures over the intervals [(i � 1)/K, i/K] for 1 6 i 6 K. We state this
results (and prove it in Appendix A.1) to recall the non-adaptive minimax bound (1).
Proposition 2. Let ↵ > 0 and L > 1/

p
T be regularity parameters, and define the number of discrete

arms K?
= min

� ⌃
L2/(2↵+1)T 1/(2↵+1)

⌥
, T
�
. Algorithm CAB1.1 run with the uniform discretization

Disc(K?
) and A =MOSS enjoys the bound sup

f2H(L,↵)

RT 6 28 L1/(2↵+1) T (↵+1)/(2↵+1) .
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3.2 Memorize past plays, Discretize the arm space, and Zoom Out: the MeDZO algorithm

To achieve adaptation, we combine two tricks: going from fine to coarser discretizations while
keeping a summary of past plays in memory.

Our algorithm works in successive regimes. At each time regime i, we reset the algorithm and start
over a new regime of length double the previous one (�Ti = 2

p+i), and with fewer discrete arms
(Ki = 2

p+2�i). While doing this, we keep in memory the previous plays: in addition to the uniform
distributions over the subsets of partitions, we include the empirical measures b⌫j of the actions played
in the past regimes, for j < i.

Algorithm 2 MeDZO (Memorize, Discretize, Zoom Out)
1: Input: parameter B, time horizon T
2: Set: p = dlog

2

Be, Ki = 2

p+2�i and �Ti = 2

p+i

3: for i = 1, . . . , p do
4: For �Ti rounds, run algorithm CAB1.1 with the uniform discretization in Ki pieces and the

empirical measures of the previous plays b⌫j for j < i; use MOSS as the discrete algorithm.a
5: Set: b⌫i the empirical measure of the plays during regime i.
6: end for

aNo b⌫ is used for i = 0
Appendix C provides a figure illustrating the behavior of the algorithm.

Our construction is based on the following remark. Consider the approximation error suffered during
regime i. Denoting the by ⇧i the set of measures given to the player during regime i, that is, the
uniform measures over the regular Ki-partition and the empirical measures of arms played during the
regimes j < i, the approximation error is bounded as follows:

�Ti

✓
M(f) � E

h
max

⇡2⇧i

⇡(f)

i◆
6 �Ti

�
M(f)�E[b⌫j(f)]

�
=

�Ti

�Tj

X

t2Regime j

�
M(f)�E[f(Xt)]

�
(10)

and this bound is proportional to the regret suffered during regime j. This means that even though we
zoom out by using fewer arms, we can make sure that the average approximation error in regime i is
less than the regret previously suffered. Moreover, the first discretizations are fine enough to ensure a
small regret in the first regimes, thanks to the Hölder property. This argument is formalized in the
proof (Lemma 1), and shows that MeDZO maintains a balance between approximation and cost of
learning that yields optimal regret.

A surprising fact here is that we go from finer to coarser discretizations during the different phases.
Thus, paradoxically, the algorithm zooms out as time passes. Note also that although this regime-
based approach is reminiscent of the doubling trick, there is an essential difference in that information
is carried between the regimes via the distribution of the previous plays.

We first state our central result, a generic bound that holds for any input parameter B. We discuss the
optimality of these adaptive bounds in the next subsection.

Theorem 2. Algorithm 2 run with the knowledge of T and input B >
p

T enjoys the following
guarantee: for all ↵ > 0 and L > 0,

sup

f2H(L,↵)

RT 6 412 (log

2

B)

3/2
max

�
B, TL1/(↵+1)B�↵/(↵+1)

�
. (11)

We provide some illustrative numerical experiments in Appendix D, comparing the results of MeDZO
with other non-adaptive algorithms.

3.3 Discussion: anytime version and admissibility

Anytime version via the doubling trick The dependence of Algorithm 2 on the parameter B
makes it horizon-dependent. We use the doubling trick to build an anytime version of the algorithm.
At each new doubling-trick regime, we input a value of B that depends on the length of the k-th
regime. If it is of length T (k), one typically thinks of Bk = (T (k)

)

m for some exponent m. In that
case, we get the following bound —see the proof and description of the algorithm in Appendix B.
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Corollary 1 (Doubling trick version). Choose m 2 [1/2, 1]. The doubling-trick version of MeDZO,
run with m as sole input (and without the knowledge of T) ensures that for all regularity parameters
↵ > 0 and L > 0 and for T > 1

sup

f2H(L,↵)

RT 6 4000(log

2

Tm
)

3/2
max

�
Tm, TL1/(↵+1)

(Tm
)

�↵/(↵+1)

�
= O

�
(log T )

3/2 T ✓m(↵)
�
.

Admissibility of Algorithm 2 The next result is a direct consequence of Corollary 1. This echoes
the discussion following Theorem 1, and shows that for any input parameter m, the anytime version
of MeDZO cannot be improved uniformly for all ↵.
Corollary 2. For any m 2 [1/2, 1], the doubling trick version of MeDZO (see App. B) with input m
achieves rate function ✓m, and is therefore admissible.

3.4 About the remaining parameter: the B =

p
T case

Tuning the value of B amounts to selecting one of the minimal curves in Figure 1. Therefore this
parameter is a feature of the algorithm, as it allows the player to choose between the possible optimal
behaviors. The tuning of this parameter is an unavoidable choice for the player to make.

The next example illustrates well the performance of MeDZO, as it is easily comparable to the usual
minimax bounds. Looking at Figure 1, this choice corresponds to m = 1/2, i.e., the only choice of
parameter that reaches the usual minimax rates as ↵ ! 1. In other words, if the players wishes to
ensure that her regret on very regular functions is of order

p
T , then she has to pay a polynomial cost

of adaptation for not knowing ↵ and that price is exactly the ratio between (1) and (2).

Corollary 3. Set a horizon T and run Algorithm 2 with B =

p
T . Then for ↵ > 0 and L > 1/

p
T ,

sup

f2H(L,↵)

RT 6 146 (log

2

T )

3/2 L1/(↵+1) T (↵+2)/(2↵+2) . (12)

This is straightforward from Theorem 2, since the inequality B =

p
T 6 TL1/(↵+1)

p
T

�↵/(↵+1)

holds whenever L > 1/
p

T . An anytime version of this result can be obtained from Corollary 1.

4 Proof of Theorem 2
Full proof of Theorem 2. Let Ft = �(I

1

, X
1

, Y
1

, . . . , It, Xt, Yt) be the �-algebra corresponding to
the information available at the end of round t. Define also the transition times Ti =

Pi
j=1

�Tj with
the convention T

0

= 0. Let us first verify that T is smaller than the total length of the regimes. By
definition of p, we have B 6 2

p < 2B. Thus Tp = 2

p+1

(2

p � 1) > 2B(B � 1) > B2 > T , and the
algorithm is indeed well-defined up to time T .

Consider the regret suffered during the i-th regime RTi�1,Ti := �Ti M(f)�
PTi

t=Ti�1+1

E
⇥
f(Xt)

⇤
.

We bound this quantity thanks to the decomposition (9), by first conditioning on the past up to time
Ti�1

. Since there are Ki + i discrete actions, the regret bound on MOSS ensures that

E

2

4
TiX

t=Ti�1+1

�
M(f) � f(Xt)

� ���� FTi�1

3

5 6 �Ti

�
M(f) � M?

i

�
+ 18

p
(Ki + i)�Ti (13)

where M?
i = max{⇡

(i)
j (f) | ⇡

(i)
j 2 Disc(Ki)} [

�
b⌫`(f) | ` = 0, . . . , i � 1

 
. Notice that this bound

holds even though M?
i is a random variable, as the algorithm is completely reset, and the measures

(b⌫j)j<i are fixed at time Ti�1

+1 (i.e., they are FTi�1 -measurable). Integrating once more, we obtain

RTi�1,Ti 6 �Ti

�
M(f) � E[M?

i ]

�
+ 18

p
(Ki + i)�Ti . (14)

Bounding the cost of learning. By definition of Ki and �Ti, we have Ki�Ti = 2

2p+2 6 16B2 .
Therefore, since p and Ki are integers greater than 1, using a + b � 1 6 ab for positive integers,

p
(Ki + i)�Ti 6

p
(Ki + p � 1)�Ti 6

p
pKi�Ti 6 4

p
pB . (15)
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Bounding the approximation error. The key ingredient for this part is the following fact, that
synthetizes the benefits of our construction as hinted in (10) and the surrounding discussion.

Lemma 1. The total approximation error of MeDZO in regime i is controlled by the Hölder bound
on the grid of mesh size 1/Ki, and by the regret suffered during the previous regimes,

�Ti

�
M(f) � E[M?

i ]

�
6 �Ti min

 
L

1

K↵
i

, min

j<i

✓
RTj�1,Tj

�Tj

◆!
(16)

Proof. This derives easily from the construction of the algorithm, i.e., from the definition of M?
i .

Considering an interval in the regular Ki-partition that contains a maximum of f , by the Hölder
property, M(f) � M?

i 6 L/K↵
i . For the second minimum, as described in Eq. (10), for j < i,

M(f) � M?
i 6 M(f) � b⌫j(f) =

1

�Tj

TjX

t=Tj�1+1

�
M(f) � f(Xt)

�
.

Taking an expectation, RTj�1,Tj appears, and we conclude by taking the minimum over j.

Remember that since Ki�Ti = 2

2p+2, we have L �Ti/K↵
i = L2

2p+2/K1+↵
i . Therefore, the first

bound on the approximation error in (16) increases with i, as Ki decreases with i. Denote by i
0

the
last time regime i for which

L
�Ti0

K↵
i0

6 B . (17)

If this is never satisfied, i.e., not even for i = 1, then L2

p+1/2

↵(p+1) > B which yields, using
B 6 2

p 6 2B, that 4LB > 2

↵+1B↵B and then L > B↵/2. In that case, L1/(↵+1)B�↵/(↵+1) > 1

and the total regret bound (11) is true as it is weaker than the trivial bound RT 6 T .

Hence we may assume that i
0

> 1 is well defined. By comparing i to i
0

, we now show the inequality
pX

i=1

�Ti

�
M(f) � E[M?

i ]

�
6

i0X

i=1

B +

pX

i=i0+1

2(1 + 72

p
p)�Ti L

1/(↵+1)B�↵/(↵+1) . (18)

For all i 6 i
0

the approximation error is smaller than the first argument of the minimum in (16), and
this term is smaller than B. Therefore �Ti

�
M(f) � E[M?

i ]

�
6 B . In particular, this together with

(14) and (15) implies that the total regret suffered during regime i
0

is RTi0�1,Ti0
6 (1 + 72

p
p)B.

For the later time regimes i
0

< i 6 p, we use the fact that preceding empirical measures were kept as
discrete actions, and in particular the one of the i

0

-th regime: (16) instantiated with j = i
0

yields

�Ti

�
M(f) � E[M?

i ]

�
6 �Ti

RTi0�1,Ti0

�Ti0

6
�
1 + 72

p
p
�
�Ti

B

�Ti0

. (19)

Solving equations L�Ti0/K↵
i0

⇡ B ⇡ 4

p
�Ti0Ki0 , we get B/�Ti0 6 2 L1/(↵+1)B�↵/(↵+1) ,

(details are in Appendix A.4). Therefore for i
0

< i 6 p, using (19),

�Ti

�
M(f) � E[M?

i ]

�
6 2(1 + 72

p
p) �Ti L1/(↵+1)B�↵/(↵+1) ,

and we obtain (18) by summing over i.

Conclusion We conclude with some crude boundings. First, as i
0

6 p and the sum of the �Ti’s is
smaller than T , the total approximation error is less than pB+2(1+72

p
p)TL1/(↵+1)B�↵/(↵+1). Let

us include the cost of learning, which is smaller than 72p
p

pB and conclude, using a+b 6 max(a, b)

RT 6 2(1 + 72

p
p)TL1/(↵+1)B�↵/(↵+1)

+ pB + 72p3/2B

= 2(1 + 72

p
p)TL1/(↵+1)B�↵/(↵+1)

+ p(1 + 72

p
p)B

6
⇣
2(1 + 72

p
p) + p

�
1 + 72

p
p
�⌘

max

�
B, TL1/(↵+1)B�↵/(↵+1)

�
(20)

from which the desired bound follows, using 1 6 p, and p 6 2 log

2

B and 4(1 + 72

p
2) 6 412.
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5 Further considerations
Local regularity assumption Theorem 2 holds under a relaxed smoothness assumption, namely
that the function satisfies the Hölder condition only in a small cell containing the maximum. By
looking carefully at the proof, we observe that the condition is only required up to the i

0

-th epoch
(defined in (17)), at which the size of the cells in the discretization is of order 1/Ki0 ⇡ (LB)

�1/(1+↵).
Therefore we only need condition (4) to be satisfied for points x in an interval of size (LB)

�1/(1+↵)

around the maximum.

Higher dimension Our results can be generalized to functions [0, 1]

d ! [0, 1] that are k·k1-Hölder.
For MeDZO to be well-defined, take Ki = 2

d(p+2�i) and �Ti = 2

d(p+i), with p ⇡ (log B)/d. The
bounds are similar to their one-dimensional counterparts, up to replacing ↵ by ↵/d in the exponents,
but the constants are deteriorated by a factor that is exponential in d. The bound in Theorem 2
changes to max

�
B, Ld/(↵+d)TB�↵/(↵+d)

).
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