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Abstract

A learned generative model often produces biased statistics relative to the under-
lying data distribution. A standard technique to correct this bias is importance
sampling, where samples from the model are weighted by the likelihood ratio
under model and true distributions. When the likelihood ratio is unknown, it can
be estimated by training a probabilistic classifier to distinguish samples from the
two distributions. We show that this likelihood-free importance weighting method
induces a new energy-based model and employ it to correct for the bias in existing
models. We find that this technique consistently improves standard goodness-of-fit
metrics for evaluating the sample quality of state-of-the-art deep generative mod-
els, suggesting reduced bias. Finally, we demonstrate its utility on representative
applications in a) data augmentation for classification using generative adversarial
networks, and b) model-based policy evaluation using off-policy data.

1 Introduction

Learning generative models of complex environments from high-dimensional observations is a long-
standing challenge in machine learning. Once learned, these models are used to draw inferences and
to plan future actions. For example, in data augmentation, samples from a learned model are used to
enrich a dataset for supervised learning [1]. In model-based off-policy policy evaluation (henceforth
MBOPE), a learned dynamics model is used to simulate and evaluate a target policy without real-world
deployment [2], which is especially valuable for risk-sensitive applications [3]. In spite of the recent
successes of deep generative models, existing theoretical results show that learning distributions in an
unbiased manner is either impossible or has prohibitive sample complexity [4, 5]. Consequently, the
models used in practice are inherently biased,1 and can lead to misleading downstream inferences.

In order to address this issue, we start from the observation that many typical uses of generative
models involve computing expectations under the model. For instance, in MBOPE, we seek to find
the expected return of a policy under a trajectory distribution defined by this policy and a learned
dynamics model. A classical recipe for correcting the bias in expectations, when samples from
a different distribution than the ground truth are available, is to importance weight the samples
according to the likelihood ratio [6]. If the importance weights were exact, the resulting estimates are
unbiased. But in practice, the likelihood ratio is unknown and needs to be estimated since the true
data distribution is unknown and even the model likelihood is intractable or ill-defined for many deep
generative models, e.g., variational autoencoders [7] and generative adversarial networks [8].

Our proposed solution to estimate the importance weights is to train a calibrated, probabilistic
classifier to distinguish samples from the data distribution and the generative model. As shown in
prior work, the output of such classifiers can be used to extract density ratios [9]. Appealingly, this
estimation procedure is likelihood-free since it only requires samples from the two distributions.

1We call a generative model biased if it produces biased statistics relative to the true data distribution.
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Together, the generative model and the importance weighting function (specified via a binary classifier)
induce a new energy function. While exact density estimation and sampling from this induced energy-
based model is intractable, we can derive a particle based approximation which permits efficient
sampling via resampling based methods. We derive conditions on the quality of the weighting
function such that the induced model provably improves the fit to the the data distribution.

Empirically, we evaluate our bias reduction framework on three main sets of experiments. First, we
consider goodness-of-fit metrics for evaluating sample quality metrics of a likelihood-based and a
likelihood-free state-of-the-art (SOTA) model on the CIFAR-10 dataset. All these metrics are defined
as Monte Carlo estimates from the generated samples. By importance weighting samples, we observe
a bias reduction of 23.35% and 13.48% averaged across commonly used sample quality metrics on
PixelCNN++ [10] and SNGAN [11] models respectively.

Next, we demonstrate the utility of our approach on the task of data augmentation for multi-class
classification on the Omniglot dataset [12]. We show that, while naively extending the model with
samples from a data augmentation, a generative adversarial network [1] is not very effective for multi-
class classification, we can improve classification accuracy from 66.03% to 68.18% by importance
weighting the contributions of each augmented data point.

Finally, we demonstrate bias reduction for MBOPE [13]. A typical MBOPE approach is to first
estimate a generative model of the dynamics using off-policy data and then evaluate the policy via
Monte Carlo [2, 14]. Again, we observe that correcting the bias of the estimated dynamics model via
importance weighting reduces RMSE for MBOPE by 50.25% on 3 MuJoCo environments [15].

2 Preliminaries

Notation. Unless explicitly stated otherwise, we assume that probability distributions admit abso-
lutely continuous densities on a suitable reference measure. We use uppercase notation X,Y, Z to
denote random variables and lowercase notation x, y, z to denote specific values in the corresponding
sample spaces X ,Y,Z . We use boldface for multivariate random variables and their vector values.

Background. Consider a finite dataset Dtrain of instances x drawn i.i.d. from a fixed (unknown)
distribution pdata. Given Dtrain, the goal of generative modeling is to learn a distribution p✓ to
approximate pdata. Here, ✓ denotes the model parameters, e.g. weights in a neural network for deep
generative models. The parameters can be learned via maximum likelihood estimation (MLE) as in
the case of autoregressive models [16], normalizing flows [17], and variational autoencoders [7, 18],
or via adversarial training e.g., using generative adversarial networks [8, 19] and variants.

Monte Carlo Evaluation We are interested in use cases where the goal is to evaluate or optimize
expectations of functions under some distribution p (either equal or close to the data distribution
pdata). Assuming access to samples from p as well some generative model p✓, one extreme is to
evaluate the sample average using the samples from p alone. However, this ignores the availability of
p✓, through which we have a virtually unlimited access of generated samples ignoring computational
constraints and hence, could improve the accuracy of our estimates when p✓ is close to p. We begin
by presenting a direct motivating use case of data augmentation using generative models for training
classifiers which generalize better.

Example Use Case: Sufficient labeled training data for learning classification and regression system
is often expensive to obtain or susceptible to noise. Data augmentation seeks to overcome this
shortcoming by artificially injecting new datapoints into the training set. These new datapoints are
derived from an existing labeled dataset, either by manual transformations (e.g., rotations, flips for
images), or alternatively, learned via a generative model [1, 20].

Consider a supervised learning task over a labeled dataset Dcl. The dataset consists of feature and
label pairs (x,y), each of which is assumed to be sampled independently from a data distribution
pdata(x,y) defined over X ⇥ Y . Further, let Y ✓ Rk. In order to learn a classifier f : X ! Rk

with parameters  , we minimize the expectation of a loss ` : Y ⇥ Rk ! R over the dataset Dcl:

Epdata(x,y)[`(y, f (x))] ⇡
1

|Dcl|
X

(x,y)⇠Dcl

`(y, f (x)). (1)
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E.g., ` could be the cross-entropy loss. A generative model for the task of data augmentation learns a
joint distribution p✓(x,y). Several algorithmic variants exist for learning the model’s joint distribution
and we defer the specifics to the experiments section. Once the generative model is learned, it can be
used to optimize the expected classification loss in Eq. (1) under a mixture distribution of empirical
data distributions and generative model distributions given as:

pmix(x,y) = mpdata(x,y) + (1�m)p✓(x,y) (2)

for a suitable choice of the mixture weights m 2 [0, 1]. Notice that, while the eventual task here
is optimization, reliably evaluating the expected loss of a candidate parameter  is an important
ingredient. We focus on this basic question first in advance of leveraging the solution for data
augmentation. Further, even if evaluating the expectation once is easy, optimization requires us to do
repeated evaluation (for different values of  ) which is significantly more challenging. Also observe
that the distribution p under which we seek expectations is same as pdata here, and we rely on the
generalization of p✓ to generate transformations of an instance in the dataset which are not explicitly
present, but plausibly observed in other, similar instances [21].

3 Likelihood-Free Importance Weighting

Whenever the distribution p, under which we seek expectations, differs from p✓, model-based
estimates exhibit bias. In this section, we start out by formalizing bias for Monte Carlo expectations
and subsequently propose a bias reduction strategy based on likelihood-free importance weighting
(LFIW). We are interested in evaluating expectations of a class of functions of interest f 2 F w.r.t.
the distribution p. For any given f : X ! R, we have Ex⇠p[f(x)] =

R
p(x)f(x)dx.

Given access to samples from a generative model p✓, if we knew the densities for both p and p✓,
then a classical scheme to evaluate expectations under p using samples from p✓ is to use importance
sampling [6]. We reweight each sample from p✓ according to its likelihood ratio under p and p✓ and
compute a weighted average of the function f over these samples.

Ex⇠p[f(x)] = Ex⇠p✓


p(x)

p✓(x)
f(x)

�
⇡ 1

T

TX

i=1

w(xi)f(xi) (3)

where w(xi) := p(xi)/p✓(xi) is the importance weight for xi ⇠ p✓. The validity of this procedure
is subject to the use of a proposal p✓ such that for all x 2 X where p✓(x) = 0, we also have
f(x)p(x) = 0.2

To apply this technique to reduce the bias of a generative sampler p✓ w.r.t. p, we require knowledge
of the importance weights w(x) for any x ⇠ p✓. However, we typically only have a sampling access
to p via finite datasets. For instance, in the data augmentation example above, where p = pdata, the
unknown distribution used to learn p✓. Hence we need a scheme to learn the weights w(x), using
samples from p and p✓, which is the problem we tackle next.In order to do this, we consider a binary
classification problem over X ⇥ Y where Y = {0, 1} and the joint distribution is denoted as q(x, y).
Let � = q(y=0)

q(y=1) > 0 denote any fixed odds ratio. To specify the joint q(x, y), we additionally need
the conditional q(x|y) which we define as follows:

q(x|y) =
⇢
p✓(x) if y = 0
p(x) otherwise.

(4)

Since we only assume sample access to p and p✓(x), our strategy would be to estimate the conditional
above via learning a probabilistic binary classifier. To train the classifier, we only require datasets
of samples from p✓(x) and p(x) and estimate � to be the ratio of the size of two datasets. Let
c� : X ! [0, 1] denote the probability assigned by the classifier with parameters � to a sample x
belonging to the positive class y = 1. As shown in prior work [9, 22], if c� is Bayes optimal, then
the importance weights can be obtained via this classifier as:

w�(x) =
p(x)

p✓(x)
= �

c�(x)

1� c�(x)
. (5)

2A stronger sufficient, but not necessary condition that is independent of f , states that the proposal p✓ is
valid if it has a support larger than p, i.e., for all x 2 X , p✓(x) = 0 implies p(x) = 0.
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(a) Setup (b) n = 50 (c) n = 100 (d) n = 1000

Figure 1: Importance Weight Estimation using Probabilistic Classifiers. (a) A univariate Gaussian
(blue) is fit to samples from a mixture of two Gaussians (red). (b-d) Estimated class probabilities
(with 95% confidence intervals based on 1000 bootstraps) for varying number of points n, where n is
the number of points used for training the generative model and multilayer perceptron.

In practice, we do not have access to a Bayes optimal classifier and hence, the estimated importance
weights will not be exact. Consequently, we can hope to reduce the bias as opposed to eliminating it
entirely. Hence, our default LFIW estimator is given as:

Ex⇠p[f(x)] ⇡
1

T

TX

i=1

ŵ�(xi)f(xi) (6)

where ŵ�(xi) = �
c�(xi)

1�c�(xi)
is the importance weight for xi ⇠ p✓ estimated via c�(x).

Practical Considerations. Besides imperfections in the classifier, the quality of a generative model
also dictates the efficacy of importance weighting. For example, images generated by deep generative
models often possess distinct artifacts which can be exploited by the classifier to give highly-confident
predictions [23, 24]. This could lead to very small importance weights for some generated images,
and consequently greater relative variance in the importance weights across the Monte Carlo batch.
Below, we present some practical variants of LFIW estimator to offset this challenge.

1. Self-normalization: The self-normalized LFIW estimator for Monte Carlo evaluation normalizes
the importance weights across a sampled batch:

Ex⇠p[f(x)] ⇡
TX

i=1

ŵ�(xi)P
T

j=1 ŵ�(xj)
f(xi) where xi ⇠ p✓. (7)

2. Flattening: The flattened LFIW estimator interpolates between the uniform importance weights
and the default LFIW weights via a power scaling parameter ↵ � 0:

Ex⇠p[f(x)] ⇡
1

T

TX

i=1

ŵ�(xi)
↵
f(xi) where xi ⇠ p✓. (8)

For ↵ = 0, there is no bias correction, and ↵ = 1 returns the default estimator in Eq. (6). For
intermediate values of ↵, we can trade-off bias reduction with any undesirable variance introduced.
3. Clipping: The clipped LFIW estimator specifies a lower bound � � 0 on the importance weights:

Ex⇠p[f(x)] ⇡
1

T

TX

i=1

max(ŵ�(xi),�)f(xi) where xi ⇠ p✓. (9)

When � = 0, we recover the default LFIW estimator in Eq. (6). Finally, we note that these estimators
are not exclusive and can be combined e.g., flattened or clipped weights can be normalized.

Confidence intervals. Since we have real and generated data coming from a finite dataset and
parametric model respectively, we propose a combination of empirical and parametric bootstraps to
derive confidence intervals around the estimated importance weights. See Appendix A for details.

Synthetic experiment. We visually illustrate our importance weighting approach in a toy experiment
(Figure 1a). We are given a finite set of samples drawn from a mixture of two Gaussians (red). The
model family is a unimodal Gaussian, illustrating mismatch due to a parametric model. The mean
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Algorithm 1 SIR for the Importance Resampled Energy-Based Model p✓,�
Input: Generative Model p✓, Importance Weight Estimator ŵ�, budget T

1: Sample x1,x2, . . . ,xT independently from p✓

2: Estimate importance weights ŵ(x1), ŵ(x2), . . . , ŵ(xT )

3: Compute Ẑ  
P

T

t=1 ŵ(xt)

4: Sample j ⇠ Categorical
⇣

ŵ(x1)

Ẑ
,
ŵ(x2)

Ẑ
, . . . ,

ŵ(xT )

Ẑ

⌘

5: return xj

and variance of the model are estimated by the empirical means and variances of the observed data.
Using estimated model parameters, we then draw samples from the model (blue).

In Figure 1b, we show the probability assigned by a binary classifier to a point to be from true data
distribution. Here, the classifier is a single hidden-layer multi-layer perceptron. The classifier is not
Bayes optimal, which can be seen by the gaps between the optimal probabilities curve (black) and the
estimated class probability curve (green). However, as we increase the number of real and generated
examples n in Figures 1c-d, the classifier approaches optimality. Furthermore, even its uncertainty
shrinks with increasing data, as expected. In summary, this experiment demonstrates how a binary
classifier can mitigate this bias due to a mismatched generative model.

4 Importance Resampled Energy-Based Model

In the previous section, we described a procedure to augment any base generative model p✓ with
an importance weighting estimator ŵ� for debiased Monte Carlo evaluation. Here, we will use this
augmentation to induce an importance resampled energy-based model with density p✓,� given as:

p✓,�(x) / p✓(x)ŵ�(x) (10)
where the partition function is expressed as Z✓,� =

R
p✓(x)ŵ�(x)dx = Ep✓ [ŵ�(x)].

Density Estimation. Exact density estimation requires a handle on the density of the base model p✓
(typically intractable for models such as VAEs and GANs) and estimates of the partition function.
Exactly computing the partition function is intractable. If p✓ permits fast sampling and importance
weights are estimated via LFIW (requiring only a forward pass through the classifier network),
we can obtain unbiased estimates via a Monte Carlo average, i.e., Z✓,� ⇡ 1

T

P
T

i=1 ŵ�(xi) where
xi ⇠ p✓. To reduce the variance, a potentially large number of samples are required. Since samples
are obtained independently, the terms in the Monte Carlo average can be evaluated in parallel.

Sampling-Importance-Resampling. While exact sampling from p✓,� is intractable, we can instead
perform sample from a particle-based approximation to p✓,� via sampling-importance-resampling [25,
26] (SIR). We define the SIR approximation to p✓,� via the following density:

p
SIR
✓,�

(x;T ) := Ex2,x3,...,xT⇠p✓

"
ŵ�(x)

ŵ�(x) +
P

T

i=2 ŵ�(xi)
p✓(x)

#
(11)

where T > 0 denotes the number of independent samples (or “particles"). For any finite T , sampling
from p

SIR
✓,�

is tractable, as summarized in Algorithm 1. Moreover, any expectation w.r.t. the SIR
approximation to the induced distribution can be evaluated in closed-form using the self-normalized
LFIW estimator (Eq. 7). In the limit of T !1, we recover the induced distribution p✓,�:

lim
T!1

p
SIR
✓,�

(x;T ) = p✓,�(x) 8x (12)

Next, we analyze conditions under which the resampled density p✓,� provably improves the model fit
to pdata. In order to do so, we further assume that pdata is absolutely continuous w.r.t. p✓ and p✓,�.
We define the change in KL via the importance resampled density as:

�(pdata, p✓, p✓,�) := DKL(pdata, p✓,�)�DKL(pdata, p✓). (13)

Substituting Eq. 10 in Eq. 13, we can simplify the above quantity as:
�(pdata, p✓, p✓,�) = Ex⇠pdata [� log(p✓(x)ŵ�(x)) + logZ✓,� + log p✓(x)] (14)

= Ex⇠pdata [log ŵ�(x)]� logEx⇠p✓ [ŵ�(x)]. (15)
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Table 1: Goodness-of-fit evaluation on CIFAR-10 dataset for PixelCNN++ and SNGAN. Standard
errors computed over 10 runs. Higher IS is better. Lower FID and KID scores are better.

Model Evaluation IS (") FID (#) KID (#)

- Reference 11.09 ± 0.1263 5.20 ± 0.0533 0.008 ± 0.0004

PixelCNN++ Default (no debiasing) 5.16 ± 0.0117 58.70 ± 0.0506 0.196 ± 0.0001
LFIW 6.68 ± 0.0773 55.83 ± 0.9695 0.126 ± 0.0009

SNGAN Default (no debiasing) 8.33 ± 0.0280 20.40 ± 0.0747 0.094 ± 0.0002
LFIW 8.57 ± 0.0325 17.29 ± 0.0698 0.073 ±0.0004

The above expression provides a necessary and sufficient condition for any positive real valued
function (such as the LFIW classifier in Section 3) to improve the KL divergence fit to the underlying
data distribution. In practice, an unbiased estimate of the LHS can be obtained via Monte Carlo
averaging of log- importance weights based on Dtrain. The empirical estimate for the RHS is however
biased.3 To remedy this shortcoming, we consider the following necessary but insufficient condition.
Proposition 1. If �(pdata, p✓, p✓,�) � 0, then the following conditions hold:

Ex⇠pdata [ŵ�(x)] � Ex⇠p✓ [ŵ�(x)], (16)
Ex⇠pdata [log ŵ�(x)] � Ex⇠p✓ [log ŵ�(x)]. (17)

The conditions in Eq. 16 and Eq. 17 follow directly via Jensen’s inequality applied to the LHS and
RHS of Eq. 15 respectively. Here, we note that estimates for the expectations in Eqs. 16-17 based on
Monte Carlo averaging of (log-) importance weights are unbiased.

5 Application Use Cases

In all our experiments, the binary classifier for estimating the importance weights was a calibrated
deep neural network trained to minimize the cross-entropy loss. The self-normalized LFIW in Eq. (7)
worked best. Additional analysis on the estimators and experiment details are in Appendices B and C.

5.1 Goodness-of-fit testing

In the first set of experiments, we highlight the benefits of importance weighting for a debiased
evaluation of three popularly used sample quality metrics viz. Inception Scores (IS) [27], Frechet
Inception Distance (FID) [28], and Kernel Inception Distance (KID) [29]. All these scores can be
formally expressed as empirical expectations with respect to the model. For all these metrics, we can
simulate the population level unbiased case as a “reference score" wherein we artificially set both the
real and generated sets of samples used for evaluation as finite, disjoint sets derived from pdata.

We evaluate the three metrics for two state-of-the-art models trained on the CIFAR-10 dataset viz.
an autoregressive model PixelCNN++ [10] learned via maximum likelihood estimation and a latent
variable model SNGAN [11] learned via adversarial training. For evaluating each metric, we draw
10,000 samples from the model. In Table 1, we report the metrics with and without the LFIW bias
correction. The consistent debiased evaluation of these metrics via self-normalized LFIW suggest
that the SIR approximation to the importance resampled distribution (Eq. 11) is a better fit to pdata.

5.2 Data Augmentation for Multi-Class Classification

We consider data augmentation via Data Augmentation Generative Adversarial Networks (DA-
GAN) [1]. While DAGAN was motivated by and evaluated for the task of meta-learning, it can also
be applied for multi-class classification scenarios, which is the setting we consider here. We trained a
DAGAN on the Omniglot dataset of handwritten characters [12]. The DAGAN training procedure is
described in the Appendix. The dataset is particularly relevant because it contains 1600+ classes but
only 20 examples from each class and hence, could potentially benefit from augmented data.

3If Ẑ is an unbiased estimator for Z, then log Ẑ is a biased estimator for logZ via Jensen’s inequality.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Qualitative evaluation of importance weighting for data augmentation. (a-f) Top row shows
held-out data samples from a specific class in Omniglot. Bottom row shows generated samples from
the same class ranked in decreasing order of importance weights.

Table 2: Classification accuracy on the Omniglot dataset. Standard errors computed over 5 runs.

Dataset Dcl Dg Dg w/ LFIW Dcl +Dg Dcl +Dg w/ LFIW

Accuracy 0.6603 ± 0.0012 0.4431 ± 0.0054 0.4481 ± 0.0056 0.6600 ± 0.0040 0.6818 ± 0.0022

Once the model has been trained, it can be used for data augmentation in many ways. In particular, we
consider ablation baselines that use various combinations of the real training data Dcl and generated
data Dg for training a downstream classifier. When the generated data Dg is used, we can either
use the data directly with uniform weighting for all training points, or choose to importance weight
(LFIW) the contributions of the individual training points to the overall loss. The results are shown in
Table 2. While generated data (Dg) alone cannot be used to obtain competitive performance relative
to the real data (Dcl) on this task as expected, the bias it introduces for evaluation and subsequent
optimization overshadows even the naive data augmentation (Dcl +Dg). In contrast, we can obtain
significant improvements by importance weighting the generated points (Dcl +Dg w/ LFIW).

Qualitatively, we can observe the effect of importance weighting in Figure 2. Here, we show true
and generated samples for 6 randomly choosen classes (a-f) in the Omniglot dataset. The generated
samples are ranked in decreasing order of the importance weights. There is no way to formally test
the validity of such rankings and this criteria can also prefer points which have high density under
pdata but are unlikely under p✓ since we are looking at ratios. Visual inspection suggests that the
classifier is able to appropriately downweight poorer samples, as shown in Figure 2 (a, b, c, d - bottom
right). There are also failure modes, such as the lowest ranked generated images in Figure 2 (e, f -
bottom right) where the classifier weights reasonable generated samples poorly relative to others.
This could be due to particular artifacts such as a tiny disconnected blurry speck in Figure 2 (e -
bottom right) which could be more revealing to a classifier distinguishing real and generated data.

5.3 Model-based Off-policy Policy Evaluation

So far, we have seen use cases where the generative model was trained on data from the same
distribution we wish to use for Monte Carlo evaluation. We can extend our debiasing framework to
more involved settings when the generative model is a building block for specifying the full data
generation process, e.g., trajectory data generated via a dynamics model along with an agent policy.

In particular, we consider the setting of off-policy policy evaluation (OPE), where the goal is to
evaluate policies using experiences collected from a different policy. Formally, let (S,A, r, P, ⌘, T )
denote an (undiscounted) Markov decision process with state space S, action space A, reward
function r, transition P , initial state distribution ⌘ and horizon T . Assume ⇡e : S ⇥ A ! [0, 1]
is a known policy that we wish to evaluate. The probability of generating a certain trajectory
⌧ = {s0,a0, s1,a1, ..., sT ,aT } of length T with policy ⇡e and transition P is given as:

p
?(⌧) = ⌘(s0)

T�1Y

t=0

⇡e(at|st)P (st+1|st,at). (18)

The return on a trajectory R(⌧) is the sum of the rewards across the state, action pairs in ⌧ : R(⌧) =P
T

t=1 r(st,at), where we assume a known reward function r.

7



Table 3: Off-policy policy evaluation on MuJoCo tasks. Standard error is over 10 Monte Carlo
estimates where each estimate contains 100 randomly sampled trajectories.

Environment v(⇡e) (Ground truth) ṽ(⇡e) v̂(⇡e) (w/ LFIW) v̂80(⇡e) (w/ LFIW)

Swimmer 36.7± 0.1 100.4± 3.2 25.7 ± 3.1 47.6 ± 4.8
HalfCheetah 241.7± 3.56 204.0± 0.8 217.8± 4.0 219.1 ± 1.6
HumanoidStandup 14170± 53 8417± 28 9372 ± 375 9221± 381

Figure 3: Estimation error �(v) = v(⇡e)� v̂H(⇡e) for different values of H (minimum 0, maximum
100). Shaded area denotes standard error over different random seeds.

We are interested in the value of a policy defined as v(⇡e) = E⌧⇠p⇤(⌧) [R(⌧)]. Evaluating ⇡e requires
the (unknown) transition dynamics P . The dynamics model is a conditional generative model of
the next states st+1 conditioned on the previous state-action pair (st,at). If we have access to
historical logged data D⌧ of trajectories ⌧ = {s0,a0, s1,a1, . . . , } from some behavioral policy
⇡b : S ⇥A! [0, 1], then we can use this off-policy data to train a dynamics model P✓(st+1|st,at).
The policy ⇡e can then be evaluated under this learned dynamics model as ṽ(⇡e) = E⌧⇠p̃(⌧)[R(⌧)],
where p̃ uses P✓ instead of the true dynamics in Eq. (18).

However, the trajectories sampled with P✓ could significantly deviate from samples from P due to
compounding errors [30]. In order to correct for this bias, we can use likelihood-free importance
weighting on entire trajectories of data. The binary classifier c(st,at, st+1) for estimating the
importance weights in this case distinguishes between triples of true and generated transitions.
For any true triple (st,at, st+1) extracted from the off-policy data, the corresponding generated
triple (st,at, ŝt+1) only differs in the final transition state, i.e., ŝt+1 ⇠ P✓(ŝt+1|st,at). Such a
classifier allows us to obtain the importance weights ŵ(st,at, ŝt+1) for every predicted state transition
(st,at, ŝt+1). The importance weights for the trajectory ⌧ can be derived from the importance weights
of these individual transitions as:

p
?(⌧)

p̃(⌧)
=

Q
T�1
t=0 P (st+1|st,at)Q
T�1
t=0 P✓(st+1|st,at)

=
T�1Y

t=0

P (st+1|st,at)
P✓(st+1|st,at)

⇡
T�1Y

t=0

ŵ(st,at, ŝt+1). (19)

Our final LFIW estimator is given as:

v̂(⇡e) = E⌧⇠p̃(⌧)

"
T�1Y

t=0

ŵ(st,at, ŝt+1) ·R(⌧)

#
. (20)

We consider three continuous control tasks in the MuJoCo simulator [15] from OpenAI gym [31]
(in increasing number of state dimensions): Swimmer, HalfCheetah and HumanoidStandup. High
dimensional state spaces makes it challenging to learning a reliable dynamics model in these environ-
ments. We train behavioral and evaluation policies using Proximal Policy Optimization [32] with
different hyperparameters for the two policies. The dataset collected via trajectories from the behavior
policy are used train a ensemble neural network dynamics model. We the use the trained dynamics
model to evaluate ṽ(⇡e) and its IW version v̂(⇡e), and compare them with the ground truth returns
v(⇡e). Each estimation is averaged over a set of 100 trajectories with horizon T = 100. Specifically,
for v̂(⇡e), we also average the estimation over 10 classifier instances trained with different random
seeds on different trajectories. We further consider performing IW over only the first H steps, and
use uniform weights for the remainder, which we denote as v̂H(⇡e). This allow us to interpolate
between ṽ(⇡e) ⌘ v̂0(⇡e) and v̂(⇡e) ⌘ v̂T (⇡e). Finally, as in the other experiments, we used the
self-normalized variant (Eq. (7)) of the importance weighted estimator in Eq. (20).

We compare the policy evaluations under different environments in Table 3. These results show that
the rewards estimated with the trained dynamics model differ from the ground truth by a large margin.
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By importance weighting the trajectories, we obtain much more accurate policy evaluations. As
expected, we also see that while LFIW leads to higher returns on average, the imbalance in trajectory
importance weights due to the multiplicative weights of the state-action pairs can lead to higher
variance in the importance weighted returns. In Figure 3, we demonstrate that policy evaluation
becomes more accurate as more timesteps are used for LFIW evaluations, until around 80 � 100
timesteps and thus empirically validates the benefits of importance weighting using a classifier. Given
that our estimates have a large variance, it would be worthwhile to compose our approach with
other variance reduction techniques such as (weighted) doubly robust estimation in future work [33],
as well as incorporate these estimates within a framework such as MAGIC to further blend with
model-free OPE [14]. In Appendix C.5.1, we also consider a stepwise LFIW estimator for MBOPE
which applies importance weighting at the level of every decision as opposed to entire trajectories.

Overall. Across all our experiments, we observe that importance weighting the generated samples
leads to uniformly better results, whether in terms of evaluating the quality of samples, or their utility
in downstream tasks. Since the technique is a black-box wrapper around any generative model, we
expect this to benefit a diverse set of tasks in follow-up works.

However, there is also some caution to be exercised with these techniques as evident from the results
of Table 1. Note that in this table, the confidence intervals (computed using the reported standard
errors) around the model scores after importance weighting still do not contain the reference scores
obtained from the true model. This would not have been the case if our debiased estimator was
completely unbiased and this observation reiterates our earlier claim that LFIW is reducing bias,
as opposed to completely eliminating it. Indeed, when such a mismatch is observed, it is a good
diagnostic to either learn more powerful classifiers to better approximate the Bayes optimum, or find
additional data from pdata in case the generative model fails the full support assumption.

6 Related Work & Discussion
Density ratios enjoy widespread use across machine learning e.g., for handling covariate shifts,
class imbalance etc. [9, 34]. In generative modeling, estimating these ratios via binary classifiers
is frequently used for defining learning objectives and two sample tests [19, 35, 35–41]. In partic-
ular, such classifiers have been used to define learning frameworks such as generative adversarial
networks [8, 42], likelihood-free Approximate Bayesian Computation (ABC) [43] and earlier work
in unsupervised-as-supervised learning [44] and noise contrastive estimation [43] among others.
Recently, [45] used importance weighting to reweigh datapoints based on differences in training
and test data distributions i.e., dataset bias. The key difference is that these works are explicitly
interested in learning the parameters of a generative model. In contrast, we use the binary classifier
for estimating importance weights to correct for the model bias of any fixed generative model.

Recent concurrent works [46–48] use MCMC and rejection sampling to explicitly transform or reject
the generated samples. These methods require extra computation beyond training a classifier, in
rejecting the samples or running Markov chains to convergence, unlike the proposed importance
weighting strategy. For many model-based Monte Carlo evaluation usecases (e.g., data augmentation,
MBOPE), this extra computation is unnecessary. If samples or density estimates are explicitly needed
from the induced resampled distribution, we presented a particle-based approximation to the induced
density where the number of particles is a tunable knob allowing for trading statistical accuracy with
computational efficiency. Finally, we note resampling based techniques have been extensively studied
in the context of improving variational approximations for latent variable generative models [49–52].

7 Conclusion
We identified bias with respect to a target data distribution as a fundamental challenge restricting
the use of generative models as proposal distributions for Monte Carlo evaluation. We proposed a
bias correction framework based on importance weighting. Here, any base generative model can
be boosted with an importance weight estimator to induce an energy-based generative model. The
importance weights are estimated in a likelihood-free fashion via a binary classifier. Empirically, we
find the bias correction to be useful across a variety of tasks including goodness-of-fit sample quality
tests, data augmentation, and off-policy policy evaluation. The ability to characterize the bias of a
generative model is an important step towards using these models to guide decisions in high-stakes
applications under uncertainty [53, 54], such as healthcare [55–57] and anomaly detection [58, 59].
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