
We thank the reviewers for their careful consideration and their feedback, our replies are provided below. We hope the1

reviewers will consider improving the scores based on our responses and the extensions we plan to include in the paper.2

Reviewer #1: Contributions of our work: Our paper contributes to the understanding of first order methods and leads3

to novel accelerated algorithms. Our algorithms (M-ASG and M-ASG*) not only lead to optimal iteration complexity but4

also perform well in practice as illustrated by our experiments. Therefore, we believe our paper contributes to both theory5

and practice of accelerated SGD methods. On the technical side, we first obtain a tight characterization of the trade-off6

between bias and variance terms for a one-stage algorithm with constant stepsize. Building on this result and choosing the7

stage length and stepsize carefully at each stage, we can achieve optimal iteration complexity through a simple multistage8

algorithm without knowing the noise characteristics as opposed to previous approaches in the literature. Clarity of9

Sections 2 & 3: We will move parts of the technical results to the appendix and add more high-level discussions about10

our results for a smoother reading, thanks for the suggestion. Relaxing our noise assumption: Assumption H2 of Bach11

& Moulines states that each unbiased estimate of gradient is Lipschitz. As a result, Assumptions H2 and H4 together12

implies that there exist constants σ1, σ2 > 0 such that E[‖∇̃f(xn, wn)−∇f(xn)‖2 | |xn] ≤ σ2
1 +σ2

2‖xn−x∗‖2. Our13

analysis also extends to this noise model and we thank the reviewer for suggesting this. We will add a detailed section14

in the appendix to elaborate on this. Here, due to the space limit, we explain the idea briefly: Note that Lemma 2.215

holds for this noise model as well if σ2 is replaced by σ2
1 + σ2

2E[‖yk − x∗‖2] because of the conditional expectation16

technique that we use in the proof. Plugging yk = Cξk, the result of Theorem 2.3 for α ≤ 1/L will be replaced by17

E [VPα(ξk+1)] ≤ (1−√αµ)E [VPα(ξk)] + 2σ2
1α+ σ2

2E[(ξk − ξ∗)>(C>C)(ξk − ξ∗)]. The rest of the proof follows18

similarly by considering the Lyapunov function VQα instead where Qα := Pα + 2ασ2
2C
>C. Moreover, we can derive19

an extended version of Lemma 3.3, for the case σ2 > 0, showing that E[VQαk+1
(ξk+1

1 )] ≤ (2 + 4ασ2
2/µ)E[VQαk ].20

Reviewer #2: Comments: We thank the reviewer for positive and insightful comments. We will fix the typo in Eq. (32).21

The aim of Corollary 3.2 is to provide an immediate result of Theorem 3.1 and also show the need for a multistage22

scheme for achieving the optimal bound. We will add more details on this. The reviewer is also absolutely right that23

there is a typo in line (132). Since x0 = x−1, as shown in the proof of Lemma 3.3, we can bound the Lyapunov function24

by 2(f(x0)− f∗) where the constant 2 is missing. When µ is not available: We thank the reviewer for pointing out25

this case. Please see the second part of our response to Reviewer #3. In particular, in Theorem 1 below, we show how26

our analysis can directly imply an immediate performance bound for convex objective functions. This result can also be27

used when µ is not available. We will add this result with a complementary discussion to our paper.28

Reviewer #3: Indeed [8] studies both convex and strongly convex cases. Our focus in this paper is to obtain the optimal29

rate for strongly convex functions. In what follows, we first summarize the differences of our work with µ-AGD for30

the case of strongly convex objectives and then briefly explain how our results can be directly applied for the convex31

case as well. Comparison with [8]: As the authors in [8] explain in Corollary B.5 and the discussion after that, their32

error bound for strongly convex objective functions, after n iterations, is given by O( p+1
np+1

(L−µ)‖x0−x∗‖2
2 + (p+1)2

pn
σ2

µ )33

where p is a positive integer. Hence, µ-AGD does not achieve the optimal bias and variance terms simultaneously.34

Moreover, given the number of iterations n, the authors suggest choosing p = log(n) which leads to super-polynomial35

term in bias (yet not exponential) while the variance term would be a logarithmic factor off from optimal. However, by36

Theorem 3.4, our algorithm admits the bound O( (p
√
κ)pexp(−n1/

√
κ)

np (f(x0)− f∗) + p
n
σ2

µ ) for any p ≥ 2. This result37

not only recovers the µ-AGD result by choosing n1 = p
√
κ log(κp), but also, for a given number of iterations n, can38

achieve the optimal bias and variance terms simultaneously by choosing p = 2 and n1 = O( nC ) for some constant39

C ≥ 2. Results for the convex case: For unconstrained optimization, and without the knowledge of noise parameter40

σ2, [8] achieves the rate O( 1√
n
) in both bias and variance terms (see last part of Corollary 3.9 and also Corollary 4.1 in41

[8]). As we state below, a direct application of our current results recovers a similar result to [8] up to a log factor. We42

leave achieving the optimal rate for convex case for future work.43

Theorem 1. Let f be a convex function. Consider running M-ASG for one stage with n iterations and stepsize44

α1 = (logn)2

n3/2L
. Then, E

[
f(x1n+1)

]
− f∗ ≤ 2/

√
n(f(x0)− f∗ + L‖x0 − x∗‖2) + σ2 log n/(

√
nL) for n ≥ 2.45

Proof. We provide a sketch of the proof, and will add more details in our paper. Let fλ(x) := f(x) + λ/2‖x− x0‖246

with λ = L/(
√
n− 1). Note fλ ∈ Sλ,L+λ, and thus, using Theorem 3.1 with c = log n/n3/4 and κ =

√
n implies47

E
[
fλ(x

1
n+1)

]
− f∗

λ ≤ E [VPα(ξn+1)] ≤ exp(−n c√
κ
)E [VPα(ξ1)] +

σ2√κc
L+ λ

≤ 1

n
E [VPα(ξ1)] +

σ2 logn√
nL

.

Now, using the fact that x0 = x−1, and similar to the proof of Lemma 3.3, we can show E[VPα(ξ1)] ≤ 2(fλ(x0)−f∗λ) =48

2(f(x0) − f∗λ). Using this, along with f(x1n+1) ≤ fλ(x
1
n+1), implies E[f(x1n+1)] − (1 − 2/n)f∗λ ≤ 2/nf(x0) +49

σ2 log n/(
√
nL). Finally, using the bound f∗λ ≤ fλ(x∗) = f∗ + λ/2‖x0 − x∗‖2 completes the proof.50

In addition, we can improve this result in term of the dependency to n for the bounded domain case with using a51

projection at each step (see Section 5.4 in [23] for a similar result in the deterministic case). The main idea is to use52

the argument above in a multistage scheme with decreasing λ while going from one stage to the next one. Using the53

bounded domain assumption, we can rewrite Lemma 3.3 to stitch stages together.54


