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Abstract

Cross-lingual word vector space alignment is the task of mapping the vocabularies
of two languages into a shared semantic space, which can be used for dictionary
induction, unsupervised machine translation, and transfer learning. In the unsu-
pervised regime, an initial seed dictionary is learned in the absence of any known
correspondences between words, through distribution matching, and the seed
dictionary is then used to supervise the induction of the final alignment in what is
typically referred to as a (possibly iterative) refinement step. We focus on the first
step and compare distribution matching techniques in the context of language pairs
for which mixed training stability and evaluation scores have been reported. We
show that, surprisingly, when looking at this initial step in isolation, vanilla GANs
are superior to more recent methods, both in terms of precision and robustness.
The improvements reported by more recent methods thus stem from the refinement
techniques, and we show that we can obtain state-of-the-art performance combining
vanilla GANs with such refinement techniques.

1 Introduction

A word vector space — sometimes referred to as a word embedding — associates similar words in a
vocabulary with similar vectors. Learning a projection of one word vector space into another, such
that similar words — across the two word embeddings — are associated with similar vectors, is useful
in many contexts, with the most prominent example being the alignment of vocabularies of different
languages, i.e., word translation. This is a key step in machine translation of low-resource languages
(Lample et al., [2018).

Projections between word vector spaces have typically been learned from seed dictionaries. In
seminal papers (Mikolov et al., 2013} [Faruqui and Dyer, [2014; |Gouws and Sg¢gaard, [2015), these
seeds would comprise thousands of words, but/Vuli¢ and Korhonen|(2016) showed that we can learn
reliable projections from as little as 50 words. |Smith et al.|(2017) and [Hauer et al.[(2017) subsequently
showed that the seed can be replaced with just words that are identical across languages; and |Artetxe
et al.[(2017)) showed that numerals can also do the job, in some cases; both proposals removing the
need for an actual dictionary. Even more recently, entirely unsupervised approaches to projecting
word vector spaces onto each other have been proposed, which induce seed dictionaries in the absence
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‘ INITIALIZATION AND OPTIMIZATION STEPS

Authors \ Unsupervised step Supervised step  Extras
Barone| (2016) ‘ GAN None

Zhang et al.[(2017) Wasserstein GAN Procrustes

Conneau et al.[(2018) GAN Procrustes

Hoshen and Wolf](2018) ICP Procrustes Restarts

Alvarez-Melis and Jaakkolal (2018)) | Gromov-Wasserstein  Procrustes
Artetxe et al.| (2018))
Yang et al.|(2018) Gromov-Wasserstein ~ MMD

Xu et al.| (2018)) GAN Sinkhorn Back-translation
Grave et al.[(2018) Gold-Rangarajan Sinkhorn

Gromov-Wasserstein ~ Stochastic

Table 1: Approaches to unsupervised alignment of word vector spaces. We break down these
approaches in two steps (and extras): (1) Unsupervised distribution matching for seed dictionary
learning): (W)GANSs, ICP, Gromov-Wasserstein initialization, and the convex relaxation proposed in
Gold and Rangarajan|(1996). (2) Supervised refinement: Procrustes, stochastic dictionary induction,
maximum mean discrepancy (MMD), and the Sinkhorn algorithm.

of any known correspondences between words, using distribution matching techniques. These seed
dictionaries are then used as supervision for alignment algorithms based on, e.g., Procrustes Analysis
Schonemann| (1966)). These unsupervised systems, in other words, typically combine two steps: an
unsupervised step of distribution matching and a (possibly iterative) (pseudo-)supervised step of
refinement, based on a seed dictionary learned in the first step. See Table 1 for an overview.

The first unsupervised dictionary induction (UBDI) systems (Barone} [2016; [Zhang et al.l 2017}
Conneau et al.,[2018)) were based on Generative Adversarial Networks (GANs) (Goodfellow et al.|
2014). These approaches learn a linear transformation to minimize the divergence between a target
distribution (say French word embeddings) and a source distribution (the English word embeddings
projected into the French space). GAN-based approaches achieve impressive results for some
language pairs (Conneau et al.| 2018)), but show instabilities for others. In particular, |Sggaard et al.
(2018)) presented results suggesting that GAN-based UBDI is difficult for some language pairs
exhibiting very different morphosyntactic properties, as well as when the monolingual corpora are
very different. Recently, a range of unsupervised approaches that do not rely on GANSs have been
proposed (Artetxe et al., 2018 [Hoshen and Wolf], 2018}; |Grave et al.,[2018)) in the hope they would
provide a more robust alternative. In this paper, we show none of these are more robust on the
language pairs we consider. Instead we propose a simple technique for making (vanilla) GAN-based
UBDI more robust and show that combining this with a recently proposed refinement technique —
stochastic dictionary induction (Artetxe et al., 2018)) — leads to state-of-the-art performance in UBDI.

Contributions We present the first systematic comparison of (a subset of) recently proposed
methods for UBDI. These methods are two-step pipelines of unsupervised distribution matching for
seed induction and supervised refinement. While the authors typically introduce new approaches to
both steps (see Table 1), distribution matching and refinement are independent, and in this paper,
we focus on the distribution matching step - by either omitting refinement or using the same
refinement method across different distribution matching, or seed dictionary induction methods. On
the language pairs considered here, vanilla GANs are superior to more recently improved distribution
matching techniques. Moreover, we show that using an unsupervised model selection method, we can
often pick out the best vanilla GAN runs in the absence of cross-lingual supervision. Since vanilla
GANSs thus seem to remain an interesting technique for inducing seed dictionaries, we explore what
causes the instability of vanilla GAN seed induction, by looking at how they perform on simple
transformations of the embedding spaces, and by using a combination of supervised training and
model interpolation to analyze the loss landscapes. The results lead us to conclude that the instability
is caused by a mild form of mode collapse, that cannot easily be overcome by changes in the number
of parameters, batch size, and learning rate. Nevertheless, vanilla GANs with unsupervised model
selection seem superior to more recently proposed methods, and we show that when combined with a
state-of-the-art refinement technique, vanilla GANs with unsupervised model selection is superior to
these methods across the board.



2 GAN:-initialized UBDI

In this section, we discuss the dynamics of GAN-based UBDI. While the idea of using GANSs for
UBDI originates with Barone| (2016)), we refer to (Conneau et al.| (2018)) as the canonical imple-
mentation of GAN-based UBDI. Note that GANSs are not a necessary component to unsupervised
distribution matchning for alignment of vector spaces, albeit a popular approach (Baronel 2016
Conneau et al., 2018} |Zhang et al., 2017). In §3, we briefly discuss how GAN-based initialization
compares to the alternative of using point set registration techniques (Hoshen and Wolf, [2018)) and
related strategies.

A GAN consists of a generator and a discriminator (Goodfellow et al,[2014). The generator G is
trained to fool the discriminator D. The generator can be any differentiable function; in/Conneau et al.
(2018), it is a linear transform €2. Let e € F be an English word vector, and f € F' a French word
vector, both of dimensionality d. The goal of the generator is then to choose © € R%*? such that QO F
has a distribution close to F'. The discriminator is a map D,, : X — {0, 1}, implemented in|{Conneau
et al.| (2018)) as a multi-layered perceptron. The objective of the discriminator is to discriminate
between vector spaces F' and QE. During training, the model parameters €2 and w are optimized
using stochastic gradient descent by alternately updating the parameters of the discriminator based
on the gradient of the discriminator loss and the parameters of the generator based on the gradient of
the generator loss, which, by definition, is the inverse of the discriminator loss. The loss function
used in|Conneau et al.|(2018) and in our experiments below is cross-entropy. In each iteration, we
sample N vectors e € F and N vectors f € F and update the discriminator parameters w according

0w —w+aYr, Viog Dy(f;) +log(1 — Duy(Ga(es)].

Theoretically, the optimal parameters are a solution to the min-max problem:
ming max,, E[log(D.,,(F)) + log(1 — D, (Ga(E)))], which reduces to ming JS(Pr | Pa). If a
generator wins the game against an ideal discriminator on a very large number of samples, then F'
and QF can be shown to be close in Jensen-Shannon divergence, and thus the model has learned the
true data distribution. This result, referring to the distributions of the data, p44t4, and the distribution,
Dy, G is sampling from, is from|Goodfellow et al.|(2014): If G and D have enough capacity, and at
each step of training, the discriminator is allowed to reach its optimum given G, and p, is updated so
as to improve the criterion Fxp,,,, [log D (x)] then p, converges to pgq:,. This result relies on a
number of assumptions that do not hold in practice. The generator in|Conneau et al.|(2018]), which
learns a linear transform €2, has very limited capacity, for example, and we are updating (2 rather
than p,. In practice, therefore, during training, Conneau et al|(2018) alternate between k steps of
optimizing the discriminator and one step of optimizing the generator. Another common problem
with training GANSs is that the discriminator loss quickly drops to zero, when there is no overlap
between py and pgqi, (Arjovsky et all|2017); but note that in our case, the discriminator is initially
presented with IE and F, for which there is typically no trivial solution, since the embedding
spaces are likely to overlap. We show in §4 that the discriminator and generator losses are poor
model selection criteria, however; instead we propose a simple criterion based on cosine similarities
between nearest neighbors in the learned alignment.

From QF and F, a seed (bilingual) dictionary can be extracted using nearest neighbor queries, i.e.,
by asking for the nearest neighbor of Q2F in F’, or vice versa. (Conneau et al.| (2018) use a normalized
nearest neighbor retrieval method to reduce the influence of hubs (Radovanovic et al.,|2010;|Dinu et al.}
2015)). The method is called cross-domain similarity local scaling (CSLS) and used to expand high-
density areas and condense low-density ones. The mean similarity of a source language embedding
Qe to its k nearest neighbors in the target language is defined as pf;(Q(e)) = + Ele cos(e, f;),
where cos is the cosine similarity. 1z (f;) is defined in an analogous manner for every i. CSLS(e, f;)
is then calculated as 2 cos(e, f;) — pp(Q(e)) — pr(f;). |[Conneau et al.[(2018) use an unsupervised
validation criterion based on CSLS. The translations of the top £ (10,000) most frequent words in the
source language are obtained with CSLS and average pairwise cosine similarity is computed over
them. This metric is considered indicative of the closeness between the projected source space and
the target space, and is found to correlate well with supervised evaluation metrics. After inducing a
bilingual dictionary, E4 and Fy, by querying QF and F' with CSLS, |Conneau et al.|(2018)) perform a
refinement step based on Procrustes Analysis (Schonemann) [1966)). Here, the optimal mapping 2
that maps the words in the seed dictionary onto each other, is computed analytically as Q = UV T,
where U and V are obtained via the singular value decomposition UX V7T of F dT Ey.



3 Alternatives to GAN-initialized UBDI

This section introduces some recent alternatives to (vanilla) GAN-initialized UBDI. In Table 1, we
list more approaches and classify them by how they perform unsupervised distribution matching and
supervised refinement.

Iterative closest point  The idea of minimizing nearest neighbor distances for unsupervised model
selection is also found in point set registration and lies at the core of iterative closest point (ICP)
optimization (Besl and McKay, [1992). ICP typically minimizes the A, distance (mean squared error)
between nearest neighbor pairs. The ICP optimization algorithm works by assigning each transformed
vector to its nearest neighbor and then computing the new relative transformation that minimizes
the cost function with respect to this assignment. ICP can be shown to converge to local optima
(Besl and McKay, [1992)), in polynomial time (Ezra et al., 2006). ICP easily gets trapped in local
optima, however, exact algorithms only exist for two- and three-dimensional point set registration,
and these algorithms are slow (Yang et al.,|2016). Generally, it holds that the optimal solution to
the GAN min-max problem is also optimal for ICP. To see this, note that a GAN minimizes the
Jensen-Shannon divergence between F' and (2F. The optimal solution to this is ' = QFE. As sample
size goes to infinity, this means the L, loss in ICP goes to 0. In other words, the ICP loss is minimal
if an optimal solution to the UBDI min-max problem is found. ICP was independently proposed for
UBDI in|Hoshen and Wolf] (2018)). They report their method only works using PCA initialization,
i.e. they project a subset of both sets of word embeddings onto the 50 first principal components,
and learn an initial seed dictionary using ICP on the lower-dimensional embeddings. This seed
mapping is then used as starting point for ICP on the full word embeddings. We explored PCA
initialization for GAN-based distribution matching, but observed the opposite effect, namely that
PCA initialization leads to a degradation in performance. The most important thing to note from
Hoshen and Wolf] (2018)), however, is that they do 500 random restarts of the PCA initialization to
obtain robust performance; ICP, in other words, is extremely sensitive to initialization. This explains
their poor performance under our experimental protocol below (Table 2).

Wasserstein GAN |Zhang et al.|(2017) were the first to introduce Wasserstein GANs as a way to
learn seed dictionaries in the context of UBDI. In their best system, they train simple Wasserstein
GANSs and use the resulting seed dictionaries to supervise Procrustes Analysis. We modified the
MUSE code to experiment with Wasserstein GANS in a controlled way. Simple Wasserstein GANs
were unsuccessful, but with gradient penalty (Gulrajani et al.,|2017)), we obtained almost competitive
results, after tuning the learning rate and the gradient penalty A using nearest neighbor cosine distance
as validation criterion. On the other hand, the results were not significantly better, and instability did
not improve. Finally, we experimented with CT-GANs (Wei et al., 2018)), an extension of Wasserstein
GANs with gradient penalty, but this only lowered performance and increased instability. Since
Wasserstein GANs and CT-GANs were consistently worse and less stable than vanilla GANs, we do
not include them in the experiments below.

Gromov-Wasserstein |Alvarez-Melis and Jaakkolal (2018)) present a very different initialization
strategy. In brief, /Alvarez-Melis and Jaakkola (2018) learn a linear transformation to minimize
Gromov-Wasserstein distances of distances between nearest neighbors, in the absence of cross-
lingual supervision. We report the performance of their system in the experiments below, but results
(Table 2) were all negative. We think the reason is that |Alvarez-Melis and Jaakkolal (2018)) only
consider small subsamples of the vector spaces, and that in hard cases, alignments induced on
subspaces are unlikely to scale. It achieved an impressive P@1 of 85.6 on the Greek MUSE dataset
(Conneau et al.| (2018)) obtain 59.5); but on the datasets, where |(Conneau et al.[|(2018)) are instable,
considered here, it consistently fails to align the vector spaces.

Artetxe et al.| (2018)) introduce a very simple, related initialization method that is also based on
Gromov-Wasserstein distances of distances between nearest neighbors: They use these second-order
distances to build a seed dictionary directly by aligning nearest neighbors across languages. By itself,
this is a poor initialization method (see Table 2). |Artetxe et al.|(2018)), however, combine this with a
new refinement method called stochastic dictionary induction, i.e., randomly dropping out dimensions
of the similarity matrix when extracting a seed dictionary for the next iteration of Procrustes Analysis.
Artetxe et al.| (2018) show in an ablation study for one language pair (English-Finnish) that the
initialization method only works in combination with the stochastic dictionary induction step, i.e.,



TO ENGLISH

et fa fi Iv tr vi av

max fail max fail max fail max fail max fail max fail max fail

NO REFINEMENT

Conneau et al.|(2018) GAN 64 9 225 3 285 1 143 9 321 2 24 9 177 55
Hoshen and Wolf|(2018) ICp 0.1 10 0 10 0 10 0 10 0 10 0 10 0 10
Artetxe et al.|(2018) GW 0 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10

Alvarez-Melis and Jaakkola|(2018) GW 0 10 0 10 0 10 0 10 0 10 0 10 0 10
WITH PROCRUSTES REFINEMENT

Conneau et al.|(2018) GAN 275 9 409 3 58.9 1 332 9 606 2 513 9 454 55
Hoshen and Wolf|(2018) ICP 0.1 10 0 10 0 10 0 10 0 10 0 10 0 10
Artetxe et al.|(2018) GW 1.1 10 402 O 605 O 0.1 10 596 0 03 10 270 5

Alvarez-Melis and Jaakkola|(2018) GW 0 10 0 10 0 10 0 10 0 10 0 10 0 10

Table 2: Comparisons of unsupervised seed dictionary learning strategies in the absence of refinement
(upper half) or using the same refinement technique (orthogonal Procrustes) (lower half). For results
with refinement, we use GANs, ICPs, and Gromov-Wasserstein (GW) distribution matching and
feed seed dictionaries to Procrustes refinement. We then report maximum performance (P@1) and
stability (fails) across 10 runs. We consider a P@1 score below 2% a failure. The results suggest that
GAN:g, in spite of their instability, have the highest potential for inducing useful seed dictionaries.

without the application of stochasticity, the induced mapping is degenerate. In our experiments below,
we show that this finding generalizes to other language pairs, suggesting that the stochastic dictionary
induction is the main contribution in their work. We show that when combined with vanilla GANs
for the initial step of learning a seed dictionary through distribution matching, stochastic dictionary
induction performs even better.

Convex Relaxation The Gold-Rangarajan relaxation is a convex relaxation of the (NP-hard) graph
matching problem and can be solved using the Frank-Wolfe algorithm. Once the minimal optimizer
is computed, an initial transformation is obtained using singular-value decomposition. The Gold-
Rangarajan relaxation can thus be used for stable learning of seed dictionaries |Grave et al.| (2018)).
It remains an open question how this strategy fairs on challenging language pairs such as the ones
included here. We would have liked to include this approach in our experiments, but the code was not
publicly available at the time of writing.

Properties of Unsupervised Alignment Algorithms The above approaches provably work if the
two vector spaces to be aligned, are isomorphic, except for the pathological case where the vectors are
placed on an equidistant grid forming a sphereE] A function (2 from F to F'is a linear transformation
it Q(f +g) = Q(f) + Qg) and Q(kf) = kQ(f) for all elements f, g of E, and for all scalars k.
An invertible linear transformation is called an isomorphism. The two vector spaces E and F' are
called isomorphic, if there is an isomorphism from E to F'. Equivalently, if the kernel of a linear
transformation between two vector spaces of the same dimensionality contains only the zero vector, it
is invertible and hence an isomorphism. Most work on supervised or unsupervised alignment of word
vector spaces relies on the assumption that they are approximately isomorphic, i.e., isomorphic after
removing a small set of vertices (Mikolov et al.,|2013; Baronel 2016} |Zhang et al.,|2017;|Conneau
et al., [2018). It is not difficult to show that many pairs of vector spaces are not approximately
isomorphic, however. See |Sggaard et al.|(2018) for examples.

'In this case, there is an infinite set of equally good linear transformations (rotations) that achieve the same
training loss. Similarly, for two binary-valued, n-dimensional vector spaces with one vector in each possible
position. Here the number of local optima would be 2", but since the loss is the same in each of them the loss
landscape is highly non-convex, and the basin of convergence is therefore very small (Yang et al.|[2016). The
chance of aligning the two spaces using gradient descent optimization would be 2% In other words, minimizing
the Jensen-Shannon divergence between the word vector distributions, even in the easy case, is not always
guaranteed to uncover an alignment between translation equivalents. From the above, it follows that alignments
between linearly alignable vector spaces cannot always be learned using UBDI methods. In §3.1, we test for
approximate isomorphism to decide whether two vector spaces are linearly alignable.§3.2-3.3 are devoted to
analyzing when alignments between linearly alignable vector spaces can be learned.



4 Experiments

In our experiments, we focus on aligning word vector spaces between two languages, by projecting
from the foreign language into English. Our languages are: Estonian (et), Farsi (fa), Finnish (fi),
Latvian (lv), Turkish (tr), and Vietnamese (vi). This selection of languages is motivated by observed
instability when training vanilla GANSs, e.g.,[Sggaard et al.[|(2018)). In addition, the languages span
four language families: Finno-Ugric (et, fi), Indo-European (fa, 1v), Turkic (tr), and Austroasiatic (vi).

Data In all our experiments, we use pretrained FastText embeddings (Bojanowski et al.,|2017) and
the bilingual test dictionaries released along with the MUSE system)| The FastText embeddings are
trained on Wikipedia dumpf]; the bilingual dictionaries were created using an in-house Facebook
translation tool and contain translations for 1500 test words for each language pair. Since we cannot
do reliable hyper-parameter optimization in the absence of cross-lingual supervision, we use MUSE
with the default parameters (Conneau et al.,|2018)). For the experiments with stochastic dictionary
induction (Table , we use the implementation in the VecMap framework (Artetxe et al., ZOIS)EI

4.1 Comparison of distribution matching strategies

Our main experiments, reported in Table 2, compare the initialization strategies listed in Table 2:
vanilla GANSs, the two varieties of Gromov-Wasserstein (see §3), and ICPE] Table 2 is split in two:
First we report the performance, measured as precision at one, in the absence of refinement; and
then we report the performance with refinement, using the same refinement technique (Procrustes
Analysis) across the board. For all the randomly initialized algorithms (the first three), we report the
best of 10 runs and the number of fails, where fails are runs with scores lower than 2%@ The reported
scores are P@1, i.e., the fraction of words whose neighbors are translation equivalents.

We believe it is crucial to evaluate the different techniques this way, instead of simply comparing the
numbers reported in the relevant papers: First of all, no three of these authors report performance
on the same datasets. Secondly, if the authors use different refinement techniques, it is impossible
to see the impact of the initialization strategies in the reported numbers. Instead we control for the
refinement techniques and study the distribution matching techniques in Table 1 in isolation. This
means, for example, that we evaluate the |Artetxe et al.|(2018)) in the absence of stochastic dictionary
induction, and [Hoshen and Wolf (2018) in the absence of 500 random restarts. In §4.2 (Table 3), we
compare vanilla GANs and Gromov-Wasserstein in the context of stocastic dictionary induction.

The patterns in Table 2 are very consistent. Vanilla GAN distribution matching is very instable,
with 1/10 fails for Finnish and Turkish, but 6, 7 and 9 fails for Estonian, Latvian, and Vietnamese,
respectively. All other methods are more instable, however, with the distribution matching techniques
in|Hoshen and Wolf| (2018) and |Alvarez-Melis and Jaakkola| (2018)) failing across the board, with or
without supervised Procrustes refinement. Vanilla GAN distribution matching also leads to higher
precision for 5/6 language pairs.

Vanilla GAN distribution matching thus seems to have the highest potential for inducing useful seed
dictionaries among all these methods. If we could only manage their instability, GANs seem to
provide us with a better point of departure. This naturally leads us to ask: Is it feasible to select good
vanilla GAN UBDI runs from a batch of random restarts, in the absence of cross-lingual supervision?
This question is explored in §4.2, in which we also explore whether state-of-the-art performance
can be achieved with vanilla GANs and a more advanced refinement technique, namely stochastic
dictionary induction.

https://github.com/facebookresearch/MUSE

*https://fasttext.cc/docs/en/pretrained-vectors.html

*nttps://github.com/artetxem/vecmap

SWe ignore Wasserstein GANs, which proved more instable than vanilla GANs in our preliminary experi-
ments, as well as Gold-Rangarajan, which performs considerably below current state of the art.

%1n practice, performance tends to be much higher than 2% for successful runs, hence slight changes in the
threshold value would not affect results.


https://github.com/facebookresearch/MUSE
https://fasttext.cc/docs/en/pretrained-vectors.html
https://github.com/artetxem/vecmap

| PROCRUSTES | STOCHASTIC DICTIONARY INDUCTION

| C-MUSE | C-MUSE Artetxe et al.|(2018)

et-en 27.5 47.6 47.6
fa-en 40.9 41.5 40.2
fi-en 58.9 62.5 63.6
lv-en 33.2 44.1 41.6
tr-en 60.6 62.8 60.6
vi-en 51.3 54.3 0.3

average | 454 | 521 423

Table 3: Comparison of MUSE with cosine-based model selection over 10 random restarts (C-MUSE)
with and without stochastic dictionary induction (with suggested hyper-parameters from |Artetxe
et al.| (2018))), against state of the art. Using vanilla GANs is better than Gromov-Wasserstein on
average and better on 4/6 language pairs.

4.2 GAN distribution matching with random restarts

Exploring this question we found that the discriminator loss during training, which is used as a
model selection criterion in Daskalakis et al.| (2018)), is a poor selection criterion. However, we did
find another unsupervised model selection criterion that correlates well with UBDI performance:
cosine similarity of (induced) nearest neighbors. This criterion is also used as a stopping criterion in
Conneau et al.|(2018]), and can be used with or without CSLS scaling. This stopping criterion in fact
turns out to be a quite robust model selection criterion for picking the best out of n random restarts.

In Table 3, we compare MUSE with 10 random restarts and using CSLS cosine similarity of nearest
neighbors as an unsupervised model selection criterion, to the full state-of-the-art model in |Artetxe
et al.[(2018)) with stochastic dictionary induction. What we see in these results, is that|Artetxe et al.
(2018) is still superior to MUSE with random restarts, but even with 10 restarts, the gap narrows
considerably, and MUSE is better on 2/6 languages. Note, however, that this is a comparison of
two systems using two different refinement techniques. If we combine vanilla GAN distribution
matching from MUSE with the stochastic dictionary induction technique from |Artetxe et al.| (2018)),
we obtain slightly better performance than Artetxe et al.|(2018) (Table 3, mid-column): While overall
improvements are small, compared to the differences in seed dictionary quality, the combination of
vanilla GANs for distribution matching and stochastic dictionary induction provides a promising and
fully competitive alternative to the state of the art for unsupervised word translation.

4.3 Discussion and Further Experiments

We have shown that while vanilla GANs are instable, they carry a seemingly unique potential for
UBDI. We have shown that a simple unsupervised cosine-based model selection criterion can achieve
robust state-of-the-art performance. We have performed several other experiments to probe this
instability in search of ways to stabilize vanilla GANs without significant performance drops. This
subsection summarizes these experiments.

Normalization We observed that GAN-based UBDI becomes more instable and performance
deteriorates with unit length normalization. We performed unit length normalization (ULN) of all
vectors X, i.e., X' = ﬁ, which is often used in supervised bilingual dictionary induction (Xing

et al.,[2015} |Artetxe et al.,|2017). We used this transform to project word vectors onto a sphere — to
control for shape information. If vectors are distributed smoothly over two spheres, there is no way
to learn an alignment in the absence of dictionary seed; in other words, if vanilla GAN distribution
matching is unaffected by this transform, vanilla GANs learn from density information alone. While
supervised methods are insensitive to or benefit from ULN, we find that vanilla GANs are very
sensitive to such normalization; in fact, the number of failed runs over six languages increases from
below 50% to 90%. For example, while for Finnish, MUSE only fails in 1/10 runs, MUSE with
ULN failed across the board; for Farsi, MUSE with ULN failed in 6/10 runs, compared to 3/10. We
verify that supervised alignment is not affected by ULN by running Procrustes refinement with a seed
dictionary as supervision; here, performance remains unchanged under this transformation.
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Figure 1: Discriminator loss averaged over all training data points (green), P@1 on the test data
points (blue) and mean cosine similarity (red) on the training data — for generator parameters on the
line segment that connects the unsupervised GAN solution with the supervised Procrustes Analysis
solution. « is the interpolation parameter moving the generator parameters from the unsupervised
GAN solution (o = 0) to the supervised solution (o = 1).

Noise injection On the contrary, GAN-based UBDI is largely unaffected by noise injection. We
saw this from running experiments on a few languages, but do not report performance across the
board. Specifically, we add 25% random vectors, randomly sampled from a hypercube bounding the
vector set. GAN-based UBDI results are not affected by noise injection. This, we found, is because
the injected vectors rarely end up in the seed dictionaries used for subsequent refinement.

Over-parameterization GAN training is instable because discriminators end up in poor local
optima or saddle points (see below). A known technique for escaping local optima is over-
parameterization (Brutzkus et al 2018). We experimented with widening our discriminators to
smoothen the loss landscape. Results were mixed, with more stability and better performance on
some languages, and less stability and worse performance on others. We provide the full list of results
in the Appendix.

Large batches and small learning rates Previous work has shown that large learning rate and
small batch size contribute towards SGD finding flatter minima (Jastrzebski et al., |2018)), but in
our experiments, we are interested in the discriminator not ending up in flat regions, where there
is no signal to update the generator. We therefore experiment with (higher and) smaller learning
rate and (smaller and) larger batch sizes. The motivation behind both is decreasing the scale of
random fluctuations in the SGD dynamics (Smith and Le| 2017} |Balles et al., 2017)), enabling the
discriminator to explore narrower regions in the loss landscape. Increasing the batch size or varying
the learning rate (up or down), however, leads to worse performance, and it seems the MUSE default
hyperparameters are close to optimal. We provide the full list of results in the Appendix.

Exploring the loss landscapes GAN training instability arises from discriminators getting stuck in
saddle points, where neither the discriminator nor the generator has a learning signals. To show this,
we analyze the discriminator loss in areas of convergence by plotting it as a function of the generator
parameters. Specifically, we plot the loss surface along its intersection with a line segment connecting
two sets of parameters (Goodfellow et al.,[2015; Li et al.,[2018). In our case, we interpolate between
the model induced by GAN-based UBDI and the (oracle) model obtained using supervised Procrustes
Analysis. Results are shown in Figure 1. The green loss curves represent the current discriminator’s
loss along all the generators between the current generator and the generator found by Procrustes
refinement. We see that while performance (P@ 1 and mean cosine similarity) goes up as soon as we
move closer toward the supervised solution, the discriminator loss does not change until we get very
close to this solution, suggesting there is no learning signal in this direction for GAN-based UBDI.



This is along a line segment representing the shortest path from the failed generator to the oracle
generator, of course; linear interpolation provides no guarantee there are no almost-as-short paths
with plenty of signal. A more sophisticated sampling method is to sample along two random direction
vectors (Goodfellow et al., 2015} [Li et al.,|2018). We used an alternative strategy of sampling from
normal distributions with fixed variance that were orthogonal to the line segment. We observed the
same pattern, leading us to the conclusion that instability is caused by discriminator saddle points.

5 Conclusions

This paper explores the dynamics of (vanilla) GAN training in the context of unsupervised word
translation and a systematic comparison of GANs with different distribution matching (seed induction)
methods across six challenging language pairs. Our main finding is that vanilla GANSs, in spite of
their instability, have the highest potential for inducing useful seed dictionaries. We explore an
unsupervised model selection criterion for selecting the best models from multiple random restarts,
narrowing the gap between MUSE and |Artetxe et al.| (2018)), and further show that combining GANs
with stochastic dictionary induction provides a new state of the art for unsupervised word translation.
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