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Abstract

We study the adversarial multi-armed bandit problem where the learner is supplied
with partial observations modeled by a feedback graph and where shifting to a new
action incurs a fixed switching cost. We give two new algorithms for this problem in

the informed setting. Our best algorithm achieves a pseudo-regret of O(~(G)3T'),
where «(G) is the domination number of the feedback graph. This significantly
improves upon the previous best result for the same problem, which was based on
the independence number of G. We also present matching lower bounds for our
result that we describe in detail. Finally, we give a new algorithm with improved
policy regret bounds when partial counterfactual feedback is available.

1 Introduction

A general framework for sequential learning is that of online prediction with expert advice [Littlestone
and Warmuth, 1994, Cesa-Bianchi et al., 1997, Freund and Schapire, 1997], which consists of repeated
interactions between a learner and the environment. The learner maintains a distribution over a set of
experts or actions. At each round, the loss assigned to each action is revealed. The learner incurs
the expected value of these losses for their current distribution and next updates her distribution.
The learner’s goal is to minimize her regret, which, in the simplest case, is defined as the difference
between the cumulative loss over a finite rounds of interactions and that of the best expert in hindsight.

The scenario just described corresponds to the so-called full information setting where the learner is
informed of the loss of all actions at each round. In the bandit setting, only the loss of the action they
select is known to the learner. These settings are both special instances of a general model of online
learning with side information introduced by Mannor and Shamir [2011], where the information
available to the learner is specified by a feedback graph. In an undirected feedback graph, each
vertex represents an action and an edge between vertices a and a’ indicates that the loss of action o’
is observed when action a is selected and vice-versa. The bandit setting corresponds to a feedback
graph reduced to only self-loops at each vertex, the full information setting to a fully connected graph.
Online learning with feedback graphs has been further extensively analyzed by Alon et al. [2013,
2017] and several other authors [Alon et al., 2015, Kocék et al., 2014, Cohen et al., 2016, Yun et al.,
2018, Cortes et al., 2018].

In many applications, the learner also incurs a cost when switching to a new action. Consider, for
example, a commercial bank that issues various credit card products, many of which are similar,
e.g., different branded cards with comparable fees and interest rates. At each round, the bank offers
a specific product to a particular sub-population (e.g., customers at a store). The payoff observed
for this action also reveals feedback for related cards and similar sub-populations. At the same
time, offering a different product to a group incurs a switching cost in terms of designing a new
marketing campaign. Another example of a problem with feedback graph and switching costs is a
large company seeking to allocate and reallocate employees to different tasks so that the productivity
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is maximized. Employees with similar skills, e.g., technical expertise, people skills, can be expected
to perform as well as each other on the same task. Reassigning employees between tasks, however, is
associated with a cost for retraining and readjustment time. We refer the reader to Appendix B for
more motivating examples.

The focus of this paper is to understand the fundamental tradeoffs between exploration and exploita-
tion in online learning with feedback graphs and switching costs, and to design learning algorithms
with provably optimal guarantees. We consider the general case of a feedback graph G with a set
of vertices or actions V. In the expert setting with no switching cost, the min-max optimal regret is
achieved by the weighted-majority or the Hedge algorithm [Littlestone and Warmuth, 1994, Freund
and Schapire, 1997], which is in ©(y/log (|V|) T'). In the bandit setting, the extension of these
algorithms, EXP3 [Auer et al., 2002], achieves a regret of O(1/|V|log (]V|)T). The min-max
optimal regret of ©(4/|V|T') can be achieved by the INF algorithm [Audibert and Bubeck, 2009].

The +/|V|-term in the bandit setting is inherently related to the additional exploration needed to
observe the loss of all actions.

The scenario of online learning with side information modeled by feedback graphs, which interpo-
lates between the full information and the bandit setting, was introduced by Mannor and Shamir
[2011]. When the feedback graph G is fixed over time and is undirected, a regret in the order of
O(y/a(G)log (|V]) T) can be achieved, with a lower bound of Q(1/a(G)T), where a(G) denotes
the independence number of GG. There has been a large body of work studying different settings of
this problem with time-varying graphs (G¢)._;, in both the directed or undirected cases, and in both
the so-called informed setting, where, at each round, the learner receives the graph before selecting
an action, or the uninformed setting where it is only made available after the learner has selected an
action and updated its distribution [Alon et al., 2013, Kocék et al., 2014, Alon et al., 2015, Cohen
etal., 2016, Alon et al., 2017, Cortes et al., 2018].

For the expert setting augmented with switching costs, the min-max optimal regret remains in
O(y/log (|V]) T). However, classical algorithms such as the Hedge or Follow-the-Perturbed-Leader
[Kalai and Vempala, 2005] no more achieve the optimal regret bound. Several algorithms designed by
Kalai and Vempala [2005], Geulen et al. [2010], Gyorgy and Neu [2014] achieve this min-max optimal
regret. In the setting of bandits with switching costs, the lower bound was carefully investigated by
Cesa-Bianchi et al. [2013] and Dekel et al. [2014] and shown to be in Q(|V/|3T'3 ). This lower bound
is asymptotically matched by mini-batching the EXP3 algorithm, as proposed by Arora et al. [2012].

The only work we are familiar with, which studies both bandits with switching costs and side
information is that of Rangi and Franceschetti [2019]. The authors propose two algorithms for
time-varying feedback graphs in the uninformed setting. When reduced to the fixed feedback graph
setting, their regret bound becomes O((G)3T'3 ). We note that, in the informed setting with a fixed
feedback graph, this bound can be achieved by applying the mini-batching technique of Arora et al.
[2012] to the EXP3-SET algorithm of Alon et al. [2013].

Our main contributions are two-fold. First, we propose two algorithms for online learning in the
informed setting with a fixed feedback graph G and switching costs. Our best algorithm admits a
pseudo-regret bound in O(y(G)3 T3 ), where (@) is the domination number of . We note that
the domination number (&) can be substantially smaller than the independence number «(G) and
therefore that our algorithm significantly improves upon previous work by Rangi and Franceschetti
[2019] in the informed setting. We also extend our results to achieve a policy regret bound in
O(~(G)3T?%) when partial counterfactual feedback is available. The O(~(G)3 T3 ) regret bound in
the switching costs setting might seem at odds with a lower bound stated by Rangi and Franceschetti
[2019]. However, the lower bound of Rangi and Franceschetti [2019] can be shown to be technically
inaccurate (see Appendix C). Our second main contribution is a lower bound in Q(T%) for any
non-complete feedback graph. We also extend this lower bound to Q((G)3T3) for a class of
feedback graphs that we will describe in detail. In Appendix I, we show a lower bound for the setting

of evolving feedback graphs, matching the originally stated lower bound in [Rangi and Franceschetti,
2019].

The rest of this paper is organized as follows. In Section 2, we describe in detail the setup we analyze
and introduce the relevant notation. In Section 3, we describe our main algorithms and results. We



further extend our algorithms and analysis to the setting of online learning in reactive environments
(Section 4). In Section 5, we present and discuss in detail lower bounds for this problem.

2 Problem Setup and Notation

We study a repeated game between an adversary and a player over 7" rounds. For any n € N, we
denote by [n] the set of integers {1,...,n}. Ateachround t € [T, the player selects an action
a; € V and incurs a loss ¢;(a¢), as well as a cost of one if switching between distinct actions in
consecutive rounds (a; # a;_1). For convenience, we define ag as an element not in V' so that the
first action always incurs a switching cost. The regret R of any sequence of actions (a;)7_; is thus
defined by Ry = maxgey Zthl li(ar) — li(a) + M, where M = Zthl l4,5a,_, is the number of
action switches in that sequence. We will assume an oblivious adversary, or, equivalently, that the
sequence of losses for all actions is determined by the adversary before the start of the game. The
performance of an algorithm A in this setting is measured by its pseudo-regret Ry (A) defined by

Rr(A) = I&&&(E lzT: (ﬁt(at) + 1at¢at71> — ﬁt(a)l ,

where the expectation is taken over the player’s randomized choice of actions. The regret of A is
defined as E[Ry], with the expectation outside of the maximum. In the following, we will abusively
refer to Ry (A) as the regret of A, to shorten the terminology.

We also assume that the player has access to an undirected graph G = (V, E'), which determines
which expert losses can be observed at each round. The vertex set V' is the set of experts (or actions)
and the graph specifies that, if at round ¢ the player selects action a;, then, the losses of all experts
whose vertices are adjacent to that of a, can be observed: ¢;(a) for a € N(a;), where N (a;) denotes
the neighborhood of a; in G defined for any v € V by: N(u) = {v: (u,v) € E}. We will denote
by deg(u) = |N(u)| the degree of uw € V in graph G. We assume that G admits a self-loop at
every vertex, which implies that the player can at least observe the loss of their own action (bandit
information). In all our figures, self-loops are omitted for the sake of simplicity.

We assume that the feedback graph is available to the player at the beginning of the game (informed
setting). The independence number of G is the size of a maximum independent set in G and is denoted
by a(G). The domination number of G is the size of a minimum dominating set and is denoted by
~(G). The following inequality holds for all graphs G: v(G) < a(G) [Bollobas and Cockayne,
1979, Goddard and Henning, 2013]. In general, (G) can be substantially smaller than «(G), with
v(G) =1 and o(G) = |V| — 1 in some cases. We note that all our results can be straightforwardly
extended to the case of directed graphs.

3 An Adaptive Mini-batch Algorithm

In this section, we describe an algorithm for online learning with switching costs, using adaptive
mini-batches. All proofs of results are deferred to Appendix D.

The standard exploration versus exploitation dilemma in the bandit setting is further complicated
in the presence of a feedback graph: if a poor action reveals the losses of all other actions, do we
play the poor action? The lower bound construction of Mannor and Shamir [2011] suggests that we
should not, since it might be better to just switch between the other actions.

Adding switching costs, however, modifies the price of exploration and the lower bound argument of
Mannor and Shamir [2011] no longer holds. It is in fact possible to show that EXP3 and its graph
feedback variants switch too often in the presence of two good actions, thereby incurring Q(7") regret,
due to the switching costs. One way to deal with the switching costs problem is to adapt the fixed
mini-batch technique of Arora et al. [2012]. That technique, however, treats all actions equally while,
in the presence of switching costs, actions that provide additional information are more valuable.

We deal with the issues just discussed by adopting the idea that the mini-batch sizes could depend
both on how favorable an action is and how much information an action provides about good actions.



Algorithm 1 Algorithm for star graphs

Input: Star graph G(V, E), learning rates (7)), exploration rate 8 € [0, 1], maximum mini-batch 7.
Output: Action sequence (a;)7_;.

g1 =
Q1= v
2: while ), || < T do
3 pr=0-08)g + Bo(r) % §(r) is the Dirac distribution on r
4:  Draw a; ~ py, set 7o = p(r)7
5. ifa;_1 # r and a; # r then
6: Set Ay = Q¢—1
7:  endif
8:  Play a, for the next | 7| iterations
9 Setly(i) = Y T Iy = ) 2D

) . N a@exp(—nili(i)
10: Forall 7 € V, qt+1(l) = Zjev ) eXp(—UtZt(j))
11 t=t+1

12: end while

3.1 Algorithm for Star Graphs

We start by studying a simple feedback graph case in which one action is adjacent to all other actions
with none of these other actions admitting other neighbors. For an example see Figure 1.

We call such graphs star graphs and we refer to the action

adjacent to all other actions as the revealing action. The

revealing action is denoted by r. Since only the revealing

action can convey additional information about other ac-

tions, we will select our mini-batch size to be proportional

to the quality of this action. Also, to prevent our algorithm

from switching between two non-revealing actions too of-

ten, we will simply disallow that and allow switching only )

between the revealing action and a non-revealing action. Figure 1: Example of a star graph.
Finally, we will disregard any feedback a non-revealing

action provides us. This simplifies the analysis of the regret of our algorithm. The pseudocode of the
algorithm is given in Algorithm 1.

The following intuition guides the design of our algorithm and its analysis. We need to visit the
revealing action sufficiently often to derive information about all other actions, which is determined
by the explicit exploration factor 8. If r is a good action, our regret will not be too large if we visit it
often and spent a large amount of time in it. On the other hand if r is poor, then the algorithm should
not sample it often and, when it does, it should not spend too much time there. Disallowing the
algorithm to directly switch between non-revealing actions also prevents it from switching between
two good non-revealing actions too often. The only remaining question is: do we observe enough
information about each action to be able to devise a low regret strategy? The following regret
guarantee provides a precise positive response.

Theorem 3.1. Suppose that the inequality E[¢7(i)] < p holds for allt < T and all i € V, for some
pand B > % Then, for any action a € V, Algorithm 1 admits the following guarantee:

T
E lz Ce(ay) — et(a)] < log(n“/') + Tnrp + TB.

Furthermore, the algorithm does not switch more than 27/~ times, in expectation.

The exploration parameter § is needed to ensure that 7, = p;(r)7 > 1, so that at every iteration of the
while loop Algorithm 1 plays at least one action. The bound assumed on the second moment E[¢Z ()]
might seem unusual since in the adversarial setting we do not assume a randomization of the losses.
For now, the reader can just assume that this is a bound on the squared loss, that is, ¢?(i) < p. The
role of this expectation and the source of the randomness will become clear in Section 3.3. We note
that the star graph admits independence number a,(G) = |V| — 1 and domination number v(G) = 1.



In this case, the algorithms of Rangi and Franceschetti [2019] and variants of the mini-batching
algorithm only guarantee a regret bound of the order O(a(G)3T'3), while Algorithm 1 guarantees a
regret bound of the order O(T'3) when we setp = 1/T%, 7 = T3, and 3 = 1/T'5.

3.2 Algorithm for General Feedback Graphs

We now extend Algorithm 1 to handle arbitrary feedback graphs. The pseudocode of this more
general algorithm is given in Algorithm 2.

Algorithm 2 Algorithm for general feedback graphs

Input: Graph G(V, E), learning rates (7;), exploration rate 5 € [0, 1], maximum mini-batch 7.
Output: Action sequence (a;);.
1: Compute an approximate dominating set R
2: g1 =Unif(V),u=Unif(R)
3: while Y ", 7, < T do
4 pr=(1-B)a+ Bu.
5 Draw i ~ py, set 7 = pi(r;)7, where r; is the dominating vertex for ¢ and set a; = i.
6: if a¢—1 ¢ R and at ¢ R then
7: Seta; = a;—1
8: endif
9:  Play a; for the next |7 | iterations.

10 Sety(i) = S5 ey = ri) g2k
q+(4) eXp(_"]tZt(i))

S iev ae(d) exp(—nile(5))

11:  Foralli e V, ¢41(i) =

12: t=t+1.
13: end while

The first step of Algorithm 2 consists of computing an approximate minimum dominating set for G
using the Greedy Set Cover algorithm [Chvatal, 1979]. The Greedy Set Cover algorithm naturally
partitions G into disjoint star graphs with revealing actions/vertices in the dominating set R. Next,
Algorithm 2 associates with each star-graph its revealing arm r € R. The mini-batch size at time ¢
now depends on the probability p;(r) of sampling a revealing action 7, as in Algorithm 1. There are
several key differences, however, that we now point out. Unlike Algorithm 1, the mini-batch size can
change between rounds even if the action remains fixed. This occurs when the newly sampled action
is associated with a new revealing action in R, however, it is different from the revealing action. The
above difference introduces some complications, because 7, conditioned on all prior actions ay.;—1 is
still a random variable, while it is a deterministic in Algorithm 1. We also allow switches between
any action and any vertex € R. This might seem to be a peculiar choice. For example, allowing
only switches within each star-graph in the partition and only between revealing vertices seems more
natural. Allowing switches between any vertex and any revealing action benefits exploration while
still being sufficient for controlling the number of switches. If we further constrain the number of
switches by using the more natural approach, it is possible that not enough information is received
about each action, leading to worse regret guarantees. We leave the investigation of such more natural
approaches to future work. Algorithm 2 admits the following regret bound.

Theorem 3.2. For any 3 > @ The expected regret of Algorithm 2 is

710{5 (V1) +nrT + BT.
n

Further, if the algorithm is augmented similar to Algorithm 7, then it will switch between actions at
most g\m times.

Setting n = 1/(|[R|3T%), 7 = |R|3T% and 8 = |R|3 /T3, recovers a pseudo-regret bound of
O(|R|3T%), with an expected number of switches bounded by 2|R|3T3. We note that |R| =

O(~(G)log (|V])) and thus the regret bound of our algorithm scales like ~(G)#. Further, this is a
strict improvement over the results of Rangi and Franceschetti [2019] as their result shows a scaling

of a(G) 3. The proof of Theorem 3.2 can be found in Appendix D.3.
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Algorithm 3 Corralling star-graph algorithms

Input: Feedback graph G(V, E7) learning rate 1), mini-batch size T
Output: Action sequence (at)t 1-
1: Compute an approximate minimum dominating set R and initialize | R| base star-graph algorithms,

By, Bs,. .., B|g|, with step size %, mini-batch size T and exploration rate 1/r (Algorithm 1).

T'=ZL p3=2.8=exp (logl( )) M, =1, p1,; = 2|R| foralli € R}, q1 = p1 =
fort=1,...,7" do
Draw it ~ Dt
forj,=(t—-1)7+1,...,(t—1)7+7do
Receive action aj, from B; for all i € [|R|].
Seta;, = aj-i, play a;, and observe loss ¢;, (a;, ).
Send %ZZS)H{Z = i} as loss to algorithm B; for all i € [|R|].

o~

9:  Update 4(i) = £y(i) + 2 L8 i = i, ).
10:  end for R

11:  Update g;+1 = Algorithm 4(q;, £y, n¢).

12 Setpii1 = (1—B)qer1 + 5%-

13: fori=1,...,|R|do

14: 1fp() >p“then

15: Set pr41,5 = t(i s M1, = Bnm and restart i-th star-graph algorithm, with updated
step-size o +1

16: else

17: Set pit1,i = Pris Me41,i = Ntyi-

18: end if

19:  end for

20: end for

3.3 Corralling Star Graph Algorithms

Algorithm 4 Log-Barrier-OMD(q;, ¢4, 1)
Input: Previous distribution g, loss vector ¢;, learning rate vector 7.
Output: Updated distribution g, 1.

o o, o = 1 _
1: Find A € [min; ¢,(7), max; £;(7)] such that ) ;= B —(AGESY 1

2: Return ¢;4 1 such that m = Qt(7) + e, (4 (1) — >\)-

An alternative natural method to tackle the general feedback graph problem is to use the recent
corralling algorithm of Agarwal et al. [2016]. Corralling star graph algorithms was in fact our initial
approach. In this section, we describe that technique, even though it does not seem to achieve an
optimal rate. Here too, the first step consists of computing an approximate minimum dominating
set. Next, we initialize an instance of Algorithm 1 for each star graph. Finally, we combine all of
the star graph algorithms via a mini-batched version of the corralling algorithm of Agarwal et al.
[2016]. Mini-batching is necessary to avoid switching between star graph algorithms too often. The
pseudocode of this algorithm is given in Algorithm 3. Since during each mini-batch we sample a
single star graph algorithm, we need to construct appropriate unbiased estimators of the losses ¢;,,
which we feed back to the sampled star graph algorithm. The bound on the second moment of these
estimators is exactly what Theorem 3.1 requires. Our algorithm admits the following guarantees.

Theorem 3.3. Let 7 = T3 /|R|3,n = |R|3 /(40clog (T") T3 log (|V])), and nf = 1/T'3, where ¢
is a constant independent of T, T, and |R|. Then, for any a € V, the following inequality holds

for Algorithm 3:
T
Z li(ar) — Li(a)
t=1

<o(vimr)




Algorithm 5 Policy regret with side observations

Input: Feedback graph G(V, E), learning rate 7, mini-batch size 7, where 1 and 7 are set as in
Theorem 3.3.
Output: Action sequence (a;);.
1: Transform feedback graph G from m-tuples to actions and initialize Algorithm 2.
2: fort=1,...,T/mdo
3:  Sample action a; from p; generated by Algorithm 2 and play it for the next m rounds.
4 if a1 = Q¢ then
5 Observe mini-batched loss {;(a¢) = L > i1 Lt—1)m+;j(ar) and additional side observa-
tions. Feed mini-batched loss and additional side observations to Algorithm 2.
6: else
7: Set ¢;(a;) = 0 and set additional feedback losses to 0. Feed losses to Algorithm 2.
8: endif
9: end for

Furthermore, the expected number of switches of the algorithm is bounded by T3 |R)] 3,

This bound is suboptimal compared to the y(G) 3 -dependency achieved by Algorithm 2. We conjec-
ture that this gap is an artifact of the analysis of the corralling algorithm of Agarwal et al. [2016].
However, we were unable to improve on the current regret bound by simply corralling.

4 Policy Regret with Partial Counterfactual Feedback

In this section, we consider games played against an adaptive adversary, who can select losses based
on the player’s past actions. In that scenario, the notion of pseudo-regret is no longer meaningful
or interpretable, as pointed out by Arora et al. [2012]. Instead, the authors proposed the notion of
policy regret defined by the following: max,cy ZtT:l b(ay, ... a¢) — Zthl l(a,...,a), where
the benchmark action a does not depend on the player’s actions. Since it is impossible to achieve
o(T) policy regret when the ¢-th loss is allowed to depend on all past actions of the player, the authors
made the natural assumption that the adversary is m-memory bounded, that is that the ¢-th loss can
only depend on the past m actions chosen by the player. In that case, the known min-max policy
regret bounds are in ©(|V|3T3) [Dekel et al., 2014], ignoring the dependency on m.

Here, we show that the dependency on |V'| can be improved in the presence of partial counterfactual
feedback. We assume that partial feedback on losses with memory m is available. We restrict the
feedback graph to admitting only vertices for repeated m-tuples of actions in V/, that is, we can only
observe additional feedback for losses of the type ¢(a, a, ..., a), where a € V. For a motivating
example, consider the problem of prescribing treatment plans to incoming patients with certain
disorders. Two patients that are similar, for example patients in the same disease sub-type or with
similar physiological attributes, when prescribed different treatments, reveal counterfactual feedback
about alternative treatments for each other.

Our algorithm for incorporating such partial feedback to minimize policy regret is based on our
algorithm for general feedback graphs (Algorithm 2). The learner receives feedback about m-memory
bounded losses in the form of m-tuples. We simplify the representation by replacing each m-tuple
vertex in the graph by a single action, that is vertex (a, . .., a) represented as a.

As described in Algorithm 5, the input stream of 7" losses is split into mini-batches of size m, indexed

by ¢, such that £ (-) = 3" Lit—1ym+;(-). This sequence of losses, (6)E/™ could be fed as input
to Algorithm 2 if it were not for the constraint on the additional feedback. Suppose that between the

t-th mini-batch and the ¢ + 1-st mini-batch, Algorithm 2 decides to switch actions so that a;11 # ay.

In that case, no additional feedback is available for ¢, (a;+1) and the algorithm cannot proceed as
normal. To fix this minor issue, the feedback provided to Algorithm 2 is that the loss of action a1
was 0 and all actions adjacent to a; 1 also incurred 0 loss. This modification of losses cannot occur
more than the number of switches performed by Algorithm 2. Since the expected number of switches

is bounded by O(y(G)3T'%), the modification does not affect the total expected regret.
Theorem 4.1. The expected policy regret of Algorithm 5 is bounded as O((m~(G))3T3).



The proof of the above theorem can be found in Appendix E. Let us point out that Algorithm 5
requires knowledge (or an upper bound) on the memory of the adversary, unlike the algorithm
proposed by Arora et al. [2012]. We conjecture that this is due to the adaptive mini-batch technique
of our algorithm. In particular, we believe that for m-memory bounded adversaries, it is necessary to
repeat each sampled action a; at least m times.

5 Lower Bound

The main tool for constructing lower bounds when switching costs are involved is the stochastic
process constructed by Dekel et al. [2014]. The crux of the proof consists of a carefully designed
multi-scale random walk. The two characteristics of this random walk are its depth and its width.
At time ¢, the depth of the walk is the number of previous rounds on which the value of the current
round depends. The width of the walk measures how far apart two rounds that depend on each other
are in time. The loss of each action is equal to the value of the random walk at each time step, and the
loss of the best action is slightly better by a small positive constant. The depth of the process controls
how well the losses concentrate in the interval [0, 1]!. The width of the walk controls the variance
between losses of different actions and ensures it is impossible to gain information about the best
action, unless one switches between different actions.

5.1 Lower Bound for Non-complete Graphs

We first verify that the dependence on the time hori- @

zon cannot be improved from T3 for any feedback

graph in which there is at least one edge missing, that

is, in which there exist two vertices that do not reveal

information about each other. Without loss of gener-

ality, assume that the two vertices not joined by an @ @

edge are vy and vs. Tak.e any vertex that is aishared Figure 2: Feedback graph for switching costs
neighbor and denote this vertex by vs (see Figure 2

for an example). We set the loss for action v3 and all other vertices to be equal to one. We now focus
the discussion on the subgraph with vertices {v1, v2, v3}. The losses of actions v and vy are set
according to the construction in [Dekel et al., 2014]. Since {v1,v2} forms an independent set, the
player would need to switch between these vertices to gain information about the best action. This is
also what the lower bound proof of Rangi and Franceschetti [2019] is based upon. However, it is im-
portant to realize that the construction in Dekel et al. [2014] also allows for gaining information about
the best action if its loss is revealed together with some other loss constructed from the stochastic
process. In that case, playing vertex vs would provide such information. This is a key property which
Rangi and Franceschetti [2019] seem to have missed in their lower bound proof. We discuss this
mistake carefully in Appendix C and provide a lower bound matching what the authors claim in the
uninformed setting in Appendix I. Our discussion suggests that we should set the price for revealing
information about multiple actions according to the switching cost and this is why the losses of all
vertices outside of the independent set are equal to one. We note that the losses of the best action
are much smaller than one sufficiently often, so that enough instantaneous regret is incurred when
pulling action vs. Our main result follows and its proof can be found in Appendix F.

Theorem 5.1. For any non-complete feedback graph G, there exists a sequence of losses on which
any algorithm A in the informed setting incurs expected regret at least

T3
= (i)

5.2 Lower Bound for Disjoint Union of Star Graphs

How do we construct a lower bound for a disjoint union of star graphs? First, note that if two adjacent
vertices are allowed to admit losses set according to the stochastic process and one of them is the
best vertex, then we could distinguish it in time O(+/T") by repeatedly playing the other vertex. This
suggests that losses set according to the stochastic process should be reserved for vertices in an

!Technically, the losses are always clipped between [0,1].



independent set. Second, it is important to keep track of the amount of information revealed by
common neighbors.

Consider the feedback graph of Figure 3. This disjoint

union of star graphs admits a domination number equal

to four and its minimum dominating set is denoted by

{v1, va,v3,v4}. Probably the most natural way to set

up the losses of the vertices is to set the losses of the

maximum independent set, which consists of the colored @
vertices, according to the construction of Dekel et al. ] - )

[2014] and the losses of the minimum dominating set Figure 3: Disjoint union of star graphs.
equal to one. Let v; be the vertex with highest degree. Any time the best action is sampled to be not
adjacent to v, switching between that action and v; reveals deg(v;) information about it. On the
other hand, no matter how we sample the best action as a neighbor of vy, it is then enough to play vy
to gain enough information about it. If I denotes the maximum independent set, the above reasoning

shows that only O(T'3|I|/deg(v;)) rounds of switching are needed to distinguish the best action.
Since deg(vy) can be made arbitrarily large and thus |I|/deg(v;) gets arbitrary close to one, we see

that the regret lower bound becomes independent of the domination number and equal to Q(Tg ).

We now present a construction for the disjoint union of star graphs which guarantees a lower bound

of the Q(y(G)3T'3). The idea behind our construction is to choose an independent set such that
none of its members have a common neighbor, thereby avoiding the problem described above. We
note that such an independent set cannot have size greater than v(G). Let R be the set of revealing
vertices for the star graphs. We denote by V; the set of vertices associated with the star graph with
revealing vertex v;. To construct the losses, we first sample an active vertex for each star graph from
its leaves. The active vertices are represented in red in Figure 3. This forms an independent set 1
indexed by R. Next, we follow the construction of Dekel et al. [2014] for the vertices in I, by first
sampling a best vertex uniformly at random from I and then setting the losses in I according to the
multi-scale random walk. All other losses are set to one. For any star graph consisting of a single
vertex, we treat the vertex as a non-revealing vertex. This construction guarantees the following.

Theorem 5.2. The expected regret of any algorithm A on a disjoint union of star graphs is lower
bounded as follows:

Rr(A) > Q <W>

log (T')

The proof of this theorem can be found in Appendix G. This result can be viewed as a consequence
of that of Dekel et al. [2014] but it can also be proven in alternative fashion. The general idea is
to count the amount of information gained for the randomly sampled best vertex. For example, a
strategy that switches between two revealing vertices v; and v; will gain information proportional to
deg(v;)deg(v;). The lower bound follows from carefully counting the information gain of switching
between revealing vertices. This counting argument can be generalized beyond the disjoint union of
star graphs, by considering an appropriate pair of minimal dominating/maximal independent sets. We
give an argument for the disjoint union of star graphs in Appendix G and leave a detailed argument
for general graphs to future work.

6 Conclusion

We presented an extensive analysis of online learning with feedback graphs and switching costs in the
adversarial setting, a scenario relevant to several applications in practice. We gave a new algorithm
whose regret guarantee only depends on the domination number. We also presented a matching
lower bound for a family of graphs that includes disjoint unions of star graphs. The technical tools
introduced in our proofs are likely to help derive a lower bound for all graph families. We further
derived an algorithm with more favorable policy regret guarantees in the presence of feedback graphs.
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