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Abstract

In optimization the duality gap between the primal and the dual problems is a
measure of the suboptimality of any primal-dual point. In classical mechanics the
equations of motion of a system can be derived from the Hamiltonian function,
which is a quantity that describes the total energy of the system. In this paper
we consider a convex optimization problem consisting of the sum of two convex
functions, sometimes referred to as a composite objective, and we identify the
duality gap to be the ‘energy’ of the system. In the Hamiltonian formalism the
energy is conserved, so we add a contractive term to the standard equations of
motion so that this energy decreases linearly (i.e., geometrically) with time. This
yields a continuous-time ordinary differential equation (ODE) in the primal and
dual variables which converges to zero duality gap, i.e., optimality. This ODE has
several useful properties: it induces a natural operator splitting; at convergence it
yields both the primal and dual solutions; and it is invariant to affine transformation
despite only using first order information. We provide several discretizations of
this ODE, some of which are new algorithms and others correspond to known
techniques, such as the alternating direction method of multipliers (ADMM). We
conclude with some numerical examples that show the promise of our approach.
We give an example where our technique can solve a convex quadratic minimization
problem orders of magnitude faster than several commonly-used gradient methods,
including conjugate gradient, when the conditioning of the problem is poor. Our
framework provides new insights into previously known algorithms in the literature
as well as providing a technique to generate new primal-dual algorithms.

1 Introduction and prior work

In physics the Hamiltonian function represents the total energy of a system in some set of coordinates
(loosely speaking). In the most typical case the coordinates are the position x ∈ R

n and momentum
p ∈ R

n, and the Hamiltonian is the sum of the potential energy, a function of the position, and the
kinetic energy, a function of the momentum. The equations of motion for the system can be derived
from the Hamiltonian. Let us denote the Hamiltonian as H : Rn × R

n → R, which we assume is
differentiable, then the equations of motion [1] are given by

ẋt = ∇pH(xt, pt), ṗt = −∇xH(xt, pt),

where we use the notation ẋt := dxt/dt. For ease of notation we shall sometimes use z := (x, p) ∈
R

2n to denote the concatenation of the position and momentum into a single quantity, in which case
we can write the Hamiltonian flow as

żt = J∇H(zt), J =

[

0 I
−I 0

]

, (1)

and note that JTJ = I and that J is skew symmetric, that is J = −JT , and so vTJv = 0 for

any v. It is easy to show that these equations of motion conserve the Hamiltonian since Ḣ(zt) =
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∇zH(zt)
T żt = ∇H(zt)

TJ∇H(zt) = 0. This conservation property is required for anything that
models the energy of a system in the physical universe, but not directly useful in optimization where
the goal is convergence to an optimum. By adding a contractive term to the Hamiltonian flow
we derive an ordinary differential equation (ODE) whose solutions converge to a minimum of the
Hamiltonian. We call the resulting flow “Hamiltonian descent”.

In optimization there has been a lot of recent interest in continuous-time ordinary differential equations
(ODEs) that when discretized yield known or interesting novel algorithms [2, 3, 4]. In particular Su et
al.[5] derived a simple ODE that corresponds to Nesterov’s accelerated gradient scheme [6], see also
[7]. That work was extended in [8] where the authors derived a “Bregman Lagrangian” framework
that generates a family of continuous-time ODEs corresponding to several discrete-time algorithms,
including Nesterov’s accelerated gradient. This was extended in [9] to derive a novel acceleration
algorithm. In [10] the authors used Lyapunov functions to analyze the convergence properties of
continuous and discrete-time systems. There is a natural Hamiltonian perspective on the Bregman
Lagrangian, which was exploited in [11] to derive optimization methods from symplectic integrators.

In a similar vein, the authors of [12] used a conformal Hamiltonian system to expand the class
of functions for which linear convergence of first-order methods can be obtained by encoding
information about the convex conjugate into a kinetic energy. Follow-up work analyzed the properties
of conformal symplectic integrators for these conformal Hamiltonian systems [13].

Hamiltonian mechanics have previously been applied to several areas outside of classical mechanics
[14], most notably in Hamiltonian Monte Carlo (HMC), where the goal is to sample from a target dis-
tribution and Hamiltonian mechanics are used to propose moves in a Metropolis-Hastings algorithm;
see [15] for a good survey. More recently Hamiltonian mechanics has been discussed in the context
of game theory [16], where a symplectic gradient algorithm was developed that converges to stable
fixed points of general games.

1.1 The convex conjugate

The Hamiltonian as used in physics is derived by taking the Legendre transform (or convex conjugate)
of one of the terms in the Lagrangian describing the system, which for a function f : Rn → R is
defined as

f∗(p) = sup
x

(xT p− f(x)).

The function f∗ is always convex, even if f is not. When f is closed, proper, and convex, then
(f∗)∗ = f , and (∂f)−1 = ∂f∗, where ∂f denotes the subdifferential of f , which for differentiable
functions is just the gradient, i.e., ∂f = ∇f (or more precisely ∂f = {∇f}) [17].

2 Hamiltonian descent

A modification to the Hamiltonian flow equation (1) yields an ordinary differential equation whose
solutions decrease the Hamiltonian linearly:

żt = J∇H(zt) + z⋆ − zt, (2)

where z⋆ ∈ argminz H(z). This departs from the standard Hamiltonian flow equations by the
addition of the term involving the difference between z⋆ and zt. One can view the Hamiltonian
descent equation as a flow in a field consisting of the sum of a standard Hamiltonian field and the
negative gradient field of function (1/2)‖zt − z⋆‖

2
2. Solutions to this differential equation descend

the level sets of the Hamiltonian and so we refer to (2) as Hamiltonian descent equations. Note
that this flow is different to the dissipative flows using conformal Hamiltonian mechanics studied in
[12, 13], which are also Hamiltonian descent methods but employ a different dissipative force. We
shall show the linear convergence of solutions of (2) to a minimum of the Hamiltonian function; first
we will state a necessary assumption:

Assumption 1. The Hamiltonian H together with a point (x⋆, p⋆) = z⋆ ∈ argminz H(z) satisfy
the following:

• z⋆ = argminz H(z) is unique,

• H(z) ≥ H(z⋆) = 0 for all z ∈ R
2n,
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• H is proper, closed, convex,

• H is continuously differentiable.

Theorem 1. If zt is following the equations of motion in (2) where z⋆ and the Hamiltonian func-
tion satisfy assumption 1, then the Hamiltonian converges to zero linearly (i.e., geometrically).
Furthermore, zt converges to z⋆ and żt converges to zero.

Proof. Consider the time derivative of the Hamiltonian:

Ḣ(zt) = ∇H(zt)
T żt = ∇H(zt)

T (J∇H(zt) + z⋆ − zt) ≤ −H(zt). (3)

since J is skew-symmetric, H(z⋆) = 0 and H is convex. Grönwall’s inequality [18] then implies
that 0 ≤ H(zt) ≤ H(z0) exp(−t) and so H(zt) → 0 linearly. Consider M = {z ∈ R

2n :
∇H(z)T (z⋆ − z) = 0}. It is not too hard to see that M = {z⋆} and that M is an invariant set, since
∇H(z′⋆)

T (z⋆ − z′⋆) ≥ H(z) by convexity. Because H has a unique minimum, its sublevel set are
bounded. Thus, we can apply Theorem 3.4 of [19] (Local Invariant Set Theorem) to argue that all
solutions zt → z⋆. Further, we have ∇H(zt) → 0 by continuity and thus żt → 0.

In contrast, consider the gradient descent flow żt = −∇H(zt), which also converges since

Ḣ(zt) = ∇H(zt)
T żt = −‖∇H(zt)‖

2
2 ≤ 0.

In this case, linear convergence is only guaranteed when H has some other property, such as strong
convexity, which Hamiltonian descent does not require.

It may appear that these equations of motion are unrealizable without knowledge of a minimum of
the Hamiltonian z⋆, which would defeat the goal of finding such a point. However, by a judicious
choice of the Hamiltonian we can cancel the terms involving z⋆, and make the system realizable.
For example, take the problem of minimizing convex f : Rn → R, and consider the following
Hamiltonian

H(x, p) = f(x) + f∗(p)− pTx⋆,

where x⋆ is any minimizer of f . Note that (x⋆, 0) ∈ argmin(x,p) H(x, p). Assuming f and f∗ are

continuously differentiable and (x⋆, 0) is a unique minimum of H, then it is readily verified that this
Hamiltonian satisfies assumption 1. So the solutions of the equations of motion will converge to a
minimum of H linearly. In this case the flow is given by

ẋt = ∇pH(xt, pt) + x⋆ − xt = ∇f∗(pt)− xt

ṗt = −∇xH(xt, pt) + p⋆ − pt = −∇f(xt)− pt,

since p⋆ = 0, and note that theorem 1 implies that ẋt → 0, ṗt → 0 and in the limit these equations
reduce to the optimality condition for the problem, namely ∇f(x) = 0. However, this system requires
the ability to evaluate ∇f∗, which is as hard as the original problem (since x⋆ = ∇f∗(0)). In the
sequel we shall exploit the structure of composite optimization problems to avoid this requirement.

2.1 Affine invariance

The Hamiltonian descent equations of motion (2) are invariant to a set of affine transformations. This
property is very useful since it means that the performance of an algorithm based on these equations
will be much less sensitive to the conditioning of the problem than, for example, gradient descent
which does not enjoy affine invariance.

To show this property, consider a non-singular matrix M that satisfies MJMT = J and consider the
Hamiltonian in the new coordinate system,

H̄(y) = H(M−1y),

where clearly y⋆ = Mz⋆. At time τ we have the point yτ , and let zτ = M−1yτ . Running Hamiltonian
descent in the transformed coordinates we obtain

ẏτ = J∇H̄(yτ ) + y⋆ − yτ

= JM−T∇H(M−1yτ ) +Mz⋆ −Mzτ
= M(J∇H(zτ ) + z⋆ − zτ )

= Mżτ .
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Now let z0 = M−1y0, then we have yt = y0 +
∫ t

0
ẏτ = Mz0 +

∫ t

0
Mżτ = Mzt for all t, and

therefore H̄(yt) = H(M−1Mzt) = H(zt), i.e., the original and transformed Hamiltonians have
exactly the same value for all t and thus the rate of convergence is unchanged by the transformation.
The condition on M is not too onerous; for example any M of the form:

M =

[

R 0
0 R−T

]

for nonsingular R ∈ R
n×n satisfies the condition. Contrast this to vanilla gradient flow,

ẏτ = −∇H̄(yτ ) = −M−T∇H(M−1yτ ) = M−T żτ .

Again setting z0 = M−1y0 we obtain yt = y0 +
∫ t

0
ẏτ = Mz0 +

∫ t

0
M−T żτ 6= Mzt except in the

case that MTM = I , i.e., M is orthogonal.

2.2 Discretizations

There are many possible ways to discretize the Hamiltonian descent equations, see, e.g., [20]. Here
we present two simple approaches and prove their convergence under certain conditions. Later we
shall show that other discretizations correspond to already known algorithms.

2.2.1 Implicit

Consider the following implicit discretization of (2), for some ǫ > 0 we take

zk+1 = zk + ǫ(J∇H(zk+1) + z⋆ − zk+1). (4)

Consider the change in Hamiltonian value at iteration k, ∆k = H(zk+1)−H(zk):

∆k ≤ ∇H(zk+1)T (zk+1 − zk) = ǫ∇H(zk+1)T (J∇H(zk+1) + z⋆ − zk+1) ≤ −ǫH(zk+1)

since J is skew-symmetric, H(z⋆) = 0 and H is convex. From this we have H(zk) ≤ (1+ǫ)−kH(z0).
Thus the implicit discretization exhibits linear convergence in discrete-time, without restriction on the
step-size ǫ. However, this scheme is very difficult to implement in practice, since it requires solving a
non-linear equation for zk+1 at every step.

2.2.2 Explicit

Now consider the explicit discretization

zk+1 = zk + ǫ(J∇H(zk) + z⋆ − zk), (5)

this differs from the implicit discretization in that the right hand side depends solely on zk rather than
zk+1, and therefore is much more practical to implement. If we assume that the gradient of H is
L-Lipschitz, then we can show that this sequence converges and that the Hamiltonian converges to
zero like O(1/k). The proof of this result is included in the appendix. If, in addition, H is µ > 0
strongly convex, then we can show that the Hamiltonian converges to zero like O(λk) for some λ < 1.
The proof of this result, along the explicit dependence of λ on L and µ is given in the appendix.

We must mention here that both proofs are somewhat lacking. For example, under the assumptions
of L-Lipschitzness of ∇H and µ strong convexity of H, our analysis requires that the step-size ǫ
depend on both L and µ. This is a stronger requirement than the classical gradient descent analysis.
Moreover, the rate λ scales poorly with the condition number L/µ as compared to gradient descent.
This may be due to the fact that both analyses depend strongly on the values of L or µ, which are not
invariant to affine transformation even though the equations of motion are. We suspect that a tighter
analysis is possible under assumptions whose structure mirror the affine invariance structure of the
dynamics.

3 Composite optimization

Now we come to the main problem we investigate in this paper. Consider a convex optimization
problem consisting of the sum of two convex, closed, proper functions h : Rn → R and g : Rm → R:

minimize f(y) := h(Ay) + g(y) (6)
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over variable y ∈ R
m, with data matrix A ∈ R

n×m. This problem is sometimes referred to as a
composite optimization problem, see, e.g., [21]. The dual problem is given by

maximize d(p) := −h∗(−p)− g∗(AT p), (7)

over p ∈ R
n. We assume that h and g∗ are both differentiable, which will help ensure that the

Hamiltonian we derive satisfies assumption 1. Weak duality tells us that for any y, p we have
f(y) ≥ d(p), with equality if and only if y and p are primal-dual optimal, since strong duality always
holds for this problem (under mild technical conditions [22, §5.2.3]). We can rewrite the primal and
dual problems in equality constrained form:

minimize h(x) + g(y)
subject to x = Ay,

maximize −h∗(−p)− g∗(q)
subject to q = AT p,

(8)

and obtain necessary and sufficient optimality conditions in terms of all four variables:

∇g∗(q⋆)− y⋆ = 0

Ay⋆ − x⋆ = 0

−∇h(x⋆)− p⋆ = 0

AT p⋆ − q⋆ = 0,

(9)

the proof of which is included in the appendix.

3.1 Duality gap as Hamiltonian

In this section we derive a partial duality gap for problem (8) and use it as our Hamiltonian function
to derive equations of motion. Then we shall show that in the limit the equations we derive satisfy the
conditions necessary and sufficient for optimality (9). We start by introducing dual variable p for the
equality constraint in the primal problem (8) to obtain h(x) + g(y) + pT (x− Ay), and taking the
Legendre transform of g we get the ‘full’ Lagrangian in terms of all four primal and dual variables:

L(x, y, p, q) = h(x)− g∗(q) + yT q + pT (x−Ay),

which is convex-concave in (x, y) and (p, q). We refer to this as the full Lagrangian, because if
we maximize over (p, q) we recover the primal problem in (8) and if we minimize over (x, y) we
recover the dual problem in (8). Denote by (y⋆, p⋆) any primal-dual optimal point and let x⋆ = Ay⋆,
q⋆ = AT p⋆, and f⋆ = f(y⋆) = d(p⋆), then a simple calculation yields

L(x⋆, y⋆, p, q) ≤ max
p,q

L(x⋆, y⋆, p, q) = f⋆ = min
x,y

L(x, y, p⋆, q⋆) ≤ L(x, y, p⋆, q⋆).

This is due to strong duality holding for this problem. In other words, if we substitute in the
optimal primal or dual variables into the Lagrangian, then we obtain valid lower and upper bounds
respectively. Then maximizing and minimizing these bounds over the remaining variables yields the
optimal objective value, f⋆. Thus, the difference between these two functions is a partial duality gap
(though uncomputable without knowledge of a primal-dual optimal point),

gap(x, q) = L(x, y, p⋆, q⋆)− L(x⋆, y⋆, p, q)

= h(x)− h(x⋆) + g∗(q)− g∗(q⋆) + xT p⋆ − qT y⋆
≥ 0,

(10)

with equality only when the Lagrangians are equal, i.e., are optimal. Note that the gap only depends on
x, q, because the effect of y and p is cancelled out. This gap can also be written in terms of Bregman
divergences, where the Bregman divergence between points u and v induced by a differentiable convex
function h is defined as Dh(u, v) = h(u)− h(v)−∇h(v)T (u− v), which is always nonnegative
due the convexity of h. Though not a true distance metric, it does have some useful ‘distance-like’
properties [23, 24]. We show in the appendix that our partial duality gap can be rewritten as

gap(x, q) = Dh(x, x⋆) +Dg∗(q, q⋆).

In other words, the gap also corresponds to a ‘distance’ between the current iterates and their optimal
values, as induced by the functions h and g∗. Furthermore, we show in the appendix that this partial
duality gap is a lower bound on the full duality gap, i.e.,

f(y)− d(p) ≥ gap(Ay,AT p).
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The gap is not in the form of a Hamiltonian, since the variable x and q are of different dimension. We
can reparameterize q = AT p or x = Ay, which yields two possible Hamiltonians, one in dimension
n and one in dimension m. The first of which is

H(x, p) = gap(x,AT p) = h(x)− h(x⋆) + g∗(AT p)− g∗(AT p⋆) + xT p⋆ − pTx⋆. (11)

Due to the assumptions on h and g∗ we know that H is convex and differentiable, and evidently
H(x, p) ≥ H(x⋆, p⋆) = 0. This Hamiltonian function combined with the equations of motion in
equation (2) yields dynamics

ẋt = ∇pH(xt, pt) + x⋆ − xt = A∇g∗(AT pt)− xt

ṗt = −∇xH(xt, pt) + p⋆ − pt = −∇h(xt)− pt.
(12)

We could rewrite these equations as

∇g∗(qt)− yt = 0

Ayt − xt = ẋt

−∇h(xt)− pt = ṗt

AT pt − qt = 0,

If ẋt → 0 and ṗt → 0, then the above equations converge to the conditions necessary and sufficient
for optimality, as given in equation (9). This convergence could be guaranteed by theorem 1, when H
has a unique minimum (and thus satisfies all of assumption 1). Still, we suspect it is possible to prove
the convergence of the system without this requirement on H’s minima.

The second Hamiltonian is given by

H(y, q) = gap(Ay, q) = h(Ay)− h(Ay⋆) + g∗(q)− g∗(q⋆) + yT q⋆ − qT y⋆ (13)

which yields equations of motion

ẏt = ∇qH(yt, qt) + y⋆ − yt = ∇g∗(qt)− yt

q̇t = −∇yH(yt, qt) + q⋆ − qt = −AT∇h(Ayt)− qt,
(14)

or equivalently

∇g∗(qt)− yt = ẏt
Ayt − xt = 0

−∇h(xt)− pt = 0

AT pt − qt = q̇t.

Again, if ẏt → 0 and q̇t → 0, this system will also satisfy the optimality conditions of (9). Finally,
theorem 1 implies that both of these ODEs exhibit linear convergence of the Hamiltonian, i.e., linear
convergence of the partial duality gap (10), to zero.

4 Connection to other methods

4.1 ADMM

In this section we show how a particular discretization of our ODE yields the well-known Alternating
direction method of multipliers algorithm (ADMM) [25, 26] when applied to problem (6). We
should note that in related work the authors of [27] derive a different ODE that when discretized also
yields ADMM, as well as a related ODE that corresponds to accelerated ADMM [28]. There is no
contradiction here since many ODEs can correspond to the same procedure when discretized.

In order to prove that ADMM is equivalent to a discretization of Hamiltonian descent we will require
the generalized Moreau decomposition, which we present next. In the statement of the lemma
we use the notation (A∂fAT ) to represent the multi-valued operator defined as (A∂fAT )(x) =
A(∂f(ATx)) = {Az | z ∈ ∂f(ATx)}.

Lemma 1. For convex, closed, proper function f : Rm → R and matrix A ∈ R
n×m, any point

x ∈ R
n satisfies

x = (I + ρA∂fAT )−1x+ ρA(∂f∗ + ρATA)−1ATx.
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We defer the proof to the appendix. To derive ADMM we employ a standard trick in discretizing
differential equations: We add and subtract a term to the dynamics which we shall discretize at
different points, which in the limit of infinitesimal step size will vanish, recovering the original ODE.
Starting from equation (12) and for any ρ > 0 the modified ODE is

ṗt = −∇h(xt)− pt − ρ(xt − xt)

ẋt = A∇g∗(AT pt)− xt + (1/ρ)(pt − pt).

Now we discretize as follows:

(pk − pk−1)/ǫ = −∇h(xk+1)− pk − ρ(xk+1 − xk)

(xk+1 − xk)/ǫ = A∇g∗(AT pk+1)− xk + (1/ρ)(pk+1 − pk).

Setting ǫ = 1 yields

xk+1 = (ρI +∇h)−1(ρxk − 2pk + pk−1)

pk+1 = (I + ρA∇g∗AT )−1(pk + ρxk+1)

= pk + ρxk+1 − ρA(∂g + ρATA)−1AT (pk + ρxk+1)

= pk + ρxk+1 − ρAyk+1

where we used the generalized Moreau decomposition and introduced variable sequence yk ∈ R
m,

and note that from the last equation we have that ρxk − 2pk + pk−1 = ρAyk − pk. Finally this brings
us to ADMM; from any initial y0, p0 iterate

xk+1 = (ρI +∇h)−1(ρAyk − pk)

yk+1 ∈ (ρATA+ ∂g)−1AT (pk + ρxk+1)

pk+1 = pk + ρ(xk+1 −Ayk+1).

Evidently we have lost the affine invariance property of our ODE. However we might expect
ADMM to be somewhat more robust to conditioning than gradient descent, which appears to be true
empirically [25].

4.2 PDHG

The primal-dual hybrid gradient technique (PDHG), also called Chambolle-Pock, is another operator
splitting technique with a slightly different form to ADMM. In particular, PDHG only requires
multiplies with A and AT rather than requiring A in the proximal step [29, 30, 31]. When applied to
problem (6) PDHG yields the following iterates

pk+1 = −(I + ρ∂h∗)−1(ρAyk − pk)

yk+1 = (I + σ∂g)−1(σAT pk+1 + yk).

In the appendix we show that this corresponds to a particular discretization of Hamiltonian descent,
with step size ǫ = 1. Note that the sign of the dual variable pk is different when compared to [31],
this is due to the fact that the dual problem they consider negates the dual variable when compared to
ours, so this is fixed by rewriting the iterations in terms of −pk.

5 Numerical experiments

In this section we present two numerical examples where we compare the explicit discretization of
Hamiltonian descent flow to gradient descent. Due to the affine invariance property of Hamiltonian
descent we expect our technique to outperform when the conditioning of the problem is poor, so we
generate examples with bad conditioning to test that.

5.1 Regularized least-squares

Consider the following ℓ2-regularized least-squares problem

minimize (1/2)‖Ay − b‖22 + (λ/2)‖By‖22, (15)
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over variable y ∈ R
m, where A ∈ R

n×m, B ∈ R
m×m, and λ ≥ 0 are data. In the notation of problem

(6) we let h(x) = (1/2)‖x− b‖22 and g(y) = λ‖By‖22, and so ∇g∗(q) = argmaxy(y
T q− λ‖By‖22)

which we assume is always well-defined (i.e., BTB is invertible). We apply the explicit discretization
(5) of the dynamics given in equation (14) to this problem. To demonstrate the practical effect of
affine invariance, we randomly generate a nonsingular matrix M and solve a sequence of optimization

problems where A is replaced with Âj = AM j and B is replaced with B̂j = BM j for j =
0, 1, . . . , jmax. Note that the optimal objective value of this perturbed problem is unchanged from the
original, and the solution for each perturbed problem can be obtained by (ŷ⋆)j = M−jy⋆, where y⋆
solves the original problem (i.e., with j = 0). However, the conditioning of the problem is changed
- M is selected so that the conditioning of the data is worsening for increasing j. We compare our
algorithm to vanilla gradient descent, to proximal gradient descent [32] (where the prox-step is on the
g term so it is of a similar cost to our method), and to restarted accelerated gradient descent [6, 33],
and observe the effect of the worsening conditioning.

We chose m = n = 1000 and for simplicity we chose B = I , λ = 1, and randomly generated
each entry in A to be IID N (0, 1). The best step size was chosen via exhaustive search for all three
algorithms. The matrix M was randomly generated but chosen in such a way so as to be close to

the identity. For j = 0 the condition number of the matrix ÂT
j Âj + λB̂T

j B̂j was 4.0× 103, and for

j = jmax = 20 the condition number had grown to 2.2 × 1014, a dramatic increase. Figure (1a)
shows the performance of both our technique and gradient descent on this sequence of problems. The
gradient descent traces are in orange, with a different trace for each j. The fastest converging trace
corresponds to j = 0, the best conditioned problem. As the conditioning deteriorates the convergence
is impacted, getting slower with each increase in j. In the appendix we additionally include Figure 3
which compares our technique to proximal gradient, restarted accelerated gradient, and conjugate
gradient. All three additional techniques display the same deterioration as the conditioning worsens.
By problem j = 20 no variant of gradient descent or conjugate gradient has reduced the primal
objective error, defined as mink(f(y

k) − f⋆), to under O(100). By contrast, our technique is
completely unaffected by the changing data, with every trace essentially identical (up to some
numerical tolerances). Furthermore, we used the exact same step size for every run of our method.
This is because the discretization procedure preserved the affine invariance of the continuous ODE it
is approximating, so the changing conditioning of the data has no effect. In Figure (1b) we plot the
Hamiltonian (13) (i.e., the partial duality gap) and the full duality gap: f(yk)−d(pk), for Hamiltonian
descent for each value of j. Once again the traces lie directly on top of each other, until numerical
errors start to have an impact. We note that the Hamiltonian decreases at each iteration, and converges
linearly. The duality gap and the objective values do not necessarily decrease at each iteration, but do
appear to enjoy linear convergence for each j.
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(a) Primal objective value.
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(b) Hamiltonian value and duality gap for HD.

Figure 1: Comparison of Hamiltonian descent (HD) and Gradient descent (GD) for problem (15).

5.2 Elastic net regularized logistic regression

In logistic regression the goal is to learn a classifier to separate a set of data points based on their
labels, which we take to be either 1 or −1. The elastic net is a type of regularization that promotes
sparsity and small weights in the solution [34]. Given data points ai ∈ R

m with corresponding label
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Figure 2: Comparison of Hamiltonian descent (HD) and Gradient descent (GD) for problem (16).

li ∈ {−1, 1} for i = 1, . . . , n, the elastic net regularized logistic regression problem is given by

minimize (1/n)
∑n

i=1 log(1 + exp(lia
T
i y)) + λ1‖y‖1 + (λ2/2)‖y‖

2
2 (16)

over the variable y ∈ R
m, where λ1 ≥ 0, and λ2 ≥ 0 control the strength of the regularization. In

the notation of problem (6) we take h(x) = (1/n)
∑n

i=1 log(1 + exp(lixi)) and g(y) = λ1‖y‖1 +
(λ2/2)‖y‖

2
2. We have a closed form expression for the gradient of g∗ given by the soft-thresholding

operator:

(∇g∗(q))i = (1/λ2)

{

qi − λ1 qi ≥ λ1

0 |qi| ≤ λ1

qi + λ1 qi ≤ −λ1.

We compare the explicit discretization (5) of Hamiltonian descent in equation (14) to proximal
gradient descent [32], which in this case has the exact same per-iteration cost since it also relies on
taking the gradient of h and applying the soft-thresholding operator. We chose dimension m = 500
and n = 1000 data points and we set λ1 = λ2 = 0.01. The data were generated randomly, and
then perturbed so as to give a high condition number, which was 1.0× 108. The best step size for
both algorithms was found using exhaustive search. In Figure 2 we show the primal objective value
error for both algorithms, where the true solution was found using convex cone solver SCS [35, 36].
Hamiltonian descent dramatically outperforms gradient descent on this problem, despite having the
same per-iteration cost. This is unsurprising because we would expect Hamiltonian descent to be less
sensitive to the poor conditioning of the data, due to the affine invariance property.

6 Conclusion

Starting from Hamiltonian mechanics in classical physics, we derived a Hamiltonian descent continu-
ous ODE that converges linearly to a minimum of the Hamiltonian function. We applied Hamiltonian
descent to a convex composite optimization problem, and proved linear convergence of the duality
gap, a measure of how far from optimal a primal-dual point is. In some sense applying Hamiltonian
descent to this problem is natural, since we can identify one of the terms in the objective as being
the ‘potential’ energy and the other as the ‘kinetic’ energy. We provided two discretizations that are
guaranteed to converge to the optimum under certain assumptions, and also demonstrated that some
well-known algorithms correspond to other discretizations of our ODE. In particular we show that a
particular discretization yields ADMM. We conclude with two numerical examples that show our
method is much more robust to numerical conditioning than standard gradient methods.
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