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Abstract

Minimum expected distance estimation (MEDE) algorithms have been widely
used for probabilistic models with intractable likelihood functions and they have
become increasingly popular due to their use in implicit generative modeling (e.g.
Wasserstein generative adversarial networks, Wasserstein autoencoders). Emerging
from computational optimal transport, the Sliced-Wasserstein (SW) distance has
become a popular choice in MEDE thanks to its simplicity and computational
benefits. While several studies have reported empirical success on generative
modeling with SW, the theoretical properties of such estimators have not yet been
established. In this study, we investigate the asymptotic properties of estimators
that are obtained by minimizing SW. We first show that convergence in SW implies
weak convergence of probability measures in general Wasserstein spaces. Then we
show that estimators obtained by minimizing SW (and also an approximate version
of SW) are asymptotically consistent. We finally prove a central limit theorem,
which characterizes the asymptotic distribution of the estimators and establish a
convergence rate of

√
n, where n denotes the number of observed data points. We

illustrate the validity of our theory on both synthetic data and neural networks.

1 Introduction

Minimum distance estimation (MDE) is a generalization of maximum-likelihood inference, where
the goal is to minimize a distance between the empirical distribution of a set of independent and
identically distributed (i.i.d.) observations Y1:n = (Y1, . . . , Yn) and a family of distributions indexed
by a parameter θ. The problem is formally defined as follows [1, 2]:

θ̂n = argminθ∈Θ D(µ̂n, µθ) , (1)

where D denotes a distance (or a divergence in general) between probability measures, µθ denotes a
probability measure indexed by θ, Θ denotes the parameter space, and

µ̂n =
1

n

∑n

i=1
δYi (2)

denotes the empirical measure of Y1:n, with δY being the Dirac distribution with mass on the point Y .
When D is chosen as the Kullback-Leibler divergence, this formulation coincides with the maximum
likelihood estimation (MLE) [2].

While MDE provides a fruitful framework for statistical inference, when working with generative
models, solving the optimization problem in (1) might be intractable since it might be impossible to
evaluate the probability density function associated with µθ. Nevertheless, in various settings, even if
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the density is not available, one can still generate samples from the distribution µθ, and such samples
turn out to be useful for making inference. More precisely, under such settings, a natural alternative
to (1) is the minimum expected distance estimator, which is defined as follows [3]:

θ̂n,m = argminθ∈Θ E [D(µ̂n, µ̂θ,m)|Y1:n] . (3)

Here,

µ̂θ,m =
1

m

∑m

i=1
δZi (4)

denotes the empirical distribution of Z1:m, that is a sequence of i.i.d. random variables with distribu-
tion µθ. This algorithmic framework has computationally favorable properties since one can replace
the expectation with a simple Monte Carlo average in practical applications.

In the context of MDE, distances that are based on optimal transport (OT) have become increasingly
popular due to their computational and theoretical properties [4, 5, 6, 7, 8]. For instance, if we
replace the distance D in (3) with the Wasserstein distance (defined in Section 2 below), we obtain
the minimum expected Wasserstein estimator [3]. In the classical statistical inference setting, the
typical use of such an estimator is to infer the parameters of a measure whose density does not
admit an analytical closed-form formula [2]. On the other hand, in the implicit generative modeling
(IGM) setting, this estimator forms the basis of two popular IGM strategies: Wasserstein generative
adversarial networks (GAN) [4] and Wasserstein variational auto-encoders (VAE) [5] (cf. [9] for their
relation). The goal of these two methods is to find the best parametric transport map Tθ, such that Tθ
transforms a simple distribution µ (e.g. standard Gaussian or uniform) to a potentially complicated
data distribution µ̂n by minimizing the Wasserstein distance between the transported distribution
µθ = Tθ]µ and µ̂n, where ] denotes the push-forward operator, to be defined in the next section.
In practice, θ is typically chosen as a neural network, for which it is often impossible to evaluate
the induced density µθ. However, one can easily generate samples from µθ by first generating a
sample from µ and then applying Tθ to that sample, making minimum expected distance estimation
(3) feasible for this setting. Motivated by its practical success, the theoretical properties of this
estimator have been recently taken under investigation [10, 11] and very recently Bernton et al. [3]
have established the consistency (for the general setting) and the asymptotic distribution (for one
dimensional setting) of this estimator.

Even though estimation with the Wasserstein distance has served as a fertile ground for many
generative modeling applications, except for the case when the measures are supported on R1, the
computational complexity of minimum Wasserstein estimators rapidly becomes excessive with the
increasing problem dimension, and developing accurate and efficient approximations is a highly
non-trivial task. Therefore, there have been several attempts to use more practical alternatives to the
Wasserstein distance [12, 6]. In this context, the Sliced-Wasserstein (SW) distance [13, 14, 15] has
been an increasingly popular alternative to the Wasserstein distance, which is defined as an average
of one-dimensional Wasserstein distances, which allows it to be computed in an efficient manner.

While several studies have reported empirical success on generative modeling with SW [16, 17, 18,
19], the theoretical properties of such estimators have not yet been fully established. Bonnotte [14]
proved that SW is a proper metric, and in compact domains SW is equivalent to the Wasserstein
distance, hence convergence in SW implies weak convergence in compact domains. [14] also analyzed
the gradient flows based on SW, which then served as a basis for a recently proposed IGM algorithm
[18]. Finally, recent studies [16, 20] investigated the sample complexity of SW and established
bounds for the SW distance between two measures and their empirical instantiations.

In this paper, we investigate the asymptotic properties of estimators given in (1) and (3) when D is
replaced with the SW distance. We first prove that convergence in SW implies weak convergence
of probability measures defined on general domains, which generalizes the results given in [14].
Then, by using similar techniques to the ones given in [3], we show that the estimators defined by
(1) and (3) are consistent, meaning that as the number of observations n increases the estimates will
get closer to the data-generating parameters. We finally prove a central limit theorem (CLT) in the
multidimensional setting, which characterizes the asymptotic distribution of these estimators and
establishes a convergence rate of

√
n. The CLT that we prove is stronger than the one given in [3] in

the sense that it is not restricted to the one-dimensional setting as opposed to [3].

We support our theory with experiments that are conducted on both synthetic and real data. We first
consider a more classical statistical inference setting, where we consider a Gaussian model and a
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multidimensional α-stable model whose density is not available in closed-form. In both models,
the experiments validate our consistency and CLT results. We further observe that, especially for
high-dimensional problems, the estimators obtained by minimizing SW have significantly better
computational properties when compared to the ones obtained by minimizing the Wasserstein distance,
as expected. In the IGM setting, we consider the neural network-based generative modeling algorithm
proposed in [16] and show that our results also hold in the real data setting as well.

2 Preliminaries and Technical Background

We consider a probability space (Ω,F ,P) with associated expectation operator E, on which all
the random variables are defined. Let (Yk)k∈N be a sequence of random variables associated with
observations, where each observation takes value in Y ⊂ Rd. We assume that these observations are
i.i.d. according to µ? ∈ P(Y), where P(Y) stands for the set of probability measures on Y.

A statistical model is a family of distributions on Y and is denoted byM = {µθ ∈ P(Y), θ ∈ Θ},
where Θ ⊂ Rdθ is the parametric space. In this paper, we focus on parameter inference for purely
generative models: for all θ ∈ Θ, we can generate i.i.d. samples (Zk)k∈N∗ ∈ YN∗ from µθ, but the
associated likelihood is numerically intractable. In the sequel, (Zk)k∈N∗ denotes an i.i.d. sequence
from µθ with θ ∈ Θ, and for any m ∈ N∗, µ̂θ,m = (1/m)

∑m
i=1 δZi denotes the corresponding

empirical distribution.

Throughout our study, we assume that the following conditions hold: (1) Y, endowed with the
Euclidean distance ρ, is a Polish space, (2) Θ, endowed with the distance ρΘ, is a Polish space, (3) Θ
is a σ-compact space, i.e. the union of countably many compact subspaces, and (4) parameters are
identifiable, i.e. µθ = µθ′ implies θ = θ′. We endow P(Y) with the Lévy-Prokhorov distance dP ,
which metrizes the weak convergence by [21, Theorem 6.8] since Y is assumed to be a Polish space.
We denote by Y the Borel σ-field of (Y, ρ).

Wasserstein distance. For p ≥ 1, we denote by Pp(Y) the set of probability measures on Y with
finite p’th moment: Pp(Y) =

{
µ ∈ P(Y) :

∫
Y
‖y − y0‖p dµ(y) < +∞, for some y0 ∈ Y

}
. The

Wasserstein distance of order p between any µ, ν ∈ Pp(Y) is defined by [22],

Wp
p(µ, ν) = inf

γ∈Γ(µ,ν)

{∫

Y×Y
‖x− y‖p dγ(x, y)

}
, (5)

where Γ(µ, ν) is the set of probability measures γ on (Y × Y,Y ⊗ Y) satisfying γ(A× Y) = µ(A)
and γ(Y × A) = ν(A) for any A ∈ B(Y). The space Pp(Y) endowed with the distance Wp is a
Polish space by [22, Theorem 6.18] since (Y, ρ) is assumed to be Polish.

The one-dimensional case is a favorable scenario for which computing the Wasserstein distance of
order p between µ, ν ∈ Pp(R) becomes relatively easy since it has a closed-form formula, given by
[23, Theorem 3.1.2.(a)]:

Wp
p(µ, ν) =

∫ 1

0

∣∣F−1
µ (t)− F−1

ν (t)
∣∣p dt =

∫

R

∣∣s− F−1
ν (Fµ(s))

∣∣p dµ(s) , (6)

where Fµ and Fν denote the cumulative distribution functions (CDF) of µ and ν respectively, and
F−1
µ and F−1

ν are the quantile functions of µ and ν respectively. For empirical distributions, (6) is
calculated by simply sorting the n samples drawn from each distribution and computing the average
cost between the sorted samples.

Sliced-Wasserstein distance. The analytical form of the Wasserstein distance for one-dimensional
distributions is an attractive property that gives rise to an alternative metric referred to as the Sliced-
Wasserstein (SW) distance [13, 15]. The idea behind SW is to first, obtain a family of one-dimensional
representations for a higher-dimensional probability distribution through linear projections, and then,
compute the average of the Wasserstein distance between these one-dimensional representations.

More formally, let Sd−1 =
{
u ∈ Rd : ‖u‖ = 1

}
be the d-dimensional unit sphere, and denote by

〈·, ·〉 the Euclidean inner-product. For any u ∈ S, we define u? the linear form associated with u
for any y ∈ Y by u?(y) = 〈u, y〉. The Sliced-Wasserstein distance of order p is defined for any
µ, ν ∈ Pp(Y) as,

SWp
p(µ, ν) =

∫

Sd−1

Wp
p(u

?
]µ, u

?
]ν)dσ(u) (7)
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where σ is the uniform distribution on Sd−1 and for any measurable function f : Y → R and
ζ ∈ P(Y), f]ζ is the push-forward measure of ζ by f , i.e. for any A ∈ B(R), f]ζ(A) = ζ(f−1(A))
where f−1(A) = {y ∈ Y : f(y) ∈ A}.
SWp is a distance on Pp(Y) [14] and has important practical implications: in practice, the integration
in (7) is approximated using a Monte Carlo scheme that randomly draws a finite set of samples from
σ on Sd−1 and replaces the integral with a finite-sample average. Therefore, the evaluation of the
SW distance between µ, ν ∈ Pp(Y) has significantly lower computational requirements than the
Wasserstein distance, since it consists in solving several one-dimensional optimal transport problems,
which have closed-form solutions.

3 Asymptotic Guarantees for Minimum Sliced-Wasserstein Estimators

We define the minimum Sliced-Wasserstein estimator (MSWE) of order p as the estimator obtained by
plugging SWp in place of D in (1). Similarly, we define the minimum expected Sliced-Wasserstein
estimator (MESWE) of order p as the estimator obtained by plugging SWp in place of D in (3). In
the rest of the paper, MSWE and MESWE will be denoted by θ̂n and θ̂n,m respectively.

We present the asymptotic properties that we derived for MSWE and MESWE, namely their existence
and consistency. We study their measurability in Section 2.2 of the supplementary document. We
also formulate a CLT that characterizes the asymptotic distribution of MSWE and establishes a
convergence rate for any dimension. We provide all the proofs in Section 3 of the supplementary doc-
ument. Note that, since the Sliced-Wasserstein distance is an average of one-dimensional Wasserstein
distances, some proofs are, inevitably, similar to the proofs done in [3]. However, the adaptation of
these techniques to the SW case is made possible by the identification of novel properties regarding
the topology induced by the SW distance, to the best of our knowledge, which we establish for the
first time in this study.

3.1 Topology induced by the Sliced-Wasserstein distance

We begin this section by a useful result which we believe is interesting on its own and implies that the
topology induced by SWp on Pp(Rd) is finer than the weak topology induced by the Lévy-Prokhorov
metric dP .
Theorem 1. Let p ∈ [1,+∞). The convergence in SWp implies the weak convergence in P(Rd). In
other words, if (µk)k∈N is a sequence of measures in Pp(Rd) satisfying limk→+∞ SWp(µk, µ) = 0,
with µ ∈ Pp(Rd), then (µk)k∈N

w−→ µ.

The property that convergence in SWp implies weak convergence has already been proven in [14]
only for compact domains. While the implication of weak convergence is one of the most crucial
requirements that a distance metric should satisfy, to the best of our knowledge, this implication has
not been proved for general domains before. In [14], the main proof technique was based on showing
that SWp is equivalent to Wp in compact domains, whereas we follow a different path and use the
Lévy characterization.

3.2 Existence and consistency of MSWE and MESWE

In our next set of results, we will show that both MSWE and MESWE are consistent, in the sense
that, when the number of observations n increases, the estimators will converge to a parameter θ?
that minimizes the ideal problem θ 7→ SWp(µ?, µθ). Before we make this argument more precise,
let us first present the assumptions that will imply our results.
A1. The map θ 7→ µθ is continuous from (Θ, ρΘ) to (P(Y),dP), i.e. for any sequence (θn)n∈N in
Θ, satisfying limn→+∞ ρΘ(θn, θ) = 0, we have (µθn)n∈N

w−→ µθ.
A2. The data-generating process is such that limn→+∞ SWp(µ̂n, µ?) = 0, P-almost surely.
A3. There exists ε > 0, such that setting ε? = infθ∈Θ SWp(µ?, µθ), the set Θ?

ε = {θ ∈ Θ :
SWp(µ?, µθ) ≤ ε? + ε} is bounded.

These assumptions are mostly related to the identifiability of the statistical model and the regularity
of the data generating process. They are arguably mild assumptions, analogous to those that have
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already been considered in the literature [3]. Note that, without Theorem 1, the formulation and use
of A2 in our proofs in the supplementary document would not be possible. In the next result, we
establish the consistency of MSWE.

Theorem 2 (Existence and consistency of MSWE). Assume A1, A2 and A3. There exists E ∈ F
with P(E) = 1 such that, for all ω ∈ E,

lim
n→+∞

inf
θ∈Θ

SWp(µ̂n(ω), µθ) = inf
θ∈Θ

SWp(µ?, µθ), and (8)

lim sup
n→+∞

argminθ∈ΘSWp(µ̂n(ω), µθ) ⊂ argminθ∈ΘSWp(µ?, µθ) , (9)

where µ̂n is defined by (2). Besides, for all ω ∈ E, there exists n(ω) such that, for all n ≥ n(ω), the
set argminθ∈ΘSWp(µ̂n(ω), µθ) is non-empty.

Our proof technique is similar to the one given in [3]. This result shows that, when the number of
observations goes to infinity, the estimate θ̂n will converge to a global minimizer of the problem
minθ∈Θ SWp(µ?, µθ).

In our next result, we prove a similar property for MESWEs as min(m,n) goes to infinity. In order
to increase clarity, and without loss of generality, in this setting, we consider m as a function of n
such that limn→+∞m(n) = +∞. Now, we derive an analogous version of Theorem 2 for MESWE.
For this result, we need to introduce another continuity assumption.

A4. If limn→+∞ ρΘ(θn, θ) = 0, then limn→+∞ E[SWp(µθn , µ̂θn,n)|Y1:n] = 0.

The next theorem establishes the consistency of MESWE.

Theorem 3 (Existence and consistency of MESWE). Assume A1, A2, A3 and A4. Let (m(n))n∈N∗
be an increasing sequence satisfying limn→+∞m(n) = +∞. There exists a set E ⊂ Ω with
P(E) = 1 such that, for all w ∈ E,

lim
n→+∞

inf
θ∈Θ

E
[
SWp(µ̂n, µ̂θ,m(n))

∣∣Y1:n

]
= inf
θ∈Θ

SWp(µ?, µθ), and (10)

lim sup
n→+∞

argminθ∈Θ E
[
SWp(µ̂n, µ̂θ,m(n))

∣∣Y1:n

]
⊂ argminθ∈Θ SWp(µ?, µθ) , (11)

where µ̂n and µ̂θ,m(n) are defined by (2) and (4) respectively. Besides, for all ω ∈ E, there exists
n(ω) such that, for all n ≥ n(ω), the set argminθ∈Θ E[SWp(µ̂n, µ̂θ,m(n))|Y1:n] is non-empty.

Similar to Theorem 2, this theorem shows that, when the number of observations goes to infinity, the
estimator obtained with the expected distance will converge to a global minimizer.

3.3 Convergence of MESWE to MSWE

In practical applications, we can only use a finite number of generated samples Z1:m. In this
subsection, we analyze the case where the observations Y1:n are kept fixed while the number of
generated samples increases, i.e. m→ +∞ and we show in this scenario that MESWE converges to
MSWE, assuming the latter exists.

Before deriving this result, we formulate a technical assumption below.

A5. For some ε > 0 and εn = infθ∈Θ SWp(µ̂n, µθ), the set Θε,n = {θ ∈ Θ : SWp(µ̂n, µθ) ≤
εn + ε} is bounded almost surely.

Theorem 4 (MESWE converges to MSWE as m→ +∞). Assume A1, A4 and A5. Then,

lim
m→+∞

inf
θ∈Θ

E [SWp(µ̂n, µ̂θ,m)|Y1:n] = inf
θ∈Θ

SWp(µ̂n, µθ) (12)

lim sup
m→+∞

argminθ∈ΘE [SWp(µ̂n, µ̂θ,m)|Y1:n] ⊂ argminθ∈ΘSWp(µ̂n, µθ) (13)

Besides, there exists m∗ such that, for any m ≥ m∗, the set argminθ∈ΘE [SWp(µ̂n, µ̂θ,m)|Y1:n] is
non-empty.

This result shows that MESWE would be indeed promising in practice, as one get can more accurate
estimations by increasing m.
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3.4 Rate of convergence and the asymptotic distribution

In our last set of theoretical results, we investigate the asymptotic distribution of MSWE and we
establish a rate of convergence. We now suppose that we are in the well-specified setting, i.e. there
exists θ? in the interior of Θ such that µθ? = µ?, and we consider the following two assumptions.
For any u ∈ Sd−1 and t ∈ R, we define Fθ(u, t) =

∫
Y
1(−∞,t](〈u, y〉)dµθ(y). Note that for any

u ∈ Sd−1, Fθ(u, ·) is the cumulative distribution function (CDF) associated to the measure u?]µθ.

A6. For all ε > 0, there exists δ > 0 such that infθ∈Θ: ρΘ(θ,θ?)≥ε SW1(µθ? , µθ) > δ .

Let L1(Sd−1×R) denote the class of functions that are absolutely integrable on the domain Sd−1×R,
with respect to the measure dσ ⊗ Leb, where Leb denotes the Lebesgue measure.
A7. Assume that there exists a measurable function D? = (D?,1, . . . , D?,dθ ) : Sd−1 × R 7→ Rdθ
such that for each i = 1, . . . , dθ, D?,i ∈ L1(Sd−1 × R) and

∫

Sd−1

∫

R
|Fθ(u, t)− Fθ?(u, t)− 〈θ − θ?, D?(u, t)〉|dtdσ(u) = ε(ρΘ(θ, θ?)) ,

where ε : R+ → R+ satisfies limt→0 ε(t) = 0. Besides, {D?,i}dθi=1 are linearly independent in
L1(Sd−1 × R).

For any u ∈ Sd−1, and t ∈ R, define: F̂n(u, t) = n−1 card{i ∈ {1, . . . , n} : 〈u, Yi〉 ≤ t}, where
card denotes the cardinality of a set, and for any u ∈ Sd−1, F̂n(u, ·) is the CDF associated to the
measure u?] µ̂n.

A8. There exists a random elementG? : Sd−1×R 7→ R such that the stochastic process
√
n(F̂n−Fθ?)

converges weakly in L1(Sd−1 × R) to G?1.

Theorem 5. Assume A1, A2, A3, A6, A7 and A8. Then, the asymptotic distribution of the goodness-
of-fit statistic is given by,

√
n inf
θ∈Θ

SW1(µ̂n, µθ)
w−→ inf

θ∈Θ

∫

Sd−1

∫

R
|G?(u, t)− 〈θ,D?(u, t)〉| dtdσ(u), as n→ +∞ ,

where µ̂n is defined by (2).
Theorem 6. Assume A1, A2, A3, A6, A7 and A8. Suppose also that the random map θ 7→∫
Sd−1

∫
R |G?(u, t)− 〈θ,D?(u, t)〉| dtdσ(u) has a unique infimum almost surely. Then, MSWE with

p = 1 satisfies,

√
n(θ̂n − θ?) w−→ argminθ∈Θ

∫

Sd−1

∫

R
|G?(u, t)− 〈θ,D?(u, t)〉| dtdσ(u), as n→ +∞ ,

where θ̂n is defined by (1) with SW1 in place of D.

These results show that the estimator and the associated goodness-of-fit statistics will converge to a
random variable in distribution, where the rate of convergence is

√
n. Note that G? is defined as a

random element (see A8), therefore we can not claim that the convergence in distribution derived in
Theorem 5 and 6 implies the convergence in probability.

This CLT is also inspired by [3], where they identified the asymptotic distribution associated to the
minimum Wasserstein estimator. However, since Wp admits an analytical form only when d = 1,
their result is restricted to the scalar case, and in their conclusion, [3] conjecture that the rate of the
minimum Wasserstein estimators would depend negatively on the dimension of the observation space.
On the contrary, since SWp is defined in terms of one-dimensional Wp distances, we circumvent
the curse of dimensionality and our result holds for any finite dimension. While the perceived
computational burden has created a pessimism in the machine learning community about the use of
Wasserstein-based methods in large dimensional settings, which motivated the rise of regularized
optimal transport [26], we believe that our findings provide an interesting counter-example to this
conception.

1Under mild assumptions on the tails of u?
]µ? for any u ∈ Sd−1, we believe that one can prove that A8 holds

in general by extending [24, Proposition 3.5] and [25, Theorem 2.1a].
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Figure 2: Min. SW estimation on Gaussians in R10. Figure 2a and Figure 2b show the mean
squared error between (m?, σ

2
?) = (0, 1) and MSWE (m̂n, σ̂

2
n) (resp. MESWE (m̂n,n, σ̂

2
n,n)) for n

from 10 to 10 000, illustrating Theorems 2 and 3. Figure 2c shows the error between (m̂n, σ̂
2
n) and

(m̂n,m, σ̂
2
n,m) for 2000 observations and m from 10 to 10 000, to illustrate Theorem 4. Results are

averaged over 100 runs, the shaded areas represent the standard deviation.

4 Experiments

We conduct experiments on synthetic and real data to empirically confirm our theorems. We explain
in Section 4 of the supplementary document the optimization methods used to find the estimators.
Specifically, we can use stochastic iterative optimization algorithm (e.g., stochastic gradient descent).
Note that, since we calculate (expected) SW with Monte Carlo approximations over a finite set of
projections (and a finite number of ‘generated datasets’), MSWE and MESWE fall into the category
of doubly stochastic algorithms. Our experiments on synthetic data actually show that using only one
random projection and one randomly generated dataset at each iteration of the optimization process
is enough to illustrate our theorems. We provide the code to reproduce the experiments.2
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Figure 1: Probability density estimates of the
MSWE σ̂2

n of order 1, centered and rescaled by√
n, on the 10-dimensional Gaussian model for

different values of n.

Multivariate Gaussian distributions: We con-
sider the task of estimating the parameters of a
10-dimensional Gaussian distribution using our
SW estimators: we are interested in the model
M =

{
N (m, σ2I) : m ∈ R10, σ2 > 0

}
and

we draw i.i.d. observations with (m?, σ
2
?) =

(0, 1). The advantage of this simple setting
is that the density of the generated data has a
closed-form expression, which makes MSWE
tractable. We empirically verify our central limit
theorem: for different values of n, we compute
500 times MSWE of order 1 using one random
projection, then we estimate the density of σ̂2

n
with a kernel density estimator. Figure 1 shows
the distributions centered and rescaled by

√
n

for each n, and confirms the convergence rate
that we derived (Theorem 6). To illustrate the consistency property in Theorem 2, we approximate
MSWE of order 2 for different numbers of observed data n using one random projection and we report
for each n the mean squared error between the estimate mean and variance and the data-generating
parameters (m?, σ

2
?). We proceed the same way to study the consistency of MESWE (Theorem 3),

which we approximate using one random projections and one generated dataset z1:m of size m = n
for different values of n. We also verify the convergence of MESWE to MSWE (Theorem 4): we
compute these estimators on a fixed set of n = 2000 observations for different m, and we measure

2See https://github.com/kimiandj/min_swe.
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Figure 3: Min. SW estimation for the location parameter of multivariate elliptically contoured stable
distributions. Figure 3a compares the quality of the estimation provided by SW and Wasserstein-based
estimators as well as their average computational time, for different values of dimension d. Figure 3b
and Figure 3c illustrate, for d = 10, the consistency of MESWE m̂n,m and its convergence to the
MSWE m̂n. Results are averaged over 100 runs, the shaded area represent the standard deviation.

the error between them for each m. Results are shown in Figure 2. We see that our estimators
indeed converge to (m?, σ

2
?) as the number of observations increases (Figures 2a, 2b), and on a fixed

observed dataset, MESWE converges to MSWE as we generate more samples (Figure 2c).

Multivariate elliptically contoured stable distributions: We focus on parameter inference for a
subclass of multivariate stable distributions, called elliptically contoured stable distributions and
denoted by EαSc [27]. Stable distributions refer to a family of heavy-tailed probability distributions
that generalize Gaussian laws and appear as the limit distributions in the generalized central limit
theorem [28]. These distributions have many attractive theoretical properties and have been proven
useful in modeling financial [29] data or audio signals [30, 31]. While special univariate cases include
Gaussian, Lévy and Cauchy distributions, the density of stable distributions has no general analytic
form, which restricts their practical application, especially for the multivariate case.

If Y ∈ Rd ∼ EαSc(Σ,m), then its joint characteristic function is defined for any t ∈ Rd as
E[exp(itTY )] = exp

(
−(tTΣt)α/2 + itTm

)
, where Σ is a positive definite matrix (akin to a

correlation matrix), m ∈ Rd is a location vector (equal to the mean if it exists) and α ∈ (0, 2)
controls the thickness of the tail. Even though their densities cannot be evaluated easily, it is
straightforward to sample from EαSc [27], therefore it is particularly relevant here to apply MESWE
instead of MLE.

To demonstrate the computational advantage of MESWE over the minimum expected Wasserstein
estimator [3, MEWE], we consider observations in Rd i.i.d. from EαSc(I,m?) where each compo-
nent of m? is 2 and α = 1.8, andM =

{
EαSc(I,m) : m ∈ Rd

}
. The Wasserstein distance on

multivariate data is either computed exactly by solving the linear program in (5), or approximated
by solving a regularized version of this problem with Sinkhorn’s algorithm [12]. The MESWE
is approximated using 10 random projections and 10 sets of generated samples. Then, following
the approach in [3], we use the gradient-free optimization method Nelder-Mead to minimize the
Wasserstein and SW distances. We report on Figure 3a the mean squared error between each estimate
and m?, as well as their average computational time for different values of dimension d. We see
that MESWE provides the same quality of estimation as its Wasserstein-based counterparts while
considerably reducing the computational time, especially in higher dimensions. We focus on this
model in R10 and we illustrate the consistency of the MESWE m̂n,m, approximated with one random
projection and one generated dataset, the same way as for the Gaussian model: see Figure 3b. To
confirm the convergence of m̂n,m to the MSWE m̂n, we fix n = 100 observations and we compute
the mean squared error between the two approximate estimators (using one random projection and
one generated dataset) for different values of m (Figure 3c). Note that the MSWE is approximated
with the MESWE obtained for a large enough value of m: m̂n ≈ m̂n,10 000.

High-dimensional real data using GANs: Finally, we run experiments on image generation using
the Sliced-Wasserstein Generator (SWG), an alternative GAN formulation based on the minimization
of the SW distance [16]. Specifically, the generative modeling approach consists in introducing a
random variable Z which takes value in Z with a fixed distribution, and then transforming Z through
a neural network. This defines a parametric function Tθ : Z→ Y that is able to produce images from
a distribution µθ.
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Figure 4: Mean-squared error between the training (test) loss
for (n,m) ∈

{
(1, 1), (100, 20), (1000, 40), (10 000, 60)

}

and the training (test) loss for (n,m) = (60 000, 200) on
MNIST using the SW generator. We trained for 20 000 itera-
tions with the ADAM optimizer [32].

The goal is to optimize the neural net-
work parameters such that the gen-
erated images are close to the ob-
served ones. [16] proposes to min-
imize the SW distance between µθ
and the real data distribution over θ
as the generator objective, and train
on MESWE in practice. For our ex-
periments, we design a neural network
with the fully-connected configuration
given in [16, Appendix D] and we use
the MNIST dataset, made of 60 000
training images and 10 000 test im-
ages of size 28× 28. Our training ob-
jective is MESWE of order 2 approxi-
mated with 20 random projections and
20 different generated datasets. We
study the consistent behavior of the MESWE by training the neural network on different sizes n
of training data and different numbers m of generated samples and by comparing the final training
loss and test loss to the ones obtained when learning on the whole training dataset (n = 60 000)
and m = 200. Results are averaged over 10 runs and shown on Figure 4, where the shaded areas
correspond to the standard deviation over the runs. We observe that our results confirm Theorem 3.

We would like to point out that, in all of our experiments, the random projections used in the Monte
Carlo average that estimates the integral in (7) were picked uniformly on Sd−1 (see Section 4 in the
supplementary document for more details). The sampling on Sd−1 directly impacts the quality of
the resulting approximation of SW, and might induce variance in practice when learning generative
models. On the theoretical side, studying the asymptotic properties of SW-based estimators obtained
with a finite number of projections is an interesting question (e.g., their behavior might depend on the
sampling method or the number of projections used). We leave this study for future research.

5 Conclusion

The Sliced-Wasserstein distance has been an attractive metric choice for learning in generative
models, where the densities cannot be computed directly. In this study, we investigated the asymptotic
properties of estimators that are obtained by minimizing SW and the expected SW. We showed that (i)
convergence in SW implies weak convergence of probability measures in general Wasserstein spaces,
(ii) the estimators are consistent, (iii) the estimators converge to a random variable in distribution
with a rate of

√
n. We validated our mathematical results on both synthetic data and neural networks.

We believe that our techniques can be further extended to the extensions of SW such as [20, 33, 34].
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