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Abstract

We introduce a new notion of the stability of computations, which holds under post-
processing and adaptive composition. We show that the notion is both necessary and
sufficient to ensure generalization in the face of adaptivity, for any computations
that respond to bounded-sensitivity linear queries while providing accuracy with
respect to the data sample set. The stability notion is based on quantifying the effect
of observing a computation’s outputs on the posterior over the data sample elements.
We show a separation between this stability notion and previously studied notion
and observe that all differentially private algorithms also satisfy this notion.

1 Introduction

A fundamental idea behind most forms of data-driven research and machine learning is the concept
of generalization–the ability to infer properties of a data distribution by working only with a sample
from that distribution. One typical approach is to invoke a concentration bound to ensure that, for a
sufficiently large sample size, the evaluation of the function on the sample set will yield a result that is
close to its value on the underlying distribution, with high probability. Intuitively, these concentration
arguments ensure that, for any given function, most sample sets are good “representatives” of the
distribution. Invoking a union bound, such a guarantee easily extends to the evaluation of multiple
functions on the same sample set.

Of course, such guarantees hold only if the functions to be evaluated were chosen independently
of the sample set. In recent years, grave concern has erupted in many data-driven fields, that
adaptive selection of computations is eroding statistical validity of scientific findings [Ioa05, GL14].
Adaptivity is not an evil to be avoided—it constitutes a natural part of the scientific process, wherein
previous findings are used to develop and refine future hypotheses. However, unchecked adaptivity
can (and does, as demonstrated by, e.g., [DFH+15b] and [RZ16]) often lead one to evaluate overfitting
functions—ones that return very different values on the sample set than on the distribution.

Traditional generalization guarantees do not necessarily guard against adaptivity; while generalization
ensures that the response to a query on a sample set will be close to that of the same query on the
distribution, it does not rule out the possibility that the probability to get a specific response will be
dramatically affected by the contents of the sample set. In the extreme, a generalizing computation
could encode the whole sample set in the low-order bits of the output, while maintaining high
accuracy with respect to the underlying distribution. Subsequent adaptive queries could then, by
post-processing the computation’s output, arbitrarily overfit to the sample set.

In recent years, an exciting line of work, starting with Dwork et al. [DFH+15b], has formalized
this problem of adaptive data analysis and introduced new techniques to ensure guarantees of
generalization in the face of an adaptively-chosen sequence of computations (what we call here
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adaptive generalization). One great insight of Dwork et al. and followup work was that techniques
for ensuring the stability of computations (some of them originally conceived as privacy notions) can
be powerful tools for providing adaptive generalization.

A number of papers have considered variants of stability notions, the relationships between them, and
their properties, including generalization properties. Despite much progress in this space, one issue
that has remained open is the limits of stability—how much can the stability notions be relaxed, and
still imply generalization? It is this question that we address in this paper.

1.1 Our Contribution

We introduce a new notion of the stability of computations, which holds under post-processing
(Theorem 2.3) and adaptive composition (Theorems 2.6 and 2.7), and show that the notion is both
necessary (Theorem 3.6) and sufficient (Theorem 3.3) to ensure generalization in the face of adaptivity,
for any computations that respond to bounded-sensitivity linear queries (see Definition 3.1) while
providing accuracy with respect to the data sample set. This means (up to a small caveat)1 that our
stability definition is equivalent to generalization, assuming sample accuracy, for bounded linear
queries. Linear queries form the basis for many learning algorithms, such as those that rely on
gradients or on the estimation of the average loss of a hypothesis.

In order to formulate our stability notion, we consider a prior distribution over the database elements
and the posterior distribution over those elements conditioned on the output of a computation. In
some sense, harmful outputs are those that induce large statistical distance between this prior and
posterior (Definition 2.1). Our new notion of stability, Local Statistical Stability (Definition 2.2),
intuitively, requires a computation to have only small probability of producing such a harmful output.

In Section 4, we directly prove that Differential Privacy, Max Information, Typical Stability and
Compression Schemes all imply Local Statistical Stability, which provides an alternative method to
establish their generalization properties. We also provide a few separation results between the various
definitions.

1.2 Additional Related Work

Most countermeasures to overfitting fall into one of a few categories. A long line of work bases
generalization guarantees on some form of bound on the complexity of the range of the mechanism,
e.g., its VC dimension (see [SSBD14] for a textbook summary of these techniques). Other examples
include Bounded Description Length [DFH+15a], and compression schemes [LW86] (which addi-
tionally hold under post-processing and adaptive composition [DFH+15a, CLN+16]). Another line
of work focuses on the algorithmic stability of the computation [BE02], which bounds the effects on
the output of changing one element in the training set.

A different category of stability notions, which focus on the effect of a small change in the sample
set on the probability distribution over the range of possible outputs, has recently emerged from the
notion of Differential Privacy [DMNS06]. Work of [DFH+15b] established that Differential Privacy,
interpreted as a stability notion, ensures generalization; it is also known (see [DR+14]) to be robust
to adaptivity and to withstand post-processing. A number of subsequent works propose alternative
stability notions that weaken the conditions of Differential Privacy in various ways while attempting
to retain its desirable generalization properties. One example is Max Information [DFH+15a], which
shares the guarantees of Differential Privacy. A variety of other stability notions ([RRST16, RZ16,
RRT+16, BNS+16, FS17, EGI19]), unlike Differential Privacy and Max Information, only imply
generalization in expectation. [XR17, Ala17, BMN+17] extend these guarantees to generalization in
probability, under various restrictions.

[CLN+16] introduce the notion of post-hoc generalization, which captures robustness to post-
processing, but it was recently shown not to hold under composition [NSS+18]. The challenges that
the internal correlation of non-product distributions present for stability have been studied in the
context of Inferential Privacy [GK16] and Typical Stability [BF16].

1In particular, our lower bound (Theorem 3.6) requires one more query than our upper bound (Theorem 3.3).
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2 LS stability definition and properties

LetX be an arbitrary countable domain. Fixing some n ∈ N, letDXn be some probability distribution
defined overXn.2 LetQ,R be arbitrary countable sets which we will refer to as queries and responses,
respectively. Let a mechanism M : Xn ×Q → R be a (possibly non-deterministic) function that,
given a sample set s ∈ Xn and a query q ∈ Q, returns a response r ∈ R. Intuitively, queries can be
thought of as questions the mechanism is asked about the sample set, usually representing functions
from Xn to R; the mechanism can be thought of as providing an estimate to the value of those
functions, but we do not restrict the definitions, for reasons which will become apparent once we
introduce the notion of adaptivity (Definition 2.4).

This setting involves two sources of randomness, the underlying distributionDXn , and the conditional
distribution Dq

R|Xn (r | s)—that is, the probability to get r as the output of M (s, q). These in turn
induce a set of distributions (formalized in Definition A.1): the marginal distribution over R, the
joint distribution (denoted Dq

(Xn,R)) and product distribution (denoted Dq
Xn⊗R) over Xn ×R, and

the conditional distribution over Xn given r ∈ R. Note that even if DXn is a product distribution,
this conditional distribution might not be a product distribution. Although the underlying distribution
DXn is defined over Xn, it induces a natural probability distribution over X as well, by sampling one
of the sample elements in the set uniformly at random.3 This in turn allows us extend our definitions
to several other distributions, which form a connection betweenR and X (formalized in Definition
A.2): the marginal distribution over X , the joint distribution and product distribution over X ×R, the
conditional distribution overR given x ∈ X , and the conditional distribution over X given r ∈ R.
We use our distribution notation to denote both the probability that a distribution places on a subset
of its range and the probability placed on a single element of the range.

Notational conventions We use calligraphic letters to denote domains, lower case letters to denote
elements of these domains, capital letters to denote random variables taking values in these domains,
and bold letters to denote subsets of these domains. We omit subscripts and superscripts from some
notation when they are clear from context.

2.1 Local Statistical Stability

Before observing any output from the mechanism, an outside observer knowing D but without other
information about the sample set s holds prior D (x) that sampling an element of s would return a
particular x ∈ X . Once an output r of the mechanism is observed, however, the observer’s posterior
becomes D (x | r). The difference between these two distributions is what determines the resulting
degradation in stability. This difference could be quantified using a variety of distance measures (a
partial list can be found in Appendix F); here we introduce a particular one which we use to define
our stability notion.
Definition 2.1 (Stability loss of a response). Given a distribution DXn , a query q, and a mechanism
M : Xn ×Q → R, the stability loss `qDXn (r) of a response r ∈ R with respect to DXn and q is
defined as the Statistical Distance (Definition F.1) between the prior distribution over X and the
posterior induced by r. That is,

`qDXn (r) :=
∑

x∈x+(r)

(D (x | r)−D (x)) ,

where x+ (r) := {x ∈ X |D (x | r) > D (x)}, the set of all sample elements which have a posterior
probability (given r) higher then their prior. Similarly, we define the stability loss ` (r) of a set of
responses r ⊆ R as

` (r) :=

∑
r∈rD (r) · ` (r)

D (r)
.

Given 0 ≤ ε ≤ 1, a response will be called ε-unstable with respect to DXn and q if its loss is greater
the ε. The set of all ε-unstable responses will be denoted rDXn ,qε := {r ∈ R | ` (r) > ε}.

2Throughout the paper, Xn can either denote the family of sequences of length n or a multiset of size n; that
is, the sample set s can be treated as an ordered or unordered set.

3It is worth noting that in the case where DXn is the product distribution of some distribution PX over X ,
we get that the induced distribution over X is PX .
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We now introduce our notion of stability of a mechanism.

Definition 2.2 (Local Statistical Stability). Given 0 ≤ ε, δ ≤ 1, a distribution DXn , and a query q, a
mechanism M : Xn ×Q → R will be called (ε, δ)-Local-Statistically Stable with respect to DXn
and q (or LS Stable, or LSS, for short) if for any r ⊆ R, D (r) · (` (r)− ε) ≤ δ.

Notice that the maximal value of the left hand side is achieved for the subset rε. This stability
definition can be extended to apply to a family of queries and/or a family of possible distributions.
When there exists a family of queries Q and a family of distributions D such that a mechanism M
is (ε, δ)-LSS for all DXn ∈ D and for all q ∈ Q, then M will be called (ε, δ)-LSS for D,Q. (This
stability notion somewhat resembles Semantic Privacy as discussed by [KS14], though they use it to
compare different posterior distributions.)

Intuitively, this can be thought of as placing a δ bound on the probability of observing an outcome
whose stability loss exceeds ε. This claim is formalized in Lemma B.1.

2.2 Properties

We now turn to prove two crucial properties of LSS: post-processing and adaptive composition.

Post-processing guarantees (known in some contexts as data processing inequalities) ensure that
the stability of a computation can only be increased by subsequent manipulations. This is a key
desideratum for concepts used to ensure adaptivity-proof generalization, since otherwise an adaptive
subsequent computation could potentially arbitrarily degrade the generalization guarantees.

Theorem 2.3 (LSS holds under Post-Processing). Given 0 ≤ ε, δ ≤ 1, a distribution DXn , and a
query q, if a mechanism M is (ε, δ)-LSS with respect to DXn and q, then for any range U and any
arbitrary (possibly non-deterministic) function f : R → U , we have that f ◦M : Xn ×Q → U is
also (ε, δ)-LSS with respect to DXn and q. An analogous statement also holds for mechanisms that
are LSS with respect to a family of queries and/or a family of distributions.

The proof appears in Appendix B.1.

In order to formally define adaptive learning and stability under adaptively chosen queries, we
formalize the notion of an analyst who issues those queries.

Definition 2.4 (Analyst and Adaptive Mechanism). An analyst over a family of queries Q is a
(possibly non-deterministic) function A : R∗ → Q that receives a view—a finite sequence of
responses—and outputs a query. We denote by A the family of all analysts, and write Vk := Rk and
V := R∗.
Illustrated below, the adaptive mechanism AdpM̄ : Xn ×A → Vk is a particular type of mechanism,
which inputs an analyst as its query and which returns a view as its range type. It is parameterized
by a sequence of sub-mechanisms M̄ = (Mi)

k
i=1 where ∀i ∈ [k], Mi : Xn × Q → R. Given a

sample set s and an analyst A as input, the adaptive mechanism iterates k times through the process
where A sends a query to Mi and receives its response to that query on the sample set. The adaptive
mechanism returns the resulting sequence of k responses vk. Naturally, this requires A to match M
such that M ’s range can be A’s input, and vice versa.4 5

For illustration, consider a gradient descent algorithm, where at each step the algorithm requests an
estimate of the gradient at a given point, and chooses the next point in which the gradient should be
evaluated based on the response it receives. For us, M evaluates the gradient at a given point, and A

4If the same mechanism appears more then once in M̄ , it can also be stateful, which means it retains an
internal record consisting of internal randomness, the history of sample sets and queries it has been fed, and the
responses it has produced; its behavior may be a function of this internal record. We omit this from the notation
for simplicity, but do refer to this when relevant. A stateful mechanism will be defined as LSS if it is LSS given
any reachable internal record. A pedantic treatment might consider the probability that a particular internal state
could be reached, and only require LSS when accounting for these probabilities.

5If A is randomized, we add one more step at the beginning where AdpM̄ randomly generates some bits
c—A’s “coin tosses.” In this case, vk := (c, r1, . . . , rik) and A receives the coin tosses as an input as well. This
addition turns qk+1 into a deterministic function of vi for any i ∈ N, a fact that will be used multiple times
throughout the paper. In this situation, the randomness of AdpM̄ results both from the randomness of the coin
tosses and from that of the sub-mechanisms.
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Adaptive Mechanism AdpM̄
Input: s ∈ Xn, A ∈ A
Output: vk ∈ Vk
v0 ← ∅ or c
for i ∈ [k] :
qi ← A (vi−1)
ri ←Mi (s, qi)
vi ← (vi−1, ri)

return vk

determines the next point to be considered. The interaction between the two of them constitutes an
adaptive learning process.

Definition 2.5 (k-LSS under adaptivity). Given 0 ≤ ε, δ ≤ 1, a distribution DXn , and an analyst
A, a sequence of k mechanisms M̄ will be called (ε, δ)-local-statistically stable under k adaptive
iterations with respect toDXn andA (or k-LSS for short), if AdpM̄ is (ε, δ)-LSS with respect toDXn
and A (in which case we will use vk,A,DXnε to denote the set of ε unstable views). This definition can
be extended to a family of analysts and/or a family of possible distributions as well.

Adaptive composition is a key property of a stability notion, since it restricts the degradation of
stability across multiple computations. A key observation is that the posterior D (s | vk) is itself
a distribution over Xn and qk+1 is a deterministic function of vk. Therefore, as long as each sub-
mechanism is LSS with respect to any posterior that could have been induced by previous adaptive
interaction, one can reason about the properties of the composition.

We first show that the stability loss of a view is bounded by the sum of losses of its responses
with respect to the sub-mechanisms, which provides a linear bound on the degradation of the LSS
parameters. Adding a bound on the expectation of the loss of the sub-mechanisms allows us to also
invoke Azuma’s inequality and prove a sub-linear bound.

Theorem 2.6 (LSS adaptively composes linearly). Given a family of distributions D over Xn, a
family of queries Q, and a sequence of k mechanisms M̄ where ∀i ∈ [k], Mi : Xn ×Q → R, we
will denote DM0,Q := D, and for any i > 0, DMi,Q will denote the set of all posterior distributions
induced by any response of Mi with non-zero probability with respect to DMi−1,Q and Q (see
Definition B.2).

Given a sequence 0 ≤ ε1, δ1, . . . , εk, δk ≤ 1, if for all i, Mi is (εi, δi)-LSS with respect to DMi−1,Q

and Q, the sequence is

( ∑
i∈[k]

εi,
∑
i∈[k]

δi

)
-k-LSS with respect to D and any analyst A over Q×R.

The proof appears in Appendix B.3.

One simple case is when DMi−1,Q = D, and Mi is (εi, δi)-LSS with respect to D and Q, for all i.

Theorem 2.7 (LSS adaptively composes sub-linearly). Under the same conditions as Theorem
2.6, given 0 ≤ α1, . . . , αk ≤ 1, such that for all i and any DXn ∈ DMi−1,Q, and q ∈ Q,

E
S∼DXn ,R∼Mi(s,q)

[` (R)] ≤ αi, then for any 0 ≤ δ′ ≤ 1, the sequence is

(
ε′, δ′ +

∑
i∈[k]

δi
εi

)
-k-

LSS with respect to D and any analyst A over Q×R, where ε′ :=
√

8ln
(

1
δ′

) ∑
i∈[k]

ε2i +
∑
i∈[k]

αi.

The theorem provides a better bound then the previous one in case αi � εi, in which case the
dominating term is the first one, which is sub-linear in k. The proof appears in Appendix B.4.

3 LSS is Necessary and Sufficient for Generalization

Up until this point, queries and responses have been fairly abstract concepts. In order to discuss
generalization and accuracy, we must make them concrete. As a result, in this section, we often
consider queries in the family of functions q : Xn → R, and consider responses which have some
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metric defined over them. We show our results for a fairly general class of functions known as
bounded linear queries.6

Definition 3.1 (Linear queries). A function q : Xn → R will be called a linear query, if it is defined

by a function q1 : X → R such that q (s) := 1
n

n∑
i=1

q1 (si) (for simplicity we will denote q1 simply

as q throughout the paper). If q : X → [−∆,∆] it will be called a ∆-bounded linear query. The set
of ∆-bounded linear queries will be denoted Q∆.

In this context, there is a “correct” answer the mechanism can produce for a given query, defined as
the value of the function on the sample set or distribution, and its distance from the response provided
by the mechanism can be thought of as the mechanism’s error.
Definition 3.2 (Sample accuracy, distribution accuracy). Given 0 ≤ ε, 0 ≤ δ ≤ 1, a distribution
DXn , and a query q, a mechanism M : Xn × Q → R will be called (ε, δ)-Sample Accurate with
respect to DXn and q, if

Pr
S∼DXn ,R∼M(S,q)

[|R− q (S)| > ε] ≤ δ.

Such a mechanism will be called (ε, δ)-Distribution Accurate with respect to DXn and q if

Pr
S∼DXn ,R∼M(S,q)

[|R− q (DXn)| > ε] ≤ δ,

where q (DXn) := E
S∼DXn

[q (S)]. When there exists a family of distributions D and a family of

queries Q such that a mechanism M is (ε, δ)-Sample (Distribution) Accurate for all D ∈ D and for
all q ∈ Q, then M will be called (ε, δ)-Sample (Distribution) Accurate with respect to D and Q.

A sequence of k mechanisms M̄ where ∀i ∈ [k] : Mi : Xn ×Q → R which respond to a sequence
of k (potentially adaptively chosen) queries q1, . . . qk will be called (ε, δ)-k-Sample Accurate with
respect to DXn and q1, . . . qk if

Pr
S∼DXn ,Ri∼Mi(S,qi)

[
max
i∈k
|Ri − qi (S)| > ε

]
≤ δ,

and (ε, δ)-k-Distribution Accurate with respect to DXn and q1, . . . qk if

Pr
S∼DXn ,Ri∼Mi(S,qi)

[
max
i∈k
|Ri − qi (DXn)| > ε

]
≤ δ.

When considering an adaptive process, accuracy is defined with respect to the analyst, and the
probabilities are taken also over the choice of the coin tosses by the adaptive mechanism.7

We denote by V the set of views consisting of responses in R.

We now show that if a mechanism returns accurate results with respect to the sample set, then being
LSS implies accuracy on the underlying distribution.
Theorem 3.3 (LSS implies generalization with high probability). Given 0 ≤ ε ≤ ∆, 0 ≤ δ ≤ 1,
a distribution DXn , and an analyst A : V → Q∆, if a sequence of k mechanisms M̄ where
∀i ∈ [k] ,Mi : Xn×Q∆ → R is both

(
ε

8∆ ,
ε2δ

4800∆2

)
-k-LSS and

(
ε
8 ,

εδ
600∆

)
-k-Sample Accurate with

respect to DXn and A, then it is (ε, δ)-k-Distribution Accurate with respect to DXn and A.

The proof of this theorem consists of two stages, and follows the method introduced by [BNS+16].
First we show that the a query returned by an LSS mechanism has expected value on the underlying
distribution that is close to its value on the sample set that the mechanism received as input (Appendix
C.1). We then proceed to lift this guarantee from expectation to high probability, using a thought
experiment known as the Monitor Mechanism (Appendix C.2). Intuitively, it runs a large number of

6For simplicity, throughout the following section we choose R = R, but all results extend to any metric
space, in particular Rd.

7If the adaptive mechanism invokes a stateful sub-mechanism multiple times, we specify that the mechanism
is Sample (Distribution) Accurate if it is Sample (Distribution) Accurate given any reachable internal record.
Again, a somewhat more involved treatment might consider the probability that a particular internal state of the
mechanism could be reached.
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independent copies of an underlying mechanism, and exposes the results of the least-distribution-
accurate copy as its output. If the expected error of even this least-accurate-copy is relatively low,
then the underlying mechanism generalizes with high probability (Appendix C.3).

We next show that a mechanism that is not LSS cannot be both Sample Accurate and Distribution
Accurate. In order to prove this theorem, we show how to construct a “bad” query.
Definition 3.4 (Loss assessment query). Given a query q and a response r, we will define the Loss
assessment query q̃r as

q̃r (x) =

{
∆ D (x) > D (x | r)
−∆ D (x) ≤ D (x | r) .

Intuitively, this function maximizes the difference between E
X∼DX

[q̃r (X)] and E
X∼DqX|R

[q̃r (X) | r],

and as a result, the potential to overfit.8

This function is used to lower bound the effect of the stability loss on the expected overfitting.
Lemma 3.5 (Loss assessment query overfits in expectation). Given 0 ≤ ε, δ ≤ 1, a distribution DXn ,
a query q, and a mechanism M , if D (rε) > δ, then there is a function f : R → Q∆ such that,∣∣∣∣ E

S∼DXn ,Q′∼f◦M(S,q)
[Q′ (DXn)−Q′ (S)]

∣∣∣∣ > 2ε∆δ.

Proof. Choosing f (r) = qr we get that,∣∣∣∣ E
S∼DXn ,Q′∼f◦M(S,q)

[Q′ (DXn)−Q′ (S)]

∣∣∣∣ (1)
=

∣∣∣∣∣∣
∑
q′∈Q∆

D (q′) ·
∑
x∈X

(D (x)−D (x | q′)) · q′ (x)

∣∣∣∣∣∣
=

∣∣∣∣∣∑
r∈R

D (r) ·
∑
x∈X

(D (x)−D (x | r)) · q̃r (x)

∣∣∣∣∣
(2)

≥

≥δ︷ ︸︸ ︷∑
r∈rε

D (r) ·

=2`(r)>2ε︷ ︸︸ ︷∑
x∈X
|D (x)−D (x | r)| ·∆

(3)
> 2ε∆δ

where (1) is further justified in the proof of Theorem C.1, (2) results from the definition of the loss
assessment query, and (3) from the definition of rε.

We use this method for constructing an overfitting query for non-LSS mechanism, to show that LSS
is necessary in order for a mechanism to be both Sample Accurate and Distribution Accurate.
Theorem 3.6 (Necessity of LSS for Generalization). Given 0 ≤ ε ≤ ∆, 0 ≤ δ ≤ 1, a distribution
DXn , and an analyst A : V → Q∆, if a sequence of k mechanisms M̄ where ∀i ∈ [k] ,Mi :
Xn ×Q∆ → R is not

(
ε
∆ , δ

)
-k-LSS, then it cannot be both

(
ε
5 ,

εδ
5∆

)
(k + 1)-Distribution Accurate

and
(
ε
5 ,

εδ
5∆

)
(k + 1)-Sample Accurate.

The proof of this theorem, which appears in Appendix C.4, uses a similar method to the proof of
Theorem 3.3, employing a variant of the Monitor Mechanism that outputs the loss assessment query
with the highest level of overfitting.

4 Relationship to other notions of stability

In this section, we discuss the relationship between LSS and a few common notions of stability;
definitions can be found in Appendix D.1. In order to do so, we introduce an additional new
stability notion, which relaxes the Max Information (MI) (Definition D.2) notion by moving from the
distribution over the sample sets to the distribution over the sample elements.

8The fact that we are able to define such a query is a result of the way the distance measure of LSS treats the
x’s and the fact that it is defined over X and not Xn.
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Definition 4.1 (Local Max Information). Given 0 ≤ ε, 0 ≤ δ ≤ 1, a distribution DXn and a query q,
a mechanism M will be said to satisfy (ε, δ)-Local-Max-Information with respect to DXn and q (or
LMI, for short), if the joint distributions D(X ,R) and the product distribution DX⊗R over X ×R are
(ε, δ)-indistinguishable. In other words, for any b ⊆ X ×R,

D(X ,R) (b) ≤ eε ·DX⊗R (b) + δ and DX⊗R (b) ≤ eε ·D(X ,R) (b) + δ.

The definition can be extended to apply to a family of queries and/or a family of possible distributions.

4.1 Implications

Prior work ([DFH+15a] and [RRST16]) showed that bounded Differential Privacy (DP) (Definition
D.1) implies bounded MI (Definition D.2). In the case of δ > 0, this holds only if the underlying
distribution is a product distribution [De12]). Bounded MI is also implied by Typical Stability (TS)
(Definition D.3) [BF16], and Bounded Maximal Leakage (ML) [EGI19]. We prove that DP, MI and
TS imply LMI (in the case of DP, only for product distributions). All proofs for this subsection can be
found in Appendix D.2, where we also introduce a local version of ML and prove its relation to LMI.
Theorem 4.2 (Differential Privacy implies Local Max Information). Given 0 ≤ ε, 0 ≤ δ ≤ 1, a
distribution DX , and a query q, if a mechanism M is (ε, δ)-DP with respect to q then it is (ε, δ)-LMI
with respect to the same q and the product distribution over Xn induced by DX .
Theorem 4.3 (Max Information implies Local Max Information). Given 0 ≤ ε, 0 ≤ δ ≤ 1, a
distribution DXn and a query q, if a mechanism M has δ-approximate max-information of ε with
respect to DXn and q then it is (ε, δ)-LMI with respect to the same DXn and q.
Theorem 4.4 (Typical Stability implies Local Max Information). Given 0 ≤ ε, 0 ≤ δ, η ≤ 1, a
distribution DXn and a query q, if a mechanism M is (ε, δ, η)-Typically Stable with respect to DXn
and q then it is (ε, δ + 2η)-LMI with respect to the same DXn and q.

These three theorems follow naturally from the fact that LMI is a fairly direct relaxation of DP, MI
and TS.

We next show that LMI implies LSS.
Theorem 4.5 (Local Max Information implies Local Statistical Stability). Given 0 ≤ δ ≤ ε ≤ 1

3 , a
distribution DXn and a query q, if a mechanism M is (ε, δ)-LMI with respect to DXn and q, then it
is
(
ε′, δε

)
-LSS with respect to the same DXn and q, where ε′ = eε − 1 + ε.

We also prove that Compression Schemes (Definition D.6) imply LSS. This results from the fact that
releasing information based on a restricted number of sample elements has a limited effect on the
posterior distribution on one element of the sample set.
Theorem 4.6 (Compressibility implies Local Statistical Stability). Given 0 ≤ δ ≤ 1, an integer
m ≤ n

9ln(2n/δ) , a distribution DX , and a query q ∈ Q, if a mechanism M has a compression scheme
of size m then it is (ε, δ)-LSS with respect to the same q and the product distribution over Xn induced

by DX , for any ε > 11
√

mln(2n/δ)
n .9

4.2 Separations

Finally, we show that MI is a strictly stronger requirement than LMI, and LMI is a strictly stronger
requirement then LSS. Proofs of these theorems appear in Appendix D.3.
Theorem 4.7 (Max Information is strictly stronger than Local Max Information). For any 0 < ε,
n ≥ 3, the mechanism which outputs the parity function of the sample set is (ε, 0)-LMI but not(
1, 1

5

)
-MI.

Theorem 4.8 (Local Max Information is strictly stronger than Local Statistical Stability). For any
0 ≤ δ ≤ 1, n > max

{
2ln
(

2
δ

)
, 6
}

, a mechanism which uniformly samples and outputs one sample

element is
(

11
√

ln(2n/δ)
n , δ

)
-LSS but is not

(
1, 1

2n

)
-LMI.

9In case g releases some side information, the number of bits required to describe this information is added
to the m factor in the bound on ε.
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5 Applications and Discussion

In order to make the LSS notion useful, we must identify mechanisms which manages to remain
stable while maintaining sample accuracy. Fortunately, many such mechanisms have been introduced
in the context of Differential Privacy. Two of the most basic Differentially Private mechanisms are
based on noise addition, of either a Laplace or a Gaussian random variable. Careful tailoring of their
parameters allows “masking” the effect of changing one element, while maintaining a limited effect
on the sample accuracy. By Theorems 4.2 and 4.5, these mechanisms are guaranteed to be LSS as
well. The definitions and properties of these mechanisms can be found in Appendix E.

In moving away from the study of worst-case data sets (as is common in previous stability notions) to
averaging over sample sets and over data elements of those sets, we hope that the Local Statistical
Stability notion will enable new progress in the study of generalization under adaptive data analysis.
This averaging, potentially leveraging a sort of “natural noise” from the data sampling process, may
enable the development of new algorithms to preserve generalization, and may also support tighter
bounds on the implications of existing algorithms. One possible way this might be achieved is by
limiting the family of distributions and queries, such that the empirical mean of the query lies within
some confidence interval around population mean, which would allow scaling the noise to the interval
rather than the full range (see, e.g. , Concentrated Queries, as proposed by [BF16]).

One might also hope that realistic adaptive learning settings are not adversarial, and might therefore
enjoy even better generalization guarantees. LSS may be a tool for understanding the generalization
properties of algorithms of interest (as opposed to worst-case queries or analysts; see e.g. [GK16],
[ZH19]).
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