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Abstract

In Stackelberg security games when information about the attacker’s payoffs is un-
certain, algorithms have been proposed to learn the optimal defender commitment
by interacting with the attacker and observing their best responses. In this paper,
we show that, however, these algorithms can be easily manipulated if the attacker
responds untruthfully. As a key finding, attacker manipulation normally leads to
the defender learning a maximin strategy, which effectively renders the learning
attempt meaningless as to compute a maximin strategy requires no additional infor-
mation about the other player at all. We then apply a game-theoretic framework at
a higher level to counteract such manipulation, in which the defender commits to a
policy that specifies her strategy commitment according to the learned information.
We provide a polynomial-time algorithm to compute the optimal such policy, and
in addition, a heuristic approach that applies even when the attacker’s payoff space
is infinite or completely unknown. Empirical evaluation shows that our approaches
can improve the defender’s utility significantly as compared to the situation when
attacker manipulation is ignored.

1 Introduction

Stackelberg security games (SSGs) are Stackelberg game models developed for deriving optimal
security resource allocation in strategic scenarios. In the AI community, a line of work applying
SSG models forms the algorithmic basis of resource scheduling systems, that are in use by the Los
Angeles Airport, the US Cost Guard, the Federal Air Marshal Service, etc, to assist in protecting
high-profile infrastructures, and public and natural resources [21].

The standard solution concept of SSG, the strong Stackelberg equilibrium (SSE) captures the situation
where a defender (the leader) commits to her optimal strategy, assuming that an attacker (the follower)
will respond optimally to her commitment. There are many algorithms designed to compute SSEs in
different SSG models when complete information about the attacker’s type (i.e., his payoff parameters)
is provided. While payoff information may be incomplete in many real environments, algorithms were
also designed for the defender to learn the optimal commitment through interacting with the attacker:
by committing to a series of carefully chosen defender strategies and observing the attacker’s best
responses to these strategies [11, 4, 8, 19, 17]. The optimality of the learned commitment thus relies
crucially on the assumption of a truthful attacker, one who responds to the defender’s commitment
optimally according to their actual payoffs. Unfortunately, when there is no guarantee that the
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attacker will indeed be truthful, a strategic attacker can easily manipulate the learning algorithm by
using fake best responses — typically by imitating the responses of a different attacker type. The
defender will then learn a commitment that is optimal with respect to the imitated type but, very
likely, suboptimal with respect to the true attacker type. As we will show in this paper, the attacker is
often incentivized to imitate a type that makes the game zero-sum; a credulous defender would then
only learn a maximin strategy (i.e., the optimal commitment in a zero-sum game). Effectively, the
learning attempt now becomes meaningless: to compute a maximin strategy, one needs no additional
information about the other player’s payoffs at all!

Driven by this issue, we study what can be done to reduce the defender’s loss due to attacker
manipulation. We apply a game-theoretic framework at a higher level. In the framework, the defender
commits to a policy that specifies her strategy commitment according to the learned information. A
strategic attacker then takes into account the defender’s policy, choosing optimally what he wants
the defender to learn so that the policy outputs a strategy that benefits him the most. We make
several other contributions under this framework. (i) We propose a novel quality measure of the
defender’s policy and argue why it is a reasonable choice in the context of SSGs. (ii) We develop a
polynomial-time algorithm to compute the optimal policy with respect to this quality measure, as well
as (iii) a heuristic approach which applies even when the attacker type space is infinite or completely
unknown. The heuristic approach is inspired by the famous quantal response model that was initially
proposed to model bounded rationality of human players. It suggests a rationality of behaving in a
“boundedly rational” manner in the presence of attacker manipulation. (iv) Finally, through empirical
evaluation we show that our approaches can improve the defender’s utility significantly in randomly
generated games, as compared to the situation when attacker manipulations are ignored.

Our work follows some recent research effort on understanding manipulation of leader learning
algorithms in general Stackelberg games [7] and shed light on the same issue in SSGs. The SSG
model offers us an appropriate level of specification that enables us to derive a richer set of results
than from a general model (consider, e.g., when the interests of the leader and the follower completely
align, there is simply no incentive for the follower to manipulate the leader), while it also captures
sufficiently many real-world applications of significant practical value.

Additional Related Work Apart from [7], manipulation of leader learning algorithms remains
largely an under-explored topic, though there are many papers focusing on the design learning
algorithms for the leader. In addition to the aforementioned efforts to learn the optimal leader
commitment against a fixed but unknown follower type [11, 4, 8, 19, 17], a couple of papers also
take the regret-minimization perspective and design online learning algorithms for the leader to
use in the adversarial setting [1, 22]. Our work can be seen as a middle-ground approach between
the overoptimistic assumption of a truthful follower adopted by the former line of work and the
pessimistic assumption of a worst-case opponent by the latter. Our approach to deal with attacker
manipulation is, in a nutshell, to reduce information uncertainty by acquiring additional information
while bearing in mind that information acquired may be manipulated by the attacher. There are
also approaches to deal with uncertainties without additional information retrieval attempts; they are
immune to manipulation as a result. In particular, algorithms were designed to compute robust leader
strategies when the leader can bound the follower’s payoffs in certain intervals [11, 10, 14], or knows
a probability distribution of the follower’s type [6, 16, 9, 18]. Follower manipulation is not a concern
in applying these approaches but leader strategies yielded are weaker. In a broader sense, our work is
also related to poisoning attacks in adversarial machine learning, where an attacker manipulates the
training data (in our model, their payoffs) to undermine the performance of learning algorithms; see,
e.g., pioneering work in this area [2, 3] and some recent surveys [5, 12].

2 SSG Preliminaries

An SSG is played between a defender (the leader) and an attacker (the follower). The defender
allocates m security resources to a set of targets T = {1, . . . , n} (without loss of generality, n > m),
and the attacker chooses a target to attack. In the pure strategy setting, an attack on a target i is
unsuccessful as long as one resource is allocated to i, in which case the attacker receives a penalty
pa
i and the defender a reward rd

i . Otherwise, i.e., when no resource is allocated to i, the attack is
successful, in which case the attacker receives a reward ra

i and the defender a penalty pd
i . We say

that a target is protected, or covered, if at least one resource is assigned to it; and unprotected, or
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uncovered, otherwise. It is assumed that ra
i > pa

i and rd
i > pd

i for all i, so the attacker always prefers
a successful attack and the defender prefers the opposite.

The defender can further randomize the resource allocation and commit to a mixed strategy, i.e., a
probability distribution over pure strategies. The structure of SSGs allows a defender mixed strategy
to be represented more compactly as a coverage (vector) c = (ci)i∈T , with each ci representing
the probability that target i is protected. We will stick to this representation and use the terms
coverage and defender mixed strategy interchangeably. Under the constraint that the defender can
use at most m resources, the set of feasible mixed strategies available for the defender to use is
C = {c ∈ Rn : 0 ≤ c ≤ 1,

∑
i∈T ci ≤ m}; provably, any coverage vector in C can be implemented

as a distribution of pure strategies each involving at most m resources, and any such distribution
results in a coverage vector in C. When the defender plays a mixed strategy c and the attacker attacks
target i, let ud(c, i) and ua(c, i) be the expected utilities of the defender and the attacker, respectively.
With slight abuse of notation, we write

ud(c, i) = ud(ci, i) = ci · rd
i + (1− ci) · pd

i , (1)
ua(c, i) = ua(ci, i) = (1− ci) · ra

i + ci · pa
i. (2)

It is worth noting that ud(c, i) is strictly increasing with respect to ci, and ua(c, i) strictly decreasing.
By the standard assumption, in an SSG the attacker is able to observe the defender’s mixed strategy
through surveillance before he launches an attack, but the instantiated pure strategy is not observable.

The strong Stackelberg equilibrium (SSE) is the standard solution concept of SSGs. In an SSE, the
defender commits to an optimal mixed strategy, taking into account that the attacker will observe
this strategy and respond optimally. It is assumed that ties are broken in favor of the defender when
the attacker has multiple best responses; hence, without loss of generality we can assume that the
attacker always responds by playing a pure strategy. The assumption is justified by the fact that the
attacker’s strict preference to the favored target can be induced if the defender reduces the coverage
of this target by an infinitesimal amount.1 Formally, a strategy profile (ĉ, î) forms an SSE if:

(ĉ, î) ∈ arg maxc∈C,i∈BR(c) u
d(c, i),

where BR(c) = arg maxi∈T u
a(c, i) denotes the set of attacker best responses to c. An SSE always

exists and can be computed in polynomial time, e.g., using a multiple-LP approach [6].

We will refer to a full set of attacker payoffs (ra,pa) as an attacker type. To distinguish, we extend (2)
and define ua

θ(c, i) = (1−ci) ·xi+ci ·yi to be the utility function parameterized by attacker type θ =
(x,y). Definition of the best response set is extended likewise, with BRθ(c) = arg maxi∈T u

a
θ(c, i).

We will refer to an SSE in a game where the attacker’s type is θ an SSE on attacker type θ.
Example 1. Consider an SSG where the defender allocates one security guard to protect two targets
A and B. The defender has three pure strategies: to assign the guard to protect A or B, or to send the
guard on vacation; the corresponding mixed strategy space is C = {c ∈ R2 : 0 ≤ c ≤ 1, c1 +c2 ≤ 1}.
The attacker can choose to attack A or B. In this game, the targets are of equal importance to the
defender: a successful attack on any target i ∈ {A,B} results in utility pd

i = −1 for the defender,
and an unsuccessful one results in rd

i = 0. For the attacker, the payoffs are ra
A = 3, ra

B = 1, and
pa
A = pa

B = 0. The bi-matrix representation of the game is shown below, in which the defender and
the attacker are the row and column players, respectively.

attack A attack B
protect A 0, 0 -1, 1
protect B -1, 3 0, 0
protect ∅ -1, 3 -1, 1

The SSE of this game can be identified using the indifference rule, i.e., by identifying a point where
the attacker is indifferent of attacking A and B, while the defender cannot improve coverage of the
targets any further (however, not in every game can an SSE be found in this way). In the only SSE
of this game, the defender protects (A,B) with probabilities c = ( 3

4 ,
1
4 ) (which is equivalent to a

mixed strategy x = ( 3
4 ,

1
4 , 0) as in the bi-matrix representation), to which the attacker finds his best

responses to be BR(c) = {A,B} and, by the SSE assumption, breaks the tie in favor of the defender
by attacking A. The defender gets utility ud(c, A) = − 1

4 and the attacker gets ua(c, A) = 3
4 .

1See [20] and [21] (Chapter 8) for more discussion about the SSG and the solution concepts.
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3 Manipulating a Learning Defender

We investigate how attacker manipulation can take place. Let us begin with a warm-up example.
Example 2. Consider now the attacker in Example 1 pretends to have payoff ra

A = 1 (all other
parameters remain the same) and “best” responds to queries of the defender’s learning algorithm
according to this fake parameter. Let the resultant fake attacker type be β. The defender will be misled
into learning an SSE on type β, in which her commitment is c̃ = ( 1

2 ,
1
2 ). We have BRβ(c̃) = {A,B}.

The attacker can respond (still with ties broken in favor of the defender) by attacking A, and this
results in the attacker’s utility to increase to 3

2 , but the defender’s to drop to − 1
2 . There is a loss of

1
4 for the defender compared to the truthful situation! Note that the attacker behaves consistently
according to the fake type β even after having misled the defender into learning the fake commitment.
Hence, there is no way to distinguish him from a truthful type-β attacker.

In the above example, the attacker actually lies to the defender that the game they are playing is zero-
sum. It turns out that this is not a coincidence specific to this example but a general phenomenon in
SSGs. We show next that it is always optimal for the attacker to mislead the defender into playing her
maximin strategy. A maximin strategy c maximizes the defender’s utility against the worst possible
attacker type, i.e., c ∈ arg maxc mini u

d(c, i); it is exactly the defender’s optimal commitment in a
zero-sum game (see Lemma 13 in the appendix).

A couple of “disclaimers” would be appropriate before we delve into our analysis: First, in line
with previous work (e.g., [11, 4, 17]), we only consider the players’ utilities in the (fake) SSE the
defender learns. The cost incurred for both players during the learning process is omitted as we
expect the learning algorithm to run efficiently and the learned SSE to repeat in sufficiently many
rounds. Without loss of generality, we view the learning process as a reporting step in which the
attacker simply reports his type to the defender. To manipulate the defender, the attacker reports a
fake type, and we refer to this as his reporting strategy.

Second, we assume that the attacker behaves consistently according to the reported type. This means
that the attacker may be playing a fake best response — hence, a suboptimal one — in the learned
SSE and may thus exploit the defender for an even higher utility by switching back to his true best
response. Nevertheless, since such a change in his behavior will inevitably make the defender aware
of the manipulation and further complicates the interaction, we ignore the possibility of such a
behavior change and adopt this cleaner model to capture the essence of the manipulation problem.

Optimal Attacker Report The following program computes the optimal reporting strategy of a
type-θ attacker.

maxβ,z,t ua
θ(z, t) (3)

s.t. (z, t) ∈ arg maxc∈C, i∈BRβ(c) u
d(c, i) (3a)

β ∈ Θ (3b)
Here Θ = {(ra,pa) ∈ Rn×n : ra

i > pa
i for all i ∈ T} contains all types that adhere to the basic

assumption that an attacker always prefers a successful attack (we will show a stronger result that
allows for other specifications of Θ). In the program, the attacker reports a fake type β that results in
the defender to learn an SSE (z, t) on type β (by (3a)). An optimal solution thus yields a reporting
strategy for a type-θ attacker, that maximizes his true utility as the objective function specifies.

Using Program (3), we show with Theorem 3 that it is always optimal for the attacker to mislead the
defender into playing her maximin strategy. This result is surprising as the defender essentially learns
nothing: she can well compute the maximin strategy without any additional knowledge about the
attacker’s payoffs. We present a proof sketch. All omitted proofs can be found in the appendix.
Theorem 3. There exists an optimal solution (β, z, t) of Program (3) such that z is a maximin
strategy of the defender, i.e., z ∈ arg maxc∈C mini∈T u

d(c, i).

Proof sketch. Let c be a maximin strategy of the defender and u be her maximin utility. Consider a
solution (β, z, t) such that: zi = max

{
0,

u−pd
i

rd
i−pd

i

}
for all i ∈ T ; t ∈ BRθ(z); and β = (r,p), such

that ri =

{
−pd

i , if i 6= t

−min{pd
t , u}, if i = t

, and pi = −rd
i for all i ∈ T . It can be verified that z is indeed

also a maximin strategy of the defender and (β, z, t) is an optimal solution.
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Theorem 3 can be further strengthened under the assumption that the defender’s maximin strategy
c is fully mixed, i.e., 0 < ci < 1 for all i. (In this case the maximin strategy is also unique; see
Lemma 15 in the appendix.) The assumption is mild as it is normally expected that no target would
be too worthless to the extent that the defender would leave it wide open for the attacker to attack,
while on the other hand resources are normally insufficient to allow any target to be fully protected.
The strengthening is two-fold: (i) under the additional assumption, the defender’s maximin strategy
is her only SSE strategy induced by any optimal attacker report, so the equilibrium selection issue
that arises when a reported type induces multiple SSEs is avoided; (ii) one optimal attacker report, in
particular, is the type that makes the game zero-sum, so our result holds even for a more stringent
specification of Θ (e.g., when the defender has more precise knowledge about possible attacker types)
as long as Θ contains the zero-sum attacker type. (Indeed, it is very natural for an attacker to have the
zero-sum type given the adversarial nature of SSGs.) We state the result in Theorem 4.
Theorem 4. Suppose c is a maximin defender strategy and it is fully mixed, i.e., 0 < ci < 1 for all
i ∈ T . Let (β, z, t) be an arbitrary optimal solution of Program (3). For every SSE (ĉ, î) on type β, it
holds that ĉ = c. In addition, there exists an optimal solution (β′, z′, t′) such that β′ = (−pd,−rd).

4 Handling Attacker Manipulation — A New Playbook

Recall our analysis. The key to the success of the attacker’s trick is the naive playbook the defender
follows — to always play the learned optimal commitment as is. It appears that the defender
can be more strategic. Consider Example 2. Suppose the defender tweaks her strategy slightly,
playing c̃ = ( 1

2 ,
49
100 ) even when she learns that ( 1

2 ,
1
2 ) is optimal. The attacker, who imitates type β

(that makes the game zero-sum), should then attack B as now the best response set of β becomes
BRβ(c̃) = {B}. The attacker obtains utility 1

2 , which is even lower than his utility 3
4 in the truthful

situation. Therefore, if the defender commits to playing, e.g., (c1, c2 − 1
100 ) whenever she learns that

(c1, c2) is optimal, the attacker will at least lose the incentive to mislead the defender into playing her
maximin strategy. The question then becomes: what is the best the defender can achieve by revising
her playbook in similar ways? We formalize this problem as finding an optimal policy to commit to.

Committing to a Policy Formally, a policy is a function π : Θ → C × T that maps a reported
attacker type to an outcome (c, i) ∈ C × T . An outcome (c, i) is a strategy profile consisting of a
defender strategy c and a best response i ∈ BRθ(c) of the reported attacker type θ.2 As an example,
the way the defender plays when she ignores attacker manipulation can itself be viewed as a policy
that maps every reported type θ to an SSE on θ; we will refer to this policy as the SSE policy.

We assume that a policy can be observed or learned by the attacker through constant interaction with
the defender, or the defender can simply announce it to the attacker. In response, a strategic attacker
of true type θ chooses to report an optimal type β∗ ∈ arg maxβ∈Θ u

a
θ(π(β)) that will maximize his

utility in the outcome of the policy. At a higher level, this can be seen as a Stackelberg game in which
the defender commits to a policy and the attacker reports optimally in response to this commitment.

To find the optimal policy, we need a good measure of the quality of a policy. When there is no other
prior information about the attacker’s type, the worst-case analysis seems to be appropriate and a
straightforward choice of quality measure is the utility the defender obtains when playing against the
worst attacker type. However, as Proposition 5 suggests, this measure disallows us to well distinguish
the quality of many policies. Specifically, when playing against the zero-sum attacker type, no
feasible policy can achieve anything better than the maximin utility, so if we take the worst-case
utility as the measure, the quality of all policies would be hindered by this attacker type, and the SSE
policy, which achieves exactly the maximin utility in the worst case, would then be the best policy we
can hope for. Essentially, there will be no room for improvement other than letting the attacker lie.
Proposition 5. Let c be a maximin strategy of the defender, and u = mini∈T u

d(c, i) be the maximin
utility. For any policy π, let γ ∈ arg maxθ∈Θ u

a
β(π(θ)) be an optimal report of a type-β attacker,

β = (−pd,−rd). Then ud(π(γ)) ≤ u.

This is unreasonable: even in the truthful situation, it is impossible for the defender to achieve more
than the maximin utility when the attacker is of the zero-sum type, so it would be unfair to underrate

2We also specify an attacker response in the output of a policy in order to deal with the tie-breaking issue
explicitly. Same as in SSEs, the defender can induce specific attacker responses through infinitesimal deviations.
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a policy simply because it underperforms against the zero-sum type. For this reason, we propose
an alternative measure, termed the efficiency of a policy (EoP), which takes into consideration the
hardness of playing against each attacker type in the truthful setting. As in Definition 6, the EoP
is the worst-case ratio between the utility the defender obtains and what she should have obtained
had the attacker been truthful. A higher EoP indicates a smaller loss due to attacker manipulation,
and the value of the EoP always lies between 0 and 1 according to Proposition 7. For the EoP to be
meaningful, we shift all payoffs to be non-negative. Without loss of generality, we will hereafter also
assume Θ — previously defined as the set of types the attacker is allowed to report — to be also the
set of possible attacker types, which is common knowledge to both players.
Definition 6 (EoP). For each θ ∈ Θ, let βπθ = arg maxβ∈Θ u

a
θ(π(β)) be the attacker’s optimal

reporting strategy in response to a policy π (tie-breaking in favor of the defender). The efficiency
of π on attacker type θ is EoPθ(π) =

ud(π(βπθ ))
û(θ) , where û(θ) = maxc∈C,i∈BRθ(c) u

d(c, i) is the
defender’s utility in an SSE on type θ. The (overall) efficiency of π is EoP(π) = minθ∈Θ EoPθ(π).
Proposition 7. EoP(π) ∈ [0, 1] for any feasible defender policy π.

Another challenge we face is the representation of a policy, which is a function to be optimized. We
follow a modeling approach in the literature and consider a discrete version of the problem where
the set Θ of attacker types is finite. This approach has been widely adopted to model Bayesian
games (e.g., [6, 16, 9, 18]). A finite type set can be seen as an approximation to the continuous
type space, while in some scenarios attacker types might also be discrete by nature. For example, in
defense against poaching, payoffs of the poachers may depend on the type of animal products they
are interested in, which falls in a finite set. In addition to this approach, we also propose a heuristic
policy that applies to an infinite or even an unknown type set. We present these approaches next.

5 Computing the Optimal Policy

5.1 Optimal Policy for Finite Attacker Types

When Θ is a finite set, a defender policy can be represented as a list of λ = |Θ| outcomes; we will
therefore also write a policy as π = (cθ, iθ)θ∈Θ, meaning that π(θ) = (cθ, iθ) for each θ ∈ Θ. Our
analysis reveals that to compute the EoP maximizing policy is NP-hard in general Stackelberg games
(see Section D in the appendix), but thanks to the special utility structure of SSGs, the problem admits
a polynomial-time algorithm when the underlying game is an SSG.

We consider the decision version of the optimization problem: for a given value ξ, decide whether
any defender policy π achieves EoP(π) ≥ ξ. Trivially, once we have an efficient algorithm for this
decision problem, the best EoP can be found efficiently using binary search (in particular, we already
know that the value always lies in [0, 1]). Our algorithm for this decision problem, presented as
Algorithm 1, is constructive and produces a satisfying policy when there exists one. In the remainder
of this section, we will let Θ = {θ1, . . . , θλ} such that θ1, . . . , θλ are ordered by the utility they offer
the defender in an SSE, i.e., û(θ1) ≥ û(θ2) · · · ≥ û(θλ); the order can be obtained efficiently given
that an SSE can be computed in polynomial time. We call a policy `-compatible if truthful report is
incentivized for every attacker type θj , j ≤ ` (Definition 8).

The correctness of Algorithm 1 is shown via Theorem 10. Briefly speaking, Algorithm 1 can be
viewed as a process of repeatedly replacing the `-th outcome of a satisfying policy (suppose we are
given one) with the outcome generated in the `-th iteration of Step 3. The observation in Lemma 9
ensures that the new policy obtained after every replacement will still be a satisfying one. Hence,
eventually, we will obtain a satisfying policy that consists of outcomes generated all through the
algorithm, and this means that we do not actually need to be provided a satisfying policy to begin with.
Interestingly, the policy generated by Algorithm 1 is also incentive compatible (IC) (λ-compatible as
in Definition 8); it always incentivizes the attacker to report their true type.
Definition 8. A policy π is `-compatible (0 ≤ ` ≤ λ), if in response to π, it is optimal for every
attacker type θ ∈ {θ1, . . . , θ`} to report truthfully, i.e., ua

θ(π(θ)) ≥ ua
θ(π(β)) for all β ∈ Θ.

Lemma 9. Let π be the policy generated in Step 3 of Algorithm 1. Suppose that there exists an (`−1)-

compatible policy π∗, EoP(π∗) ≥ ξ. Then the policy π̃, such that π̃(θ) =

{
π∗(θ), if θ ∈ Θ \ {θ`}
π(θ), if θ = θ`

,

is feasible and `-compatible, and EoP(π̃) ≥ ξ.
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Algorithm 1: Decide if there exists a policy π such that EoP(π) ≥ ξ.

1. For each θ ∈ Θ, compute an SSE (ĉθ, îθ) on type θ. Let û(θ) = ud(ĉθ, îθ).
2. Sort attacker types in Θ by û(θ), so that û(θ1) ≥ û(θ2) · · · ≥ û(θλ), λ = |Θ|.
3. For each ` = 1, . . . , λ, let π(θ`) = (z, t), where zi = min{ĉθ`i , hi}, t = BRθ`(h), and

hi = max
{

0,
ξ·û(θ`)−pd

i

rd
i−pd

i
, maxθ∈{θ1,...,θ`−1}

ua
θ(π(θ))−rθi
pθi−rθi

}
.

4. If EoP(π) ≥ ξ, return π as a satisfying policy; Otherwise, claim that no such policy exists.

Theorem 10. In time polynomial in m, n, and |Θ|, Algorithm 1 either outputs a policy π with
EoP(π) ≥ ξ, or decides correctly that no such policy exists. The policy generated is IC.

Proof. The polynomial runtime is readily seen. By Lemma 9, π(θ`) generated in Step 3 must be
a feasible outcome, so π is a feasible policy. When no feasible policy can achieve EoP ξ, we have
EoP(π) < ξ and Algorithm 1 will decide correctly in Step 4 that no satisfying policy exists.

Suppose that there exists a policy π∗, EoP(π∗) ≥ ξ. Let π̃0 = π∗, and for each ` = 1, . . . , λ, we
iteratively construct a policy π̃` by replacing π̃`−1(θ`) in policy π̃`−1 with π(θ`) generated in Step 3;
thus, π̃λ = π. Trivially, π̃0 is 0-compatible as is any feasible policy. Applying Lemma 9 iteratively,
we can also conclude that π̃` is `-compatible and EoP(π̃`) ≥ ξ for every `; in particular, π̃λ is
λ-compatible and EoP(πλ) ≥ ξ. Algorithm 1 outputs π = π̃λ as a satisfying policy.

5.2 Beyond Finite Attacker Types

The above approach only applies to a finite type set, we present a heuristic approach to deal with a
continuous or even unknown type set. The approach is inspired by the quantal response (QR) model
that is developed to study bounded rationality of human players [13]. In a QR equilibrium, players are
assumed to play not only their optimal pure strategy but also every other strategy with a probability
positively related to the utility the player gets from playing that strategy.

The QR policy imitates the irrational behavior in a QR equilibrium. Recall that in an SSE, a rational
defender commits to an optimal strategy c and induces a type-θ attacker to choose a response
i∗ ∈ BRθ(c) that maximizes the defender’s utility. The QR policy, however, induces the attacker’s
tie-breaking choice in an “irrational” way. It induces the attacker to choose not only i∗, but also every
target in BRθ(c) with some probability; the probability a target being chosen is positively related to
the defender’s utility when this target is attacked. The idea is to add some uncertainty in the outcome,
so that the attacker cannot benefit from being induced to choose a particular response with certainty,
which is crucial for the success of his manipulation. This also encourages truthful report to some
extent: a truthful attacker, who reports his true type θ, is indifferent of which response he is induced
to choose in BRθ(c) and hence immune to such uncertainty. The QR policy is as follows.

Definition 11 (QR policy). For each type θ, let ĉθ be the defender strategy in an SSE on attacker type
θ. A QR policy πQR maps a report θ to a distribution σ over outcomes in {(ĉθ, i) : i ∈ BRθ(ĉ

θ)};
the probability σ(i) of each outcome (ĉθ, i) is σ(i) = fi∑

j∈BRθ(ĉ
θ)
fj

, where fj = eϕ·u
d(ĉθ,j) for each

j ∈ T , with ϕ > 0 being a parameter that represents a player’s rationality level in the QR model.3

A defender who uses πQR then samples an outcome from πQR(θ) to implement when θ is reported.
The players are now concerned with their expected utility over the outcome distribution, e.g., for
the defender: ud(πQR(θ)) =

∑
i∈BRθ(ĉθ) σ(i) · ud(ĉθ, i). The EoP can also be redefined accordingly.

Since ĉθ and σ are independent of other types in Θ, the QR policy can be implemented on-the-fly for
the type reported, and is thus able to handle infinite or unknown type sets.

Intuitively, the QR policy strikes a balance between two unaligned aspects of playing against attacker
manipulation: 1) it adds some uncertainty to discourage attacker manipulation; meanwhile, 2) the
softmax function that defines σ loosely strings the induced attacker response to the optimal one for

3When ϕ→ 0, a player behaves completely irrationally, playing each strategy uniformly at random; when
ϕ→ +∞, a player becomes perfectly rational, choosing the optimal strategy with certainty.
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Figure 1: Comparison of the EoP. In (a), results are obtained with other parameters set to λ = 100, m = 10, and
n = 50; and in (b) with m = n/5, ρ = 0.5, and λ = 100. Figures (c) and (d) repeat (a) and (b), respectively,
with the difference that the zero-sum attacker type is always included in Θ in the experiments.

the defender, so that the cost of achieving 1) is kept away from being too high. We empirically
evaluate the performance of the QR policy in randomly generated games in the next section.

6 Empirical Evaluation

In our evaluations, attacker types are randomly generated using the covariance model [15], with a
parameter ρ ∈ [0, 1] to control the closeness of the generated game to a zero-sum game. That is, we
shift each payoff parameter x towards the corresponding one y of a zero-sum attacker type, letting
x← (1− ρ) · x+ ρ · y. Thus, when ρ = 1 the game generated is exactly zero-sum, and when ρ = 0
all payoffs are generated uniformly at random. All evaluations are conducted on finite type sets. This
also simulates situations with an unknown (but finite) type set, though situations with infinite type
sets requires more advanced approaches (in this case, it is unclear to us how to compute the optimal
attacker report in response to the QR policy). All results shown are the average of at least 50 runs.

We compare the EoP achieved by our optimal and heuristic policies, using the SSE policy as a
benchmark (i.e., the situation when attacker manipulation is ignored). The first set of results, Figure 1
(a) and (b), shows the variance of the EoP with respect to ρ and the size of the game. Except for the
QR policy with ϕ = 10, performance of all other policies is very close to each other, though there is
a discernable gap between the optimal policy and the SSE policy. In general, in these results, the loss
due to ignoring attacker manipulation appears to be very marginal.

A more interesting set of results is shown (c) and (d), in which we slightly tweak the randomly
generated type set, by always adding a zero-sum attacker type in it. This small change leads to a very
different pattern in the results. There is a wide gap between the optimal and the SSE policies, and
the QR policies normally rest in between them, exhibiting good performance as well. The results
corroborate our theoretical analysis, that all attacker types will be incentivized to report the zero-sum
type when they are allowed to, which undermines the performance of the SSE policy significantly.
The optimal policy, however, is able to achieve very high EoP, sometimes close to recovering the
defender’s utility in the truthful situation (EoP = 1).

7 Conclusion

In this paper, we investigate manipulation of algorithms that are designed to learn the optimal strategy
to commit to in Stackelberg security games, and aim at remedying the overoptimistic assumption of a
truthful attacker adopted by these algorithms. We propose exact and heuristic approaches to reduce
the loss due to manipulation. The effectiveness of our approaches are evaluated both theoretically and
empirically. One promising direction for future work is to look at similar problems in other variants
of Stackelberg games, where our framework and approaches may apply.
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