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Abstract

Generalized zero-shot learning (GZSL) is a challenging class of vision and knowl-7

edge transfer problems in which both seen and unseen classes appear during8

testing. Existing GZSL approaches either suffer from semantic loss and discard9

discriminative information at the embedding stage, or cannot guarantee the visual-10

semantic interactions. To address these limitations, we propose a Dual Adversarial11

Semantics-Consistent Network (referred to as DASCN), which learns both primal12

and dual Generative Adversarial Networks (GANs) in a unified framework for13

GZSL. In DASCN, the primal GAN learns to synthesize inter-class discriminative14

and semantics-preserving visual features from both the semantic representations of15

seen/unseen classes and the ones reconstructed by the dual GAN. The dual GAN16

enforces the synthetic visual features to represent prior semantic knowledge well17

via semantics-consistent adversarial learning. To the best of our knowledge, this18

is the first work that employs a novel dual-GAN mechanism for GZSL. Extensive19

experiments show that our approach achieves significant improvements over the20

state-of-the-art approaches.21

1 Introduction22

In recent years, tremendous progress has been achieved across a wide range of computer vision23

and machine learning tasks with the introduction of deep learning. However, conventional deep24

learning approaches rely on large amounts of labeled data, thus may suffer from performance decay in25

problems where only limited training data are available. The reasons are two folds. On the one hand,26

objects in the real world have a long-tailed distribution, and obtaining annotated data is expensive. On27

the other hand, novel categories of objects arise dynamically in nature, which fundamentally limits28

the scalability and applicability of supervised learning models for handling this dynamic scenario29

when labeled examples are not available.30

Tackling such restrictions, zero-shot learning (ZSL) has been researched widely recently, recognized31

as a feasible solution [16, 24]. ZSL is a learning paradigm that tries to fulfill the ability to correctly32

categorize objects from previous unseen classes without corresponding training samples. However,33

conventional ZSL models are usually evaluated in a restricted setting where test samples and the34

search space are limited to the unseen classes only, as shown in Figure 1. To address the shortcomings35

of ZSL, GZSL has been considered in the literature since it not only learns information that can be36

transferred to an unseen class but can also generalize to new data from seen classes well.37

ZSL approaches typically adopt two commonly used strategies. The first strategy is to convert tasks38

into visual-semantic embedding problems [4, 23, 26, 33]. They try to learn a mapping function from39
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the visual space to the semantic space (note that all the classes reside in the semantic space), or to a40

latent intermediate space, so as to transfer knowledge from the seen classes to the unseen classes.41

However, the ability of these embedding-based ZSL models to transfer semantic knowledge is limited42

by the semantic loss and the heterogeneity gap [4]. Meanwhile, since the ZSL model is only trained43

with the labeled data from the seen classes, it is highly biased towards predicting the seen classes [3].44

The second strategy ZSL approaches typically adopt is to use generative methods to generate various45

visual features conditioned on semantic feature vectors [7, 10, 19, 29, 35], which circumvents the46

need for labeled samples of unseen classes and boosts the ZSL classification accuracy. Nevertheless,47

the performance of these methods is limited either by capturing the visual distribution information48

via only a unidirectional alignment from the class semantics to the visual feature only, or by adopting49

just a single Euclidean distance as the constraint to preserve the semantic information between the50

generated high-level visual features and real semantic features. Recent work has shown that the51

performance of most ZSL approaches drops significantly in the GZSL setting [28].
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Figure 1: Problem illustration of zero-shot learning (ZSL) and generalized zero-shot learning (GZSL).
52

To address these limitations, we propose a novel Dual Adversarial Semantics-Consistent Network53

(referred to as DASCN) for GZSL. DASCN is based on the Generative Adversarial Networks (GANs),54

and is characterized by its dual structure which enables bidirectional synthesis by allowing both55

the common visual features generation and the corresponding semantic features reconstruction, as56

shown in Figure 2. Such bidirectional synthesis procedures available in DASCN boost these two tasks57

jointly and collaboratively, preserving the visual-semantic consistency. This results in two advantages58

as follows. First, our generative model synthesizes inter-class discrimination visual features via59

a classification loss constraint, which makes sure that synthetic visual features are discriminative60

enough among different classes. Second, our model encourages the synthesis of visual features that61

represent their semantic features well and are of a highly discriminative semantic nature from the62

perspectives of both form and content. From the form perspective, the semantic reconstruction error63

between the synthetic semantic features (reconstructed by the dual GAN from the pseudo visual64

features generated by the primal GAN) and the real corresponding semantic features is minimized to65

ensure that the reconstructed semantic features are tightly centered around the real corresponding66

class semantics. From the content perspective, the pseudo visual features (generated via the primal67

GAN by further exploiting the reconstructed semantic features as input) are constrained to be as close68

as possible to their respective real visual features in the data distribution. Therefore, our approach69

can ensure that the reconstructed semantic features are consistent with the relevant real semantic70

knowledge, thus avoiding semantic loss to a large extent.71

We summarize our contributions as follows. First, we propose a novel generative dual adversarial72

architecture for GZSL, which preserves semantics-consistency effectively with a bidirectional align-73

ment, alleviating the issue of semantic loss. To the best of our knowledge, DASCN is the first network74

to employ the dual-GAN mechanism for GZSL. Second, by combining the classification loss and75

the semantics-consistency adversarial loss, our model generates high-quality visual features with76

inter-class separability and a highly discriminative semantic nature, which is crucial to the generative77

approaches used in GZSL. Last but no least, we conduct comprehensive experiments demonstrating78

that DASCN is highly effective and outperforms the state-of-the-art GZSL methods consistently.79

The remainder of this paper is structured as follows. We discuss the related work in Section 2, present80

our DASCN model in Section 3, evaluate the proposed model in Section 4, and conclude in Section 5.81
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2 Related Work82

2.1 Zero-Shot Learning83

Some of the early ZSL works make use of the primitive attributes prediction and classification, such as84

DAP [15], and IAP [16]. Recently, the attribute-based classifier has evolved into the embedding-based85

framework, which now prevails due to its simple and effective paradigm [1, 23, 24, 25, 33]. The core86

of such approaches is to learn a projection from visual space to semantic space spanned by class87

attributes [23, 24], or conversely [33], or jointly learn an appropriate compatibility function between88

the visual space and the semantic space [1, 25].89

The main disadvantage of the above methods is that the embedding process suffers from semantic loss90

and the lack of visual training data for unseen classes, thus biasing the prediction towards the seen91

classes and undermining seriously the performance of models in the GZSL setting. More recently,92

generative approaches are promising for GZSL setting by generating labeled samples for the seen93

and unseen classes. [10] synthesize samples by approximating the class conditional distribution94

of the unseen classes based on learning that of the seen classes. [29, 35] apply GAN to generate95

visual features conditioned on class descriptions or attributes, which ignore the semantics-consistency96

constraint and allow the production of synthetic visual features that may be too far from the actual97

distribution. [7] consider minimizing L2 norm between real semantics and reconstructed semantics98

produced by a pre-trained regressor, which is rather weak and unreliable to preserve high-level99

semantics via the Euclidean distance.100

DASCN differs from the above approaches in that it learns the semantics effectively via multi-101

adversarial learning from both the form and content perspectives. Note that ZSL is also closely102

related to domain adaptation and image-to-image translation tasks, where all of them assume the103

transfer between source and target domains. Our approach is motivated by, and is similar in spirit104

to, recent work on synthesizing samples for GZSL [29] and unpaired image-to-image translation105

[11, 30, 34]. DASCN preserves the visual-semantic consistency by employing dual GANs to capture106

the visual and semantic distributions, respectively.107

2.2 Generative Adversarial Networks108

As one of the most promising generative models, GANs have achieved a series of impressive results.109

The idea behind GANs is to learn a generative model to capture an arbitrary data distribution via a110

max-min training procedure, which consists of a generator and a discriminator that work against each111

other. DCGAN [22] extends GAN by leveraging deep convolution neural networks. InfoGAN [5]112

maximizes the mutual information between the latent variables and generator distribution. In our113

work, given stabilizing training behavior and eliminating model collapse as much as possible, we114

utilize WGANs [9] as basic models in a dual structure.115

3 Methodology116

In this section, we first formalize the GZSL task in Section 3.1. Then we present our model and117

architecture in Section 3.2. We then describe in detail our model’s objective, training procedures and118

generalized zero-shot recognition in Section 3.3, Section 3.4 and Section 3.5, respectively.119

3.1 Formulation120

We denote by DTr =
{
(x, y, a)|x ∈ X , y ∈ Ys, a ∈ A

}
the set of Ns training instances of the121

seen classes. Note that x ∈ X ⊆ RK represents K-dimensional visual features extracted from122

convolution neural networks, Ys denotes the corresponding class labels, and a ∈ A ⊆ RL denotes123

semantic features (e.g., the attributes of seen classes). In addition, we have a disjoint class label set124

U =
{
(y, a)|y ∈ Yu, a ∈ A

}
of unseen classes, where visual features are missing. Given DTr and125

U , in GZSL, we learn a prediction: X → Ys ∪ Yu. Note that our method is of the inductive school126

where model has access to neither visual nor semantic information of unseen classes in the training127

phase.128
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Figure 2: Network architecture of DASCN. The semantic feature of class c, represented as ac, and a
group of randomly sampled noise vectors are utilized by generator GSV to synthesize pseudo visual
features xc′. Then the synthesized visual features are used by generator GV S and discriminator DV

simultaneously to perform semantics-consistency constraint in the perspective of form and content
and distinguish between real visual features xc and synthesized visual features xc′. DS denotes the
discriminator that distinguishes between ac, and the reconstructed semantic feature ac′ generated
from corresponding xc′. xc′′ are produced by generator GSV taking ac′ and sampled noise as input
to perform visual consistency constraint. Please zoom to view better.

3.2 Model Architecture129

Given the training data DTr of the seen classes, the primal task of DASCN is to learn a generator130

GSV :Z ×A → X that takes the random Gaussian noise z ∈ Z and semantic attribute a ∈ A as input131

to generate the visual feature x′ ∈ X , while the dual task is to train an inverse generatorGV S :X → A.132

Once the generator GSV learns to generate visual features of the seen classes conditioned on the seen133

class-level attributes, it can also generate that of the unseen classes. To realize this, we employ two134

WGANs, the primal GAN and the dual GAN. The primal GAN consists of the generator GSV and the135

discriminator DV that discriminates between fake visual features generated by GSV and real visual136

features. Similarly, the dual GAN learns a generator GV S and a discriminator DS that distinguishes137

the fake semantic features generated by GV S from the real data.138

The overall architecture and data flow are illustrated in Figure 2. In the primal GAN, we hallucinate139

pseudo visual features x′c = GSV (ac, z) of the class c using GSV based on corresponding class140

semantic features ac and then put the real visual features and synthetic features from GSV into DV to141

be evaluated. To ensure that GSV generates inter-class discrimination visual features, inspired by that142

work [29], we design a classifier trained on the real visual features and minimize the classification143

loss over the generated features. It is formulated as:144

LCLS = −Ex′∼Px′ [logP (y|x′; θ)] (1)

where x′ represents the generated visual feature, y is the class label of x′, the conditional probability145

P (y|x′; θ) is computed by a linear softmax classifier parameterized by θ.146

Following that is one of the main innovations in our work that we guarantee semantics-consistency147

in both form and content perspectives thanks to dual structure. In form, GSV (a, z) are translated148

back to semantic space using GV S , which outputs a′ = GV S

(
GSV (a, z)

)
as the reconstruction of149

a. To achieve the goal that the generated semantic features of each class are distributed around the150

corresponding true semantic representation, we design the centroid regularization that regularizes the151

mean of generated semantic features of each class to approach respectively real semantic embeddings152
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so as to maintain semantics-consistency to a large extent. The regularization is formulated as:153

LSC =
1

C

C∑
c=1

∥∥∥Eac
′∼P c

a′ [ac
′]− ac

∥∥∥
2

(2)

whereC is the number of seen classes, ac is the semantic feature of class c, P c
a′ denotes the conditional154

distribution of generated semantic features of class c, ac′ are the generated features of class c and the155

centroid is formulated as:156

Eac
′∼P c

a′ [ac
′] =

1

Ns
c

Ns
c∑

i=1

GV S

(
GSV (ac, zi)

)
(3)

where Ns
c is the number of generated semantic features of class c. We employ the centroid regulariza-157

tion to encourage GV S to reconstruct semantic features of each seen class that statistically match real158

features of that class. From the content point of view, the question of how well the pseudo semantic159

features a′ are reconstructed can be translated into the evaluation of the visual features obtained by160

GSV taking a′ as input. Motivated by the observation that visual features have a higher intra-class161

similarity and relatively lower inter-class similarity, we introduce the visual consistency constraint:162

LV C =
1

C

C∑
c=1

∥∥∥Exc
′′∼P c

x′′

[
xc
′′]− Exc∼P c

x

[
xc
]∥∥∥

2
(4)

where xc is the visual features of class c, xc′′ is the pseudo visual feature generated by generator163

GSV employing GV S

(
GSV (ac, z)

)
as input, P c

x and P c
x′′ are conditional distributions of real and164

synthetic features respectively and the centroid of xc′′ is formulated as:165

Exc
′′∼P c

x′′

[
xc
′′] = 1

Ns
c

Ns
c∑

i=1

GSV

(
GV S

(
GSV (ac, zi)

)
, zi
′
)

(5)

It is worth nothing that our model is constrained in terms of both form and content aspects to achieve166

the goal of retaining semantics-consistency and achieves superior results in extensive experiments.167

3.3 Objective168

Given the issue that the Jenson-Shannon divergence optimized by the traditional GAN leads to169

instability during training, our model is based on two WGANs that leverage the Wasserstein distance170

between two distributions as the objectives. The corresponding loss functions used in the primal171

GAN are defined as follows. First,172

LDV
=Ex′∼Px′

[
DV (x

′, a)
]
−Ex∼Pdata

[
DV (x, a)

]
+λ1Ex̂∼Px̂

[(∥∥Ox̂DV (x̂, a)
∥∥
2
− 1
)2]

(6)

where x̂ = αx + (1 − α)x′ with α ∼ U(0, 1), λ1 is the penalty coefficient, the first two terms173

approximate Wasserstein distance of the distributions of fake features and real features, the third term174

is the gradient penalty. Second, the loss function of the generator of the primal GAN is formulated as:175

176

LGSV
= −Ex′∼Px′

[
DV (x

′, a)
]
− Ea′∼Pa′

[
DV (x

′′, a′)
]
+ λ2LCLS + λ3LV C (7)

where the first two terms are Wasserstein loss, the third term is the classification loss corresponding177

to class labels, the forth term is visual consistency constraint introduced before, and λ1, λ2, λ3 are178

hyper-parameters.179

Similarly, the loss functions of the dual GAN are formulated as:180

LDS
= Ea′∼Pa′

[
DS(a

′)
]
− Ea∼Pa

[
DS(a)

]
+ λ4Eŷ∼P ŷ

[(∥∥OŷDS(ŷ)
∥∥
2
− 1
)2]

(8)

181

LGV S
= −Ea′∼Pa′

[
DS(a

′)
]
+ λ5LSC + λ6LV C (9)

In Eq. (8) and Eq. (9), ŷ = βa+ (1− β)a′ is the linear interpolation of the real semantic feature a182

and the fake a′, and λ4, λ5, λ6 are hyper-parameters weighting the constraints.183
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Table 1: Datasets used in our experiments, and their statistics

Dataset Semantics/Dim # Image # Seen Classes # Unseen Classes

CUB A/312 11788 150 50
SUN A/102 14340 645 72

AWA1 A/85 30475 40 10
aPY A/64 15339 20 12

3.4 Training Procedure184

We train the discriminators to judge features as real or fake and optimize the generators to fool the185

discriminator. To optimize the DASCN model, we follow the training procedure proposed in WGAN186

[9]. The training procedure of our framework is summarized in Algorithm 1. In each iteration, the187

discriminators DV , DS are optimized for n1, n2 steps using the loss introduced in Eq. (6) and Eq.188

(8) respectively, and then one step on generators with Eq. (7) and Eq. (9) after the discriminators189

have been trained. According to [30], such a procedure enables the discriminators to provide more190

reliable gradient information. The training for traditional GANs suffers from the issue that the191

sigmoid cross-entropy is locally saturated as discriminator improves, which may lead to vanishing192

gradient and need to balance discriminator and generator carefully. Compared to the traditional193

GANs, the Wasserstein distance is differentiable almost everywhere and demonstrates its capability194

of extinguishing mode collapse. We put the detailed algorithm for training DASCN model in the195

supplemental material.196

3.5 Generalized Zero-Shot Recognition197

With the well-trained generative model, we can elegantly generate labeled exemplars of any class198

by employing the unstructured component z resampled from random Gaussian noise and the class199

semantic attribute ac into the GSV . An arbitrary number of visual features can be synthesized and200

those exemplars are finally used to train any off-the-shelf classification model. For simplicity, we201

adopt a softmax classifier. Finally, the prediction function for an input test visual feature v is:202

f(v) = argmax
y∈Ỹ

P (y|v; θ′) (10)

where Ỹ = Ys ∪ Yu for GZSL.203

4 Experiments204

4.1 Datasets and Evaluation Metrics205

To test the effectiveness of the proposed model for GZSL, we conduct extensive evaluations on206

four benchmark datasets: CUB [27], SUN [21], AWA1 [15], aPY [6] and compare the results with207

state-of-the-art approaches. Statistics of the datasets are presented in Table 1. For all datasets, we208

extract 2048 dimensional visual features via the 101-layered ResNet from the entire images, which is209

the same as [29]. For fair comparison, we follow the training/validation/testing split as described in210

[28].211

During test time, in the GZSL setting, the search space includes both the seen and unseen classes, i.e.212

Yu ∪Ys. To evaluate the GZSL performance over all classes, the following measures are applied. (1)213

ts: average per-class classification accuracy on test images from the unseen classes with the prediction214

label set being Yu ∪Ys. (2) tr: average per-class classification accuracy on test images from the seen215

classes with the prediction label set being Yu ∪Ys. (3) H: the harmonic mean of above defined tr and216

ts, which is formulated as H = (2× ts× tr)/(ts+ tr) and quantities the aggregate performance217

across both seen and unseen test classes. We hope that our model is of high accuracy on both seen218

and unseen classes.219

4.2 Implementation Details220

Our implementation is based on PyTorch. DASCN consists of two generators and two discriminators:221

GSV , GV S , DV , DS . We train specific models with appropriate hyper-parameters. Due to the space222
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Table 2: Evaluations on four benchmark datasets. *indicates that Cycle-WGAN employs 1024-dim
per-class sentences as class semantic rather than 312-dim per-class attributes on CUB, whose results
on CUB may not be directly comparable with others.

AWA1 SUN CUB aPY

Method ts tr H ts tr H ts tr H ts tr H
CMT [24] 0.9 87.6 1.8 8.1 21.8 11.8 7.2 49.8 12.6 1.4 85.2 2.8
DEVISE [8] 13.4 68.7 22.4 16.9 27.4 20.9 23.8 53.0 32.8 4.9 76.9 9.2
ESZSL [23] 6.6 75.6 12.1 11.0 27.9 15.8 12.6 63.8 21.0 2.4 70.1 4.6
SJE [1] 11.3 74.6 19.6 14.7 30.5 19.8 23.5 59.2 33.6 3.7 55.7 6.9
SAE [13] 1.8 77.1 3.5 8.8 18.0 11.8 7.8 54.0 13.6 0.4 80.9 0.9
LESAE [18] 19.1 70.2 30.0 21.9 34.7 26.9 24.3 53.0 33.3 12.7 56.1 20.1
SP-AEN [4] - - - 24.9 38.2 30.3 34.7 70.6 46.6 13.7 63.4 22.6
RN [25] 31.4 91.3 46.7 - - - 38.1 61.1 47.0 - - -
TRIPLE [31] 27 67.9 38.6 22.2 38.3 28.1 26.5 62.3 37.2 - - -
f-CLSWGAN [29] 57.9 61.4 59.6 42.6 36.6 39.4 43.7 57.7 49.7 - - -
KERNEL [32] 18.3 79.3 29.8 19.8 29.1 23.6 19.9 52.5 28.9 11.9 76.3 20.5
PSR [2] - - - 20.8 37.2 26.7 24.6 54.3 33.9 13.5 51.4 21.4
DCN [17] 25.5 84.2 39.1 25.5 37 30.2 28.4 60.7 38.7 14.2 75.0 23.9
SE-GZSL [14] 56.3 67.8 61.5 40.9 30.5 34.9 41.5 53.3 46.7 - - -
GAZSL [35] 25.7 82.0 39.2 21.7 34.5 26.7 23.9 60.6 34.3 14.2 78.6 24.1

DASCN (Ours) 59.3 68.0 63.4 42.4 38.5 40.3 45.9 59.0 51.6 39.7 59.5 47.6
Cycle-WGAN* [7] 56.4 63.5 59.7 48.3 33.1 39.2 46.0 60.3 52.2 - - -

limitation, here we take CUB as an example. Both the generators and discriminators are MLP with223

LeakyReLU activation. In the primal GAN,GSV has a single hidden layer containing 4096 nodes and224

an output layer that has a ReLU activation with 2048 nodes, while the discriminator DV contains a225

single hidden layer with 4096 nodes and an output layer without activation. GV S and DS in the dual226

GAN have similar architecture with GSV and DV respectively. We use λ1 = λ4 = 10 as suggested227

in [9]. For loss term contributions, we cross-validate and set λ2 = λ3 = λ6 = 0.01, λ5 = 0.1. We228

choose noise z with the same dimensionality as the class embedding. Our model is optimized by229

Adam [12] with a base learning rate of 1e−4.230

4.3 Compared Methods and Experimental Results231

We compare DASCN with state-of-the-art GZSL models. These approaches fall into two categories.232

(1) Embedding-based approaches: CMT [24], DEVISE [8], ESZSL [23], SJE [1], SAE [13], LESAE233

[18], SP-AEN [4], RN [25], KERNEL [32], PSR [2], DCN [17], TRIPLE [31]. This category suffers234

from the issue of the bias towards seen classes due to the lack of instances of the unseen classes. (2)235

Generative approaches: SE-GZSL [14], GAZSL [35], f-CLSWGAN [29], Cycle-WGAN [7]. This236

category synthesizes visual features of the seen and unseen classes and perform better for GZSL237

compared to the embedding-based methods.238

Table 2 summarizes the performance of all the comparing methods under three evaluation metrics on239

the four benchmark datasets, which demonstrates that for all datasets our DASCN model significantly240

improves the ts measure and H measure over the state-of-the-arts. Note that Cycle-WGAN [7]241

employs per-class sentences as class semantic features on CUB dataset rather than per-class attributes242

that are commonly used by other comparison methods, so its results on CUB may not be directly243

comparable with others. On CUB, DASCN achieves 45.9% in ts and 51.6% in H, with improvements244

over the state-of-the-art 2.2% and 1.9% respectively. On SUN, it obtains 42.4% in ts measure and245

40.3% in H measure. On AWA1, our model outperforms the runner-up by a considerable gap in H246

measure: 1.9%. On aPY, DASCN significantly achieves improvements over the other best competitors247

25.5% in ts measure and 23.5% in H measure, which is very impressive. The performance boost is248

attributed to the effectiveness of DASCN that imitate discriminative visual features of the unseen249

classes. In conclusion, our model DASCN achieves a great balance between seen and unseen classes250

classification and consistently outperforms the current state-of-the-art methods for GZSL.251
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Table 3: Comparison between the reported results of Cycle-WGAN and our model. * indicates
employing the same semantic features (per-class sentences (stc)) as Cycle-WGAN on CUB.

FLO CUB* SUN AWA1

Method ts tr H ts tr H ts tr H ts tr H
Cycle-WGAN 59.1 71.1 64.5 46.0 60.3 52.2 48.3 33.1 39.2 56.4 63.5 59.7
DASCN 60.5 80.4 69.0 47.4 60.1 53.0 42.4 38.5 40.3 59.3 68.0 63.4

To further clarify the advantages of DASCN over Cycle-WGAN [7] in both methodology and252

empirical results, we conduct the following experiments: (1) we use the same semantic features (per-253

class sentences (stc)) as Cycle-WGAN uses for DASCN on the CUB dataset, (2) we add the FLO [6]254

dataset employed by Cycle-WGAN as a benchmark. As shown in Table 3, results on four benchmarks255

consistently demonstrate the superiority of DASCN. The main novelty of our work is the integration256

of dual structure mechanism and visual-semantic consistencies into GAN for bidirectional alignment257

and alleviating semantic loss. In contrast, Cycle-WGAN only consists of one GAN and a pre-trained258

regressor, which only minimizes L2 norm between the reconstructed and real semantics. As a result,259

Cycle-WGAN is rather weak and unreliable to preserve high-level semantics via the Euclidean260

distance. Compared to that, thanks to the dual-GAN structure and visual-semantic consistencies loss,261

DASCN explicitly supervises that the generated features have highly discriminative semantic nature262

on the high-level aspects and effectively preserve semantics via multi-adversarial learning in both263

form and content perspectives.264

More specifically, we build two GANs for visual and semantic generation, and design two consistency265

regularizations accordingly: (1) semantic consistency to align the centroid of the synthetic semantics266

and real semantic, (2) visual consistency for not only matching the real visual features but also267

enforcing synthetic semantics to have highly discriminative nature to further generate effective visual268

features. Compared to the Cycle-WGAN that only minimizes L2 norm of reconstructed and real269

semantics, the novelty being introduced is the tailor-made semantic high-level consistency at a finer270

granularity.271

Note that we not only generate synthetic semantic features from the synthetic visual features, but also272

further generate synthetic visual features again based on the synthetic semantic features, which is273

constrained by visual consistency loss to ensure the generated features have highly discriminative274

semantic nature. Such bidirectional synthesis procedures boost the quality of synthesized instances275

collaboratively via dual structure.276

4.4 Ablation Study277

We now conduct the ablation study to evaluate the effects of the dual structure, the semantic centroid278

regularization LSC , and the visual consistency constraint LV C . We take the single WGAN model279

f-CLSWGAN as baseline, and train three variants of our model by keeping the single dual structure280

or that adding the only semantic or visual constraint, denoted as Dual-WGAN, Dual-WGAN +LSC ,281

Dual-WGAN +LV C , respectively. Table 4 shows the performance of each setting, the performance282

of the single Dual-WGAN on the H metric drops drastically by 4.9% on aPY, 1.4% on AWA1, 1.3%283

on CUB and 0.7% on SUN, respectively. This clearly highlights the importance of designed semantic284

and visual constraints to provide an explicit supervision to our model. In the case of lacking semantic285

or visual unidirectional constrains, on aPY, our model drops by 1.3% and 3.6% respectively, while286

on AWA1 the gap are 0.9% and 0.7%. In general, the three variants of our proposed model tend to287

offer more superior and balanced performance than the baseline. DASCN incorporates dual structure,288

semantic centroid regularization and visual consistency constraint into a unified framework and289

achieves the best improvement, which demonstrates that different components promote each other290

and work together to improve the performance of DASCN significantly.291

4.5 Quality of Synthesized Samples292

We perform an experiment to gain a further insight into the quality of the generated samples, which is293

one key issue of our approach, although the quantitative results reported for GZSL above demonstrate294

that the samples synthesized by our model are of significant effectiveness for GZSL task. Specifically,295

we randomly sample three unseen categories from aPY and visualize both true visual features and296
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Table 4: Effects of different components on four benchmark datasets with GZSL setting.

aPY AWA1 CUB SUN

Methods ts tr H ts tr H ts tr H ts tr H
WGAN-baseline 32.4 57.5 41.4 57.9 61.4 59.6 43.7 57.7 49.7 42.6 36.6 39.4
Dual-WGAN 34.1 57.0 42.7 57.5 67.4 62.0 44.5 57.9 50.3 42.7 36.9 39.6
Dual-WGAN +LSC 35.4 58.2 44.0 57.7 68.6 62.7 44.9 58.5 50.8 42.9 37.3 39.9
Dual-WGAN +LV C 36.7 62.0 46.3 58.3 67.3 62.5 45.2 59.1 51.2 43.5 36.5 39.7
DASCN 39.7 59.5 47.6 59.3 68.0 63.4 45.9 59.0 51.6 42.4 38.5 40.3
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Figure 3: (a): t-SNE visualization of real visual feature distribution and synthesized feature distribu-
tion from randomly selected three unseen classes; (b, c): Increasing the number of samples generated
by DASCN and its variants wrt harmonic mean H. DASCN w/o SC denotes DASCN without semantic
consistency constraint and DASCN w/o VC stands for that without visual consistency constraint.

synthesized visual features using t-SNE [20]. Figure 3(a) depicts the empirical distributions of the297

true visual features and the synthesized visual features. We observe the clear patterns of intra-class298

diversity and inter-class separability in the figure. This intuitively demonstrates that not only the299

synthesized feature distributions well approximate the true distributions but also our model introduces300

a high discriminative power of the synthesized features to a large extent.301

Finally, we evaluate how the number of the generated samples per class affects the performance of302

DASCN and its variants. Obviously, as shown in Figure 3(b) and Figure 3(c), we notice not only that303

H increases with an increasing number of synthesized samples and asymptotes gently, but also that304

DASCN with visual-semantic interactions achieves better performance in all circumstance, which305

further validates the superiority and rationality of different components of our model.306

5 Conclusion307

We propose DASCN, a novel generative model for GZSL, to address the challenging problem308

where existing GZSL approaches either suffer from the semantic loss or cannot guarantee the visual-309

semantic interactions. DASCN can synthesize inter-class discrimination and semantics-preserving310

visual features for both seen and unseen classes. The DASCN architecture is novel in that it311

consists of a primal GAN and a dual GAN to collaboratively promote each other, which captures the312

underlying data structures of both visual and semantic representations. Thus, our model can effectively313

enhance the knowledge transfer from the seen categories to the unseen ones, and can effectively314

alleviate the inherent semantic loss problem for GZSL. We conduct extensive experiments on four315

benchmark datasets and compare our model against the state-of-the -art models. The evaluation316

results consistently demonstrate the superiority of DASCN to state-of-the-art GZSL models.317
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