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Abstract

In this paper, we address the ice-start problem, i.e., the challenge of deploying
machine learning models when only a little or no training data is initially available,
and acquiring each feature element of data is associated with costs. This setting
is representative of the real-world machine learning applications. For instance, in
the health-care domain, obtaining every single measurement comes with a cost.
We propose Icebreaker, a principled framework for element-wise training data
acquisition. Icebreaker introduces a full Bayesian Deep Latent Gaussian Model
(BELGAM) with a novel inference method, which combines recent advances in
amortized inference and stochastic gradient MCMC to enable fast and accurate
posterior inference. By utilizing BELGAM’s ability to fully quantify model un-
certainty, we also propose two information acquisition functions for imputation
and active prediction problems. We demonstrate that BELGAM performs signif-
icantly better than previous variational autoencoder (VAE) based models, when
the data set size is small, using both machine learning benchmarks and real-world
recommender systems and health-care applications. Moreover, Icebreaker not only
demonstrates improved performance compared to baselines, but it is also capable
of achieving better test performance with less training data available.

1 Introduction

Acquiring information is costly in many real-world applications. For example, a medical doctor often
needs to carry out a sequence of lab tests to make a correct diagnosis, where each of these tests is
associated with a cost in terms of money, time, and health risks. To this end, an AI system should be
able to suggest the information to be acquired in the form of "one measurement (feature) at a time" for
accurate predictions (diagnosis) of any new user. Recently, test-time active prediction methods, such
as EDDI (Efficient Dynamic Discovery of high-value Inference) [28], provide a solution for such a
problem when there is a sufficient amount of training data. Unfortunately, in many scenarios, training
data can also be challenging and costly to obtain. For example, new data needs to be collected by
taking measurements of currently hospitalized patients with their consent. Ideally, we would like to
deploy an AI system, such as EDDI, when no or only limited training data is available. We call this
problem the ice-start problem.

The key to address the ice-start problem is to have a scalable model that knows what it does not know,
namely to quantify the epistemic uncertainty. This knowledge can be used to guide the acquisition of
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training data. Intuitively, unfamiliar, but informative features are more useful for model training. We
refer to this as element-wise training-time active acquisition.

Training-time active acquisition is needed in a great range of applications. One example is the
recommender system with no historical user data.

Despite the success of element-wise test-time active prediction [23, 28, 44, 56], few works have
provided a general and scalable solution for the ice-start problem. Additionally, these works [21, 22,
32] are commonly limited to a specific application scenario. More importantly, we need to design
new acquisition functions that take the model parameters uncertainty into account.

In this work, we propose Icebreaker 1, a principled and efficient framework to solve the ice-start
problem. Icebreaker actively acquires informative feature elements during training and also performs
two general test tasks. To enable Icebreaker, we contribute the following:

1. We propose a Bayesian deep Latent Gaussian Model (BELGAM). Standard training of the
deep generative model produces the point estimates for the parameters, whereas our approach
applies a fully Bayesian treatment to the weights. The resulting epistemic uncertainty can
be later used for training acquisition. (Section 2)

2. We design a novel partial amortized inference method for BELGAM, named PA-BELGAM.
We combine the efficient amortized inference for the local latent variables with stochastic
gradient MCMC for the model parameters to ensure high inference accuracy. (Section 2.2)

3. To complete Icebreaker, we propose two training-time element-wise information acquisition
functions based on PA-BELGAM for imputation (Section 3) and active prediction (Section
4) tasks, respectively.

4. We evaluate PA-BELGAM and the entire Icebreaker approach on common machine learning
benchmarks and a real-world health-care task. Our method demonstrates clear improvements
when compared to multiple baselines, showing that it can be effectively used to solve the
ice-start problem. (Section 5)

2 Bayesian Deep Latent Gaussian Model (BELGAM) with Partial
Amortized Inference

Here, we propose a Bayesian Deep Latent Gaussian Model (BELGAM) with explicit epistemic
uncertainty quantification, and a novel hybrid inference scheme for efficient and accurate inference.

2.1 Bayesian Deep Latent Gaussian Model (BELGAM)

θZ

XX

Figure 1: BELGAM

A Bayesian latent variable model shown in Figure 1, is a common
modeling choice, but previous work has focused on models that are
typically linear and not flexible enough to model highly complex data.
On the other hand, Deep Latent Gaussian Model [20], which uses a
flexible neural network, does not quantify the parameter uncertainty.
We unify the above two models and propose a Bayesian Deep Latent
Gaussian Model (BELGAM), which uses a Bayesian neural network
to generate observations XO from local latent variables Z with
global weights θ shown in Figure 1. The model is thus defined as:

p(XO, θ,Z) = p(θ)

|O|∏
i=1

∏
d∈Oi

p(xi,d|zi, θ)p(zi), (1)

where |O| is the amount of observed data, and Oi is the et of indices of observed feature entries
for the ith data point. The goal is to infer the posterior, p(θ,Z|XO), for both local latent variables
Z = [z1, . . . ,z|o|] and global latent weights θ. However, the posterior is generally intractable, and
approximate inference is needed [25, 57]. Variational inference (VI) [3, 18, 25, 52, 57] and sampling-
based methods [1] are two types of approaches commonly used for this task. Sampling-based
approaches are known for accurate inference performances and theoretical guarantees[6].

1Code available: https://github.com/microsoft/Icebreaker
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However, sampling the local latent variable Z is computationally expensive as the cost scales
linearly with the data set size. To best trade off computational cost against inference accuracy, we
propose to amortize the inference for Z and keep an accurate sampling-based approach for the global
latent weights θ. Specifically, we use preconditioned stochastic gradient Hamiltonian Monte Carlo
(SGHMC) [6] (see appendix for details).

2.2 Partial Amortized BELGAM

Revisiting amortized inference in the presence of missing data. Amortized inference [20, 38]
is an efficient extension for variational inference. It was originally proposed for inferring local latent
variables Z of deep latent Gaussian models. Amortized inference uses a deep neural network as a
function estimator to compute the variational distribution q(zi|xi) for the posterior of zi using xi as
input, instead of using individually parameterized approximations q(zi). Thus, the estimation of the
local latent variable does not scale with data set size during model training.

e1 xi,1

e2 xi,2

. . .

e|O| xi,|O|

h(·)

h(·)

h(·)

g(·)
latent space

Figure 2: The illustration of P-VAE in-
ference network structure.

However, in our problem setting, the feature values for
each data instance are partially observed. Thus, the vanilla
amortized inference approach cannot be used as the input
dimensionality of the observed data can vary for each
data instance. As with the Partial VAE proposed in [28],
we adopt a set encoding structure [37, 55] to build an
inference network to infer Z based on partial observations
in an amortized manner.

The structure of the inference net is shown in Figure 2.
For each data instance xi ∈ XO with |Oi| observed features, the input is modified as Si =
[si,1, . . . , si,|Oi|] where si,d = [xi,d, ed] and ed is a feature embedding. This is fed into a standard
neural network h : RM+1 → RK where M and K are the dimensions of the latent space and ed,
respectively. Finally, a permutation invariant set function g(·) is applied.

Amortized inference + SGHMC As discussed previously, we want to be computationally efficient
when inferring Z and be accurate when inferring the global latent weights θ for BELGAM. Here, we
discuss how to combine an accurate sampling approach for the global parameters with the efficient
amortized inference for the local latent variables.

Assume we have the factorized approximated posterior q(θ,Z|XO) ≈ q(θ|XO)qφ(Z|XO) [20, 28],
then the proposed inference scheme can be summarized into two stages: (i) Sample θ ∼ q(θ|XO)
using SGHMC, (ii) Update the amortized inference network qφ(zi|xi) to approximate p(zi|xi).

First, we present how to sample θ ∼ q(θ|XO) using SGHMC. The optimal form for q(θ|XO) can
be defined as q(θ|XO) = 1

C e
log p(XO,θ), where C is the normalization constant p(XO). The key to

sampling from such distribution is to compute the gradient ∇θ log p(XO, θ), which, unfortunately,
is intractable due to marginalizing the latent variable Z. Instead, we propose to approximate this
quantity by transforming the marginalization into an optimization:

log p(XO, θ) ≥
∑
i∈XO

[
Eqφ(zi|xi)[log p(xi|zi, θ)]−KL[qφ(zi|xi)||p(zi)]

]
+ log p(θ), (2)

where right hand side is the lower bound of the joint distribution. Assuming that F is a sufficiently
large function class, we can compute the gradient as:

∇θ log p(XO, θ) = ∇θ max
qφ∈F

∑
i∈XO

[
Eqφ(zi|xi)[log p(xi|zi, θ)]−KL[qφ(zi|xi)||p(zi)]

]
+ log p(θ).

(3)
After sampling θ, we then update the inference network with these samples by optimizing:

L(XO;φ) = Eq(θ,Z|XO)[log p(XO|Z, θ)]−KL[q(Z, θ|XO)||p(Z, θ)]

= Eq(θ|XO)

[ ∑
i∈XO

Eqφ(zi|xi)[log p(xi|zi, θ)]−KL[qφ(zi|xi)||p(zi)]

]
−KL[q(θ|XO)||p(θ)].

(4)

where the outer expectation can be approximated by SGHMC samples, and the outer KL penalty is
intractable but can be ignored for updating the inference network. The resulting inference algorithm
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resembles an iterative update procedure, like Monte Carlo Expectation Maximization (MCEM) [53]
where it samples latent Z and optimizes θ instead. We call the proposed model Partial Amortized
BELGAM (PA-BELGAM). Partial VAE [27] is actually a special case of PA-BELGAM, where θ is
estimated by a point instead of with a set of samples.

Note that, in this way, the computational cost with the single-chain SGHMC is exactly the same as
training a normal VAE thanks to the amortization for Z. Thus, PA-BELGAM scales to large data
when needed. For additional memory cost, we adopt a similar idea based on the Moving Window
MCEM algorithm [12], where samples are stored and updated in a fixed size pool with a first in first
out procedure. In the next two sections, we present two objective functions for two general machine
learning tasks respectively: imputation tasks and prediction tasks.

3 Icebreaker for Imputation Tasks
We present Icebreaker for imputation tasks, which can be directly applied in the same way as [27].

Problem Definition Assume that at each training data acquisition step we have already obtained
training data Dtrain, a pool data set Dpool that contains the data we could query next and Dtrain ∪
Dpool = X ∈ RN×D. In the ice-start scenario, Dtrain = ∅. At each step of the training-time
acquisition, we actively select data points xi,d ∈ Dpool to acquire, thereby moving them into Dtrain
and updating the model with the newly formed Dtrain. Figure 3 shows the flow diagram of this
procedure at a given step. During the process, there is an observed data set XO (e.g. the training data
set XO = Dtrain) and unobserved set XU with |O| and |U | number of rows respectively. For each
data instance xi ∈ XO, we have the observed index set Oi containing the indices of the observed
features for row i. The training time acquisition procedure is summarised in algorithm 1.

Algorithm 1: Element-wise training time acquisition
input :XO ,XU ,Φ,M, Acquisition number K, Ξ
XO = ∅;
while XU 6= ∅ do

/* Information acquisition */
Compute reward R(xi,d,XO) for xi,d ∈XU using

Eq. 5 or 10 ; // Reward computation
Sample Xnew ; // Sample K feature elements
according to the R value.

XO = XO ∪Xnew; // Update training set
/* Model Training */
Re-initialize modelM ; // Re-initialization
to avoid local optimum
M =Train(M,Ξ);
/* Test task */
Test(M); // Test performance of the
current model M

end

…
…
…
…
…
…

…
…
…
…
…
…

PA-BELGAM

Objective

Query

Figure 3: Icebreaker Flowchart. The green
and gray blocks represent observed and un-
observed items respectively.

We denote the training set Dtrain = XO and the pool set Dpool = XU . The modelM and training
hyper-parameters are grouped as Ξ. We evaluate its quality on the test task using metrics such as
predictive negative log likelihood (NLL).

3.1 Active Information Acquisition for Imputation

Designing the training time acquisition function is nontrivial. Existing information-theoretical
objectives such as the one used in EDDI is not applicable in this setting (see appendix C.1). The key
for such an objective function is to make the model certain about the data set as quickly as possible
simultaneously focus on improving test performance.

Imputing missing values is important in applications such as recommender systems and other down-
stream tasks. In this setting, the goal is to learn about all the feature elements as quickly as possible.
This can be formalized as selecting the elements xi,d that maximize the expected reduction in the
posterior uncertainty of θ:

RI(xi,d,XO) = H[p(θ|XO)]− Ep(xi,d|XO)[H[p(θ|XO, xi,d)]], (5)
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where H[·] denotes the entropy of a distribution. We use the symmetry of the mutual information to
sidestep the posterior update p(θ|XO, xi,d) and entropy estimation of θ for efficiency. Thus, Eq. 5 is
written as

RI(xi,d,XO) = H[p(xi,d|XO)]− Ep(θ|XO)[H[p(xi,d|θ,XO)]]. (6)
We can approximate Eq. 6 as

RI(xi,d,XO) ≈ − 1

K

∑
k

log
1

MN

∑
m,n

p(xki,d|zmi , θn)+
1

NK

∑
k,n

log
1

M

∑
m

p(xki,d|zmi , θn), (7)

based on the samples {θn}Nn=1, {zmi }Mm=1 and {xki,d}Kk=1 from SGHMC, the amortized inference
network and the data distribution, respectively. The sample xi,d ∼ p(xi,d|XO) can be generated in
the following way: (i) zi ∼ qφ(zi|xio), (ii) θ ∼ q(θ|XO) and (iii) xi,d ∼ p(xi,d|θ,zi), where xio
represents the observed features in the ith row of XO

4 Icebreaker for Prediction Tasks

Next, we introduce a second type of test task called active prediction, where a sequence of active
acquisition steps is carried out before predicting a specified target variable at test time. Note that the
typical test prediction task is a special case where no acquisition of features is performed. Here, we
demonstrate the case where feature-wise active information acquisition is used in both training and
testing time, which is desired in data costly situations.

Problem Definition During the training acquisition, the procedure is the same as in the imputation
task, which is shown in Algorithm 1 and Figure 3. The only difference is that we have specified target
variables. We denote the target as Y . In this case, each xi ∈XO has a corresponding target yi. In
addition, instead of querying a single feature value xi,d during training, as in the imputation task, we
query a feature-target pair (xi,d, yi) if yi has not been queried before. Otherwise, we only query xi,d.
As an example, we adopt a similar procedure used in EDDI [28] for test time active prediction, and
use the Area under the information curve (AUIC) generated from EDDI to evaluate the performance
of Icebreaker. This reflects the overall model performance with test time active acquisition. The
evaluation procedure is summarised in Algorithm 3 in the appendix.

4.1 Model and Active Information Acquisition for Active Prediction

Conditional BELGAM The proposed model and inference algorithm in section 3 can be easily
extended to incorporate the target variables. In general, PA-BELGAM can be directly adapted to any
VAE based framework. One possible choice is to adopt the formulation of the conditional VAE [45]
for the prediction task here (see appendix B for details).

Icebreaker for active target prediction. For the prediction task, solely reducing the model epis-
temic uncertainty is not optimal as the goal is to predict the target variable Y . Instead, we require
the model to (1) capture feature correlations for accurate imputations in both training and test time
(similar to reducing the model epistemic uncertainty), and (2) find informative features to learn to
predict the target variable. Thus, the desired acquisition function needs to balance the unsupervised
learning, which focuses on exploring relations between features, and supervised learning that exploits
informative features to predict specified targets. We propose the following objective:

RP (xi,d,XO) = Ep(xi,d|XO)[H[p(yi|xi,d,XO)]]− Ep(θ,xi,d|XO)[H[p(yi|θ, xi,d,XO)]]. (8)

The above objective is the conditional mutual information I(yi, θ|xi,d;XO). Thus, maximizing
8 is the same as maximizing the information gain between the target yi and the model weights
θ, conditioned on the additional feature xi,d, and observed features XO. In our case, the xi,d is
unobserved. As the weights θ do not change significantly after collecting xi,d, for computational
convenience, we assume p(θ|XO) ≈ p(θ|XO, xi,d) when estimating the objective.

As before, we approximate this objective using Monte Carlo integration:

RP (xi,d,XO) ≈

− 1

JK

∑
j,k

log
1

MN

∑
m,n

p(y
(j,k)
i |z(m,k)

i , θn) +
1

KNJ

∑
j,n,k

log
1

M

∑
m

p(y
(j,k)
i |z(m,k)

i , θn), (9)
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Figure 4: Boston Housing experimental results. (a) The NLL over the number of observed feature
values. (b) The distribution (log scale) of the number of observed features per data instance during
the training time. (c) Performance on the active prediction task vs. training set size. The test time
active prediction curves at the training data size indicated by the black dash line are shown in Figure 5

where we draw {z(m,k)
i }Mm=1 from qφ(zi|XO, x

k
i,d) for each imputed sample xki,d. Others ({θn}Nn=1,

{y(j,k)
i }Jj=1 and {xki,d}Kk=1) are sampled in a similar way as in the imputation task. This objective

naturally balances the exploration of new unseen features that may be informative as well as the
exploitation of the familiar ones to facilitate learning a better predictor. For example, if feature xi,d
has not been observed before or uninformative about the target, the first entropy term in Eq. 8 will be
high, which encourages the algorithm to pick this data point. However, using this term alone may
result in selecting uninformative/noisy features. Thus, we need an extra term that eliminates the
possibility of selecting uninformative features, which is exactly the second term. Unless xi,d together
with θ can provide extra information about yi, the entropy in the second term for uninformative
features will still be high. Thus, the two terms combined together encourage the model to select the
less explored but informative features. The resulting objective is mainly targeted at (2) mentioned at
the beginning of this subsection. Thus, a natural way to satisfy both (1) and (2) is a combination of
the two objectives:

RC(xi,d,XO) = (1− α)RI(xi,d,XO) + αRP (xi,d,XO), (10)

where α controls which task the model focuses on. This objective also has an information-theoretic
interpretation. In the appendix C.1, we show that when α = 1

2 , this combined objective is equivalent
to the mutual information between θ and the feature-target pair (xi,d,yi).

5 Experiments

We evaluate Icebreaker first on benchmark data sets UCI [8] on both imputation and prediction tasks.
We then consider two real-world applications: (a) movie rating imputation task using the MovieLens
dataset [10]; and (b) risk prediction in intensive care using the MIMIC dataset [17].

Experiments Setup and evaluation. We compare Icebreaker with a random feature acquisition
strategy for training where both P-VAE [28] and PA-BELGAM are used. For the imputation task,
P-VAE already achieves excellent results in various data sets compared to traditional methods [28, 34].
Additionally, for the active prediction task, we compare Icebreaker to an instance-wise active learning
method, denoted as Row AT, in which the data are assumed to be fully observed apart from the target.

We evaluate the imputation performance by reporting negative log likelihood (NLL) over the test
target. For the active prediction task, we use EDDI [28] to sequentially select features at test time. We
report the area under the information curve (AUIC) [28] for the test set (See Figure 5 for an example
and the appendix for details). A smaller value of AUIC indicates better overall active prediction
performance. All experiments are averaged over 10 runs, and their setting details are in the appendix.

5.1 UCI Data Set

Imputation Task. At each step of Icebreaker, we select 50 feature elements from the pool. Figure
4a shows the averaged NLL on the test set as the training set increases. Icebreaker outperforms
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Figure 5: Evaluation of test time performance after exposure to different amounts of training data:
(Left): 550 feature elements. (Middle):1250 feature elements (Right): 2250 feature elements. The x-
axis indicates the number of actively-acquired feature elements used for prediction. Legend indicates
the methods used for training (Icebreaker, Row AT, etc.) and test time acquisition (EDDI, RAND)

random acquisition with both PA-BELGAM and P-VAE by a large margin, especially at the early
stages of training. We also see that PA-BELGAM alone can be beneficial compared to P-VAE with
small data sets. This is because P-VAE tends to over-fit, while PA-BELGAM leverages the model
uncertainties.

We also analyze the selection pattern. We gather all the rows that have been queried with at least one
feature during training acquisition and count how many features are queried for each. We repeat this
for the first 5 acquisitions. Figure 4b shows the histogram of the number of features acquired for each
data point. The random selection concentrates around one feature per data instance. However, the
long-tailed distribution of the number of features selected by Icebreaker means it tends to concentrate
more features in certain rows to exploit feature relations for predicting target but simultaneously tries
to spread its selection for more exploration. We include imputation results on other UCI data sets in
the Appendix. We find that Icebreaker consistently outperforms the baselines by a large margin.

Prediction Task. Figure 4c shows the AUIC curve as the amount of training data increases. The
Icebreaker clearly achieves better results compared to all baselines (Also confirmed by Figure 5). This
shows that it not only yields a more accurate prediction of the targets but also captures correlations
between features and targets. Interestingly, the baseline Row AT performs a little worse than PA-
BELGAM. We argue that before querying a single target variable, Row AT needs to query the whole
row, which induces the costs equivalent to the number of features. Thus, with fixed query budgets,
Row AT will form a relatively small but complete data set. Again, the uncertainty of PA-BELGAM
brings benefits compared to P-VAE with point estimated parameters.

At the early training stage (500 data points, the left panel in Figure 5), the performance of Row AT is
worse at test time than others when few features are selected. This is due to the fact that obtaining a
complete observed datum is costly. With the budget of 500 feature elements, it can only select 50
fully observed data instances. In contrast, Icebreaker has obtained, within that budget, 260 partially
observed instances with different levels of missingness. As more features are selected during the
test, these issues are mitigated, and the performance starts to improve. Further evidence suggests
that, as the training data grows, we can clearly observe a better prediction performance of Row AT at
the early test stage. We also include in the appendix the evaluation of other UCI data sets for active
prediction.

5.2 Recommender System using MovieLens

One common benchmark data set for recommender systems is MovieLens-1M [10]. P-VAE has
obtained state-of-the-art imputation performance in this dataset after training with a sufficient amount
of data [27]. Figure 6a shows the performance on predicting unseen data points in terms of NLL.
Icebreaker shows that with minimum training data, the model has already learned to predict the unseen
data with high accuracy. Given any small amount of data, Icebreaker obtains the best performance at
the given query budget, followed by PA-BELGAM which outperforms P-VAE. The selection pattern
in Figure 6b is similar to the UCI imputation, shown in Figure 6b. We argue this long-tail selection is
important, especially when each row contains many features. The random selection tends to scatter
the choices and is less likely to discover dependencies until the data set grows larger. However, if
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Figure 6: Performance on MovieLens. Panel (a) shows the imputation NLL vs. the number of
observed movie ratings. Panel (b) shows the distribution of the number of features selected per user.

there are many features per data instance, this accumulation will take a very long time. On the other
hand, the long-tailed selection exploits the features inside certain rows to discover their dependencies
and simultaneously tries to spread out the queries for exploration.

5.3 Mortality Prediction using MIMIC

We apply Icebreaker in a health-care setting using the Medical Information Mart for Intensive
Care (MIMIC III) data set [17]. This is the largest real-world health-care data set in terms of
patient numbers. The goal is to predict mortality based on 17 medical measurements. The data is
pre-processed following [11] and balanced. Full details are available in appendix E.2.1.

The left panel in Figure 7 shows that the Icebreaker outperforms the other baselines significantly
in active prediction with higher robustness (smaller std. error). Robustness is crucial in health-care
settings as the cost of unstable model performance is high. As before, Row AT performs worse until
it accumulates sufficient data. Note that without active training feature selection, PA-BELGAM
performs better than P-VAE due to its ability to model uncertainty, which is very useful in this
extremely noisy data set.

To evaluate whether the proposed method can discover valuable information, we plot the accumulated
feature number in the middle panel of Figure 7. The x-axis indicates the total number of observed
data in the training set, and each point on the curve indicates the number of features selected in the
corresponding training set. We see that not only different features have been collected at different
frequencies, but the curve of Glucose is clearly non-linear as well. This indicates that the importance
of different features varies for different training set size. Icebreaker is establishing a sophisticated
feature element acquisition scheme that no heuristic method can currently achieve. The top 3
features are the Glasgow coma scale (GCS). These features have been identified previously as being
clinically important (e.g. by the IMPACT model [47]. Glucose is also in the IMPACT set. It was not
collected frequently in the early stage, but in the later training phase, more Glucose feature has been
selected. Compared to GCS, Glucose has a highly non-linear relationship with the patient outcome
[36] (or refer to the appendix E.2.1). Icebreaker chooses more informative features with simpler
relationships in the very early iterations. While the learning progresses, Icebreaker is able to identify
these informative features with complex relationships to the target. Additionally, the missing rate for
each feature in the entire data set differs. Capillary refill rate (Cap.) has more than 90% data missing,
much higher than Height. Icebreaker is still able to pick the useful and rarely observed information,
while only choosing a small percent of the irrelevant information at test time. On the right hand side
of Figure 7, we plot the histogram of the initial choices during test-time acquisition. GCS are mostly
selected in the first step, as it is the most informative feature.

6 Related Work

Data-wise Active Learning. The goal of active learning is to obtain optimal model performance
with as fewer queries as possible [29, 31, 43], where only querying labels are associated with a
cost. One category is based on decision theory [39], where the acquisition step is to minimize the
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Figure 7: Performance MIMIC experiments. (Left) This figure shows the predictive AUIC curve as
training data size increases. (Middle) The accumulated feature statistics as active selection progresses
(Right) This indicates the histogram of initial choice during active prediction using EDDI.

loss defined by test tasks after making the query based on observed data. Indeed this coincides
perfectly with the goal of active learning. However, its evaluation can be expensive in practice
[19, 59]. Another category is based on information theory, including many previous active learning
approaches [7, 26, 50]. Another well-known acquisition function is BALD [14], which is based on
mutual information. Although our acquisition for imputation is also based on mutual information, we
emphasize that the original BALD objective is only applied to scenarios with complete data set. In
another word, those methods aim to only select next data instance to label while assuming that every
feature of each data point is observed. We call this approach instance-wise selection. Obviously,
these methods are not directly applicable to the ice-start problem as they assume that the only cost
comes from acquiring labels.

Feature-wise Active Learning. Instead of only querying labels, the above active learning idea
can be extended to query features, named as active feature acquisition (AFA). It makes sequential
feature selections in order to improve model performance[5, 15, 32, 40, 41, 48, 49], which is similar
to our framework. However, they are commonly designed for a specific application such as clustering
[51] and classification [33], assuming the data are fully observed in the test time. In addition, many
methods have other limitations. For example, only simple linear models can be used [5, 40, 48] with
non-information-theoretical objective functions [15, 32]. None of the above methods can be easily
combined with test time active prediction methods [16, 28, 44]. Our method enables both training
time and test-time efficient information acquisition in a principled way with a flexible model, which
is of great need in real-life applications.

Cold-start problem Another relevant problem to ice-start is called cold-start problem [30, 42].
The key difference between these two scenarios is that cold-start problem targets at the test time
data scarcity after the model has been trained. Taking the recommender system as an example, the
cold-start problem handles the scenario when there are new users incoming with no historical ratings
given a trained recommender. One common strategy is to utilise the meta data (e.g. user profiles,
item category) to initialise the latent factors of users/items [35, 46, 54].

7 Conclusion

In this work, we introduce the ice-start problem where machine learning models are expected to be
deployed where little or no training data has been collected. The costs of collecting new training
datum apply at the level of feature elements. Icebreaker provides an information-theoretical way to
acquire element-wise data for training actively and uses the minimum amount of data for downstream
test tasks like imputation and active prediction. Within the framework of Icebreaker, we propose
PA-BELGAM, a Bayesian deep latent Gaussian model together with a novel inference scheme
that combines amortized inference and SGHMC. This enables fast and accurate posterior inference.
Furthermore, we propose two training time acquisition functions targeted at the imputation and active
prediction tasks. We evaluate Icebreaker on several benchmark data sets, including two real-world
applications. Icebreaker consistently outperforms the baselines. Possible future directions include
taking the mixed-type variables into account and deploying it in a pure streaming environment.
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