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Abstract

Machine teaching addresses the problem of finding the best training data that can
guide a learning algorithm to a target model with minimal effort. In conventional
settings, a teacher provides data that are consistent with the true data distribution.
However, for sequential learners which actively choose their queries, such as multi-
armed bandits and active learners, the teacher can only provide responses to the
learner’s queries, not design the full data. In this setting, consistent teachers can
be sub-optimal for finite horizons. We formulate this sequential teaching problem,
which current techniques in machine teaching do not address, as a Markov decision
process, with the dynamics nesting a model of the learner and the actions being
the teacher’s responses. Furthermore, we address the complementary problem of
learning from a teacher that plans: to recognise the teaching intent of the responses,
the learner is endowed with a model of the teacher. We test the formulation
with multi-armed bandit learners in simulated experiments and a user study. The
results show that learning is improved by (i) planning teaching and (ii) the learner
having a model of the teacher. The approach gives tools to taking into account
strategic (planning) behaviour of users of interactive intelligent systems, such as
recommendation engines, by considering them as boundedly optimal teachers.

1 Introduction

Humans, casual users and domain experts alike, are increasingly interacting with artificial intelligence
or machine learning based systems. As the number of interactions in human–computer and other
types of agent–agent interaction is usually limited, these systems are often based on active sequential
machine learning methods, such as multi-armed bandits, Bayesian optimization, or active learning.
These methods explicitly optimise for the efficiency of the interaction from the system’s perspective.
On the other hand, for goal-oriented tasks, humans create mental models of the environment for
planning their actions to achieve their goals [1, 2]. In AI systems, recent research has shown that
users form mental models of the AI’s state and behaviour [3, 4]. Yet, the statistical models underlying
the active sequential machine learning methods treat the human actions as passive data, rather than
acknowledging the strategic thinking of the user.

Machine teaching studies a complementary problem to active learning: how to provide a machine
learner with data to learn a target model with minimal effort [5–7]. Apart from its fundamental
machine learning interest, machine teaching has been applied to domains such as education [8] and
adversarial attacks [9]. In this paper, we study the machine teaching problem of active sequential
machine learners: the learner sequentially chooses queries and the teacher provides responses to them.
Importantly, to steer the learner towards the teaching goal, the teacher needs to appreciate the order
of the learner’s queries and the effect of the responses on it. Current techniques in machine teaching
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do not address such interaction. Furthermore, by viewing users as boundedly optimal teachers, and
solving the (inverse machine teaching) problem of how to learn from the teacher’s responses, our
approach provides a way to formulate models of strategically planning users in interactive AI systems.

Our main contributions are (i) formulating the problem of machine teaching of active sequential
learners as planning in a Markov decision process, (ii) formulating learning from the teacher’s
responses as probabilistic inverse reinforcement learning, (iii) implementing the approach in Bayesian
Bernoulli multi-armed bandit learners with arm dependencies, and (iv) empirically studying the
performance in simulated settings and a user study. Source code is available at https://github.
com/AaltoPML/machine-teaching-of-active-sequential-learners.

2 Related work

Most work in machine teaching considers a batch setting, where the teacher designs a minimal dataset
to make the learner learn the target model [5–7]. Some works have also studied sequential teaching,
but in different settings from ours: Teaching methods have been developed to construct batches of
state-action trajectories for inverse reinforcement learners [10, 11]. Variations on teaching online
learners, such as gradient descent algorithms, by providing them with a sequence of (x, y) data points
have also been considered [12–14]. Teaching in the context of education, with uncertainty about the
learner’s state, has been formulated as planning in partially-observable Markov decision processes
[8, 15]. A theoretical study of the teacher-aware learners was presented in [16, 17] where the teacher
and the learner are aware of their cooperation. Compared to our setting, in these works, the teacher is
in control of designing all of the learning data (while possibly using interaction to probe the state
of the learner) and is not allowed to be inconsistent with regard to the true data distribution. Apart
from [11, 16, 17], they also do not consider teacher-aware learners. Machine teaching can also be
used towards attacking learning systems [9], and adversarial attacks against multi-armed bandits
have been developed, by poisoning historical data [18] or modifying rewards online [19]. The goal,
settings, and proposed methods differ from ours. Relatedly, our teaching approach for the case of a
bandit learner can been seen as a form of reward shaping, which aims to make the environment more
supportive of reinforcement learning by alleviating the temporal credit assignment problem [20].

The proposed model of the interaction between a teacher and an active sequential learner is a
probabilistic multi-agent model. It can be connected to the overarching framework of interactive
partially observable Markov decision processes (I-POMDPs; see Supplementary Section 1 for more
details) [21] and other related multi-agent models [22–25]. I-POMDPs provide, in a principled
decision-theoretic framework, a general approach to define multi-agent models that have recursive
beliefs about other agents. This also forms a rich basis for computational models of theory of mind,
which is the ability to attribute mental states, such as beliefs and desires, to oneself and other agents
and is essential for efficient social collaboration [26, 27]. Our teaching problem nests a model of a
teacher-unaware learner, forming a learner–teacher model. Teaching-aware learning adds a further
layer, forming a nested learner–teacher–learner model, where the higher level learner models a teacher
modelling a teaching-unaware learner. Learning from humans with recursive reasoning was opined in
[28]. To our knowledge, our work is the first to propose a multi-agent recursive reasoning model in
the practically important case of multi-armed bandits, allowing us to learn online from the scarce
data emerging from human–computer interaction.

User modelling in human–computer interaction aims at improving the usability and usefulness of
collaborative human–computer systems and providing personalised user experiences [29]. Machine
learning based interactive systems extend user modelling to encompass statistical models interpreting
user’s actions. For example, in information exploration and discovery, the system needs to iteratively
recommend items to the user and update the recommendations based on the user feedback [30, 31].
The current underlying statistical models use the user’s response to the system’s queries, such as
did you like this movie?, as data for building a relevance profile of the user. Recent works have
investigated more advanced user models [32, 33]; however, as far as we know, no previous work has
proposed statistical user models that incorporate a model of the user’s mental model of the system.

Finally, our approach can be grounded to computational rationality, which models human behaviour
and decision making under uncertainty as expected utility maximisation, subject to computational
constraints [34]. Our model assumes that the teacher chooses actions proportional to their likelihood
to maximise, for a limited horizon, the future accumulated utility.
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3 Model and computation

We consider machine teaching of an active sequential learner, with the iterations consisting of the
learner querying an input point x and the teacher providing a response y. First, the teaching problem
is formulated as a Markov decision process, the solution of which provides a teaching policy. Then,
learning from the responses provided by the teacher is formulated as an inverse reinforcement learning
problem. We formulate the approach for general learners, and give a detailed implementation for the
specific case of a Bayesian Bernoulli multi-armed bandit learner, which models arm dependencies.

3.1 Active sequential learning

Before considering machine teaching, we first define the type of active sequential learners considered.
This also provides a baseline to which the teacher’s performance is compared. The general definition
encompasses multiple popular sequential learning approaches, including Bayesian optimisation and
multi-armed bandits, which aim to learn fast, with few queries.

An active sequential learner is defined by (i) a machine learning model relating the response y to the
inputs x through a function f , y = fθ(x), parameterised by θ, or through a conditional distribution
p(y | x,θ), (ii) a deterministic learning algorithm, fitting the parameters θ or their posterior p(θ | D)
given a dataset D = {(x1, y1), . . . , (xt, yt)}, (iii) a query function that, possibly stochastically,
chooses an input point x to query for a response y, usually formulated as utility maximisation.

The dynamics of the learning process then, for t = 1, . . . , T , consists of iterating the following steps:

1. Use the query function to choose a query xt.

2. Obtain the response yt for the query xt from a teacher (or some other information source).

3. Update the training set to Dt = Dt−1 ∪ {(xt, yt)} and the model correspondingly.

The data produced by the dynamics forms a sequence, or history, hT = x1, y1,x2, y2, . . . ,xT (we
define the history to end at the input xT , before yT , for notational convenience in the following).

Bayesian Bernoulli multi-armed bandit learner As our main application in this paper, we con-
sider Bayesian Bernoulli bandits. At each iteration t, the learner chooses an arm it ∈ {1, . . . ,K}
and receives a stochastic reward yt ∈ {0, 1}, depending on the chosen arm. The goal of the learner
is to maximise the expected accumulated reward RT = E[

∑T
t=1 yt]. This presents an exploration–

exploitation problem, as the learner needs to learn which arms produce reward with high probability.

The learner associates each arm k with a feature vector xk ∈ RM and models the rewards as
Bernoulli-distributed binary random variables

pB(yt | µit) = Bernoulli(yt | µit) (1)

with reward probabilities µk = σ(xT
k θ), k = 1, . . . ,K, where θ ∈ RM is a weight vector and σ(·)

the logistic sigmoid function. The linearity assumption could be relaxed, for example, by encoding
the xk’s using suitable basis functions or Gaussian processes. The Bayesian learner has a prior
distribution on the model parameters, here assumed to be a multivariate normal, θ ∼ N(0, τ2I), with
mean zero and diagonal covariance matrix τ2I. Given a collected set of arm selections and reward
observations at step t, Dt = {(i1, y1), . . . , (it, yt)} (or equivalently Dt = (ht, yt)), the posterior
distribution of θ, p(θ | Dt) is computed.

The learner uses a bandit arm selection strategy to select the next arm to query about. Here, we use
Thompson sampling [35], a practical and empirically and theoretically well-performing algorithm
[36]; other methods could easily be used instead. The next arm is sampled with probabilities propor-
tional to the arm maximising the expected reward, estimated over the current posterior distribution:

Pr(it+1 =k)=

∫
I(arg max

j
µj=k | θ)p(θ | Dt)dθ, (2)

where I is the indicator function. This can be realised by first sampling a weight vector θ from
p(θ | Dt), computing the corresponding µ(θ), and choosing the arm with the maximal reward
probability, it+1 = arg maxk µ

(θ)
k .
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Figure 1: Example of teaching effect on pool-based logistic regression active learner. Using
uncertainty sampling for queries, the learner fails to sample useful points from the pool in 10
iterations to learn a good decision boundary ("Without teacher"; starting from blue training data). A
planning teacher can help the learner sample more representative points by switching some labels
("With teacher"; switched labels are shown in red). The average accuracy improvement is shown in
the right panel. Details of the setting are given in Supplementary Section 2.

3.2 Machine teaching of active sequential learner
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Figure 2: Example of the teaching effect on a
multi-armed bandit learner. With the environmen-
tal reward probabilities shown in the figure, con-
sider the first query being arm 6. The reward prob-
ability for the arm is low, so y1 = 0 with high
probability for a naive teacher. Yet, the optimal
action for a planning teacher is y1 = 1, because the
teacher can anticipate that this will lead to a higher
probability for the learner to sample the next arm
near the higher peak. Details on the setting are
given in Supplementary Section 3.

In standard active sequential learning, the re-
sponses yt are assumed to be generated by a
stationary data-generating mechanism as inde-
pendent and identically distributed samples. We
call such a mechanism a naive teacher. Our
machine teaching formulation replaces it with
a planning teacher which, by choosing yt care-
fully, aims to steer the learner towards a teaching
goal with minimal effort.

We formulate the teaching problem as a Markov
decision process (MDP), where the transition
dynamics follow from the dynamics of the se-
quential learner and the responses yt are the ac-
tions. The teaching MDP is defined by the tuple
M = (H,Y, T ,R, γ), where states ht ∈ H
correspond to the history, actions are the re-
sponses yt ∈ Y , transition probabilities p(ht+1 |
ht, yt) ∈ T are defined by the learner’s sequen-
tial dynamics, rewards Rt(ht) ∈ R are used to
define the teacher’s goal, and γ ∈ (0, 1] is a dis-
count factor (optional if T is finite). The objective of the teacher is to choose actions yt to maximise
the cumulative reward, called value, V π(h1) = Eπ[

∑T
t=1 γ

t−1Rt(ht)], where T is the teacher’s
planning horizon and the expectation is over the possible stochasticity in the learner’s queries and the
teacher’s policy. The teacher’s policy π(ht, yt) = p(yt | ht, π) maps the state ht to probabilities over
the action space Y . The solution to the teaching problem corresponds to finding the optimal teaching
policy π∗.

The reward function Rt(ht) defines the goal of the teacher. In designing a teaching MDP, as in
reinforcement learning, its choice is crucial. In machine teaching, a natural assumption is that the
reward function is parameterized by an optimal model parameter θ∗, or some other ground truth,
known to the teacher but not the learner. For teaching of a supervised learning algorithm, the reward
Rt(ht;θ

∗) can, for example, be defined based on the distance of the learner’s estimate of θ to θ∗
or by evaluation of learner’s predictions against the teacher’s privileged knowledge of outcomes
(Figure 1).

In the multi-armed bandit application, it is assumed that the teacher knows the true parameter θ∗
of the underlying environmental reward distribution and aims to teach the learner such that the
accumulated environmental reward is maximised (Figure 2). We define the teacher’s reward function
as Rt(ht;θ∗) = xT

t θ
∗ (leaving out σ(·) to simplify the formulas for the teacher model).
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Properties of the teaching MDP In Supplementary Section 4, we briefly discuss the transition
dynamics and state definition of the teaching MDP, and contrast it to Bayes-adaptive MDPs to better
understand its properties. Finding the optimal teaching policy presents similar challenges to planning
in Bayes-adaptive MDPs. Methods such as Monte Carlo tree search [37] have been found to provide
effective approaches.

3.3 Learning from teacher’s responses

We next describe how the learner can interpret the teacher’s responses, acknowledging the teaching
intent. Having formulated the teaching as an MDP, the teacher-aware learning follows naturally as
inverse reinforcement learning [38, 39]. We formulate a probabilistic teacher model to make the
learning more robust towards suboptimal teaching and to allow using the teacher model as a block in
probabilistic modelling.

At each iteration t, the learner assumes that the teacher chooses the action yt with probability
proportional to the action being optimal in value:

pM(yt | ht,θ∗) =
exp (βQ∗(ht, yt;θ∗))∑
y′∈Y exp (βQ∗(ht, y′;θ∗))

, (3)

where Q∗(ht, yt;θ∗) is the optimal state-action value function of the teaching MDP for the action yt
(that is, the value of taking action yt at t and following an optimal policy afterwards). Here β is a
teacher optimality parameter (or inverse temperature; for β = 0, the distribution of yt is uniform;
for β →∞, the action with the highest value is chosen deterministically). From the teaching-aware
learner’s perspective, the teacher’s θ∗ is unknown, and Equation 3 functions as the likelihood for
learning about θ from the observed teaching. In the bandit case, this replaces Equation 1. Note that
the teaching MDP dynamics still follow from the teaching-unaware learner.

One-step planning Since our main motivating application is modelling users as boundedly optimal
teachers, implemented for a Bernoulli multi-armed bandit system, it is interesting to consider the
special case of one-step planning horizon, T = 1. The state-action value function Q∗(ht, yt;θ∗) then
simplifies to the rewards at the next possible arms, and the action observation model to

pM(yt | ht,θ∗) ∝ exp(β((θ∗)TXTpht,yt)), (4)

where pht,yt = [p1,ht,yt , . . . , pK,ht,yt ]
T collects the probabilities of the next arm given action

yt ∈ {0, 1} at the current arm xt in ht, as estimated according to the teaching MDP, andX ∈ RK×M
collects the arm features into a matrix. Note that the reward of the current arm does not appear in
the action probability1. For deterministic bandit arm selection strategies, the transition probabilities
pk,ht,yt for each of the two actions would have a single 1 and K − 1 zeroes (essentially picking
one of the possible arms), giving the action probability an interpretation as a preference for one
of the possible next arms. For stochastic selection strategies, such as Thompson sampling, the
interpretation is similar, but the two arms are now weighted averages, x̄yt=0 = XTpht,yt=0 and
x̄yt=1 = XTpht,yt=1. An algorithmic overview of learning with a one-step planning teacher model
is given in Supplementary Section 5.

For an illustrative example, consider a case with two independent arms (x1 = [1, 0] and x2 = [0, 1]),
with the first arm having a larger reward probability than the other (θ∗1 > θ∗2). The optimal teaching
action is then to give yt = 1 for queries on arm 1 and yt = 0 for arm 2. A teaching-unaware learner
will still need to query both arms multiple times to identify the better arm. A teaching-aware learner
(when β →∞) can identify the better arm from a single query (on either arm), since the likelihood
function tends to the step function I(θ∗1 > θ∗2). This demonstrates that the teaching-aware learner can
use a query to reduce uncertainty about other arms even in the extreme case of independent arms.

Incorporating uncertainty about the teacher Teachers can exhibit different kinds of strategies.
To make the learner’s model of the teacher robust to different types of teachers, we formulate a
mixture model over a set of alternative strategies. Here, for the multi-armed bandit case, we consider
a combination of a teacher that just passes on the environmental reward (naive teacher, Equation 1)
and the planning teacher (Equation 3):

pB/M(yt | ht,θ∗, α) =(1− α)pB(yt | µit) + αpM(yt | ht,θ∗), (5)
1It cancels out. The teacher cannot affect the arm choice anymore, as it has already been made.
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where α ∈ (0, 1) is a mixing weight and µit = σ(xT
it
θ∗) is the reward probability of the latest arm

in the history ht. A beta prior distribution, α ∼ Beta(1, 1), is assumed for the mixing weight.

3.4 Computational details for Bayesian Bernoulli multi-armed bandits

Computation presents three challenges: (i) computing the analytically intractable posterior distribution
of the model parameters p(θ | Dt) or p(θ∗, α | Dt), (ii) solving the state-value functions Q∗ for
the teaching MDP, and (iii) computing the Thompson sampling probabilities that are needed for the
state-value functions.

We implemented the models in the probabilistic programming language Pyro (version 0.3, under
PyTorch v1.0) [40] and approximate the posterior distributions with Laplace approximations [41,
Section 4.1]. In brief, the posterior is approximated as a multivariate Gaussian, with the mean defined
by the maximum a posteriori (MAP) estimate and the covariance matrix being the negative of the
inverse Hessian matrix at the MAP estimate. In the mixture model, the mixture coefficient α ∈ (0, 1)
is transformed to the real axis via the logit function before computing the approximation.

The inference requires computing the gradient of the logarithm of the unnormalised posterior prob-
ability. For the teacher model, this entails computing the gradient of the logarithm of Equation 3
at any value of the model parameters, which requires solving and computing the gradients of the
optimal state-action value functions Q∗ with respect to θ∗. To solve the Q∗ for both of the possible
observable actions yt = 0 and yt = 1, we compute all the possible trajectories in the MDP until the
horizon T and choose the ones giving maximal expected cumulative reward. Choi and Kim [39] show
that the gradients of Q∗ exist almost everywhere, and that the direct computation gives a subgradient
at the boundaries where the gradient does not exist.

We mainly focus on one-step planning (T = 1) in the experiments. For long planning horizons and
stochastic arm selection strategies, the number of possible trajectories grows too fast for the exact
exhaustive computation to be feasible (KT trajectories for each initial action). In our multi-step
experiments, we approximate the forward simulation of the MDP with virtual arms: instead of consid-
ering all possible next arms given an action yt and weighting them with their selection probabilities
pht,yt , we update the model with a virtual arm that is the selection-probability-weighted average of
the next possible arms x̄ht,yt = XTpht,yt (for deterministic strategies, this is exact computation).
The virtual arms do not correspond to real arms in the system but are expectations over the next
arms. This leads to 2T−1 trajectories to simulate for each initial action. Moreover, for any trajectory
of actions y1, . . . , yT , this approximation gives Q(h1, y1;θ∗) ≈ (θ∗)TXT

∑T
t=1 γ

t−1pht,yt and
if we cache the sum of the discounted transition probabilities for each trajectory from the forward
simulation, we can easily find the optimal Q∗ at any value of θ∗ as required for the inference.

Computing the next arm probabilities for the Q∗ values requires computing the actual Thompson
sampling probabilities in Equation 2 instead of just sampling from it. As the sigmoid function is
monotonic, one can equivalently compute the probabilities as Pr(it+1 = k) =

∫
I(arg maxj zj =

k)p(z | Dt)dz where z = Xθ∗. As p(θ∗ | Dt) ≈ N(θ∗ | m,Σ), z has multivariate normal
distribution with mean Xm and covariance XΣXT. The selection probabilities can then be
estimated with Monte Carlo sampling. We further use Rao-Blackwellized estimates Pr(it+1 =

k) ≈ 1
L

∑L
l=1 Pr(zk > maxj 6=k zj | z(l)−k), with L Monte Carlo samples drawn for z−k (z with kth

component removed) and Pr(zk > maxj 6=k zj | z(l)−k) being the conditional normal probability of
component zk being larger than the largest component in z−k.

4 Experiments

We perform simulation experiments for the Bayesian Bernoulli multi-armed bandit learner, based on a
real dataset, to study (i) whether a teacher can efficiently steer the learner towards a target to increase
learning performance, (ii) whether the ability of the learner to recognise the teaching intent increases
the performance, (iii) whether the mixture model is robust to assumptions about the teacher’s strategy,
and (iv) whether planning multiple steps ahead improves teaching performance. We then present
results from a proof-of-concept study with humans. Supplementary Section 6.1 includes an additional
experiment studying the teaching of an uncertainty-sampling-based logistic regression active learner,
showing that teaching can improve learning performance markedly.
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Figure 3: Left-side panels: Planning teacher improves performance, both when the learner’s teacher
model is naive (P-N) or planning (P-P), over naive teacher (N-N). Right-side panels: Naive teacher
with a learner expecting a planning teacher (N-P) degrades performance. Learners with the mixture
teacher model attain similar performance to matched models (P-M vs P-P and N-M vs N-N (left)).
Lines show the mean over 100 replications and shaded area the 95% confidence intervals for the
mean. See Table 1 for key to the abbreviations.

4.1 Simulation experiments

We use a word relevance dataset for simulating an information retrieval task. In this task, the user is
trying to teach a relevance profile to the learner in order to reach her target word. The Word dataset is
a random selection of 10,000 words from Google’s Word2Vec vectors, pre-trained on Google News
dataset [42]. We reduce the dimensionality of the word embeddings from the original 300 to 10 using
PCA. Feature vectors are mean-centred and normalised to unit length. We report results, with similar
conclusions, on two other datasets in Supplementary Section 6.2.

We randomly generate 100 replicate experiments: a set of 100 arms is sampled without replacement
and one arm is randomly chosen as the target x̂ ∈ RM . The ground-truth relevance profile is
generated by first setting θ̂∗ = [c, dx̂] ∈ RM+1, where c = −4 is a weight for an intercept term
(a constant element of 1 is added to the xs) and d = 8 is a scaling factor. Then, the ground-truth
reward probabilities are computed as µ̂k = σ(xT

k θ̂
∗) for each arm k (Supplementary Figure 2 shows

the mean reward probability profile). To reduce experimental variance for method comparison, we
choose one of the arms randomly as the initial query for all methods.

Table 1: Teacher–learner pairs.
Learner’s model of teacher

Teacher naive planning mixture

naive N-N N-P N-M
planning P-N P-P P-M

We compare the learning performances of different
pairs of simulated teachers and learners (Table 1). A
naive teacher (N), which does not intentionally teach,
passes on a stochastic binary reward (Equation 1) based
on the ground truth µ̂k as its action for arm k (the
standard bandit assumption). A planning teacher (P)
uses the probabilistic teaching MDP model (Equation 4
for one-step and Equation 3 for multi-step) based on the ground truth θ̂∗ to plan its action. We
use β̂ = 20 as the planning teacher’s optimality parameter and also set β of the learner’s teacher
model to the same value. For multi-step models, we set γt = 1

T , so that they plan to maximise the
average return up to horizon T . The learners are named based on their models of the teacher: a
teaching-unaware learner learns based on the naive teacher model (N; Equation 1) and teaching-aware
learner models the planning teacher (P; Equation 4 or Equation 3). Mixture model (M) refers to the
learner with a mixture of the two teacher models (Equation 5).

Expected cumulative reward and concordance index are used as performance measures (higher is
better for both). Expected cumulative reward measures how efficiently the system can find high
reward arms and is a standard bandit benchmark value. Concordance index is equivalent to the
area under the receiver operating characteristic curve. It is a common performance measure for
information retrieval tasks. It estimates the probability that a random pair of arms is ordered in the
same order by their ground truth relevances and the model’s estimated relevances; 0.5 corresponds to
random and 1.0 to perfect performance.
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4.2 Simulation results
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Figure 4: Teachers planning for multiple steps
ahead improve over 1-step (P-P) in performance.
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Figure 5: The accumulated reward was consis-
tently higher for the participants when interacting
with a learner having the mixture teacher model,
compared to a learner with the naive teacher model.
Shaded lines show the mean performance (over the
20 target words) of individual participants. Solid
lines show the mean over the participants. Random
arm sampling is shown as baseline.

Teaching improves performance Figure 3
shows the performance of different combina-
tions of pairs of teachers and learners (where
planning teachers have planning horizon T =
1). The planning teacher can steer a teacher-
unaware learner to achieve a marked increase in
performance compared to a naive teacher (P-N
vs N-N; left-side panels), showing that inten-
tional teaching makes the reward signal more
supportive of learning. The performance in-
creases markedly further when the learner mod-
els the planning teacher (P-P; left-side panels).
The improvements are seen in both performance
measures, and the concordance index implies
particularly that the proposed model learns faster
about relevant arms and also achieves higher
overall performance at the end of the 30 steps.

Mixture model increases robustness to as-
sumptions about the teacher A mismatch of
a naive teacher with a learner expecting a plan-
ning teacher (N-P) is markedly detrimental to
performance (Figure 3 right-side panels). The
mixture model guards against the mismatch and
attains a performance similar to the matching
assumptions (P-M vs P-P and N-M vs N-N).

Planning for multiple steps increases perfor-
mance further Figure 4 shows the cumulative
reward difference for matching planning teacher–
learner pairs (P-P) when planning two to four
steps ahead compared to one step. There is a
marked improvement especially when going to
3-step or 4-step planning horizon.

Sensitivity analysis Sensitivity of the results
to the simulated teacher’s optimality parameter
β̂ (performance degrades markedly for small val-
ues of β̂) and to the number of arms (500 instead
of 100; results remain qualitatively similar) are
shown in Supplementary Section 6.2.

4.3 User experiment

We conducted a proof-of-concept user study for the task introduced above, using a subset of 20 words
on ten university students and researchers. The goal of the study was introduced to the participants as
helping a system to find a target word, as fast as possible, by providing binary answers (yes/no) to the
system’s questions: “Is this word relevant to the target?” A target word was given to the participants
at the beginning of each round (for twenty rounds; each word chosen once as the target word). Details
of the study setting are provided in Supplementary Section 7.

Participants achieved noticeably higher average cumulative reward when interacting with a learner
having the mixture teacher model, compared to a learner with the naive teacher model (Figure 5, red
vs blue). This difference was at a significant level (p-value < 0.01) after 12 questions, computed
using paired sample t-test (see Supplementary Section 7 for p-values per step).
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5 Discussion and conclusions

We introduced a new sequential machine teaching problem, where the learner actively chooses queries
and the teacher provides responses to them. This encompasses teaching popular sequential learners,
such as active learners and multi-armed bandits. The teaching problem was formulated as a Markov
decision process, the solution of which provides the optimal teaching policy. We then formulate
teacher-aware learning from the teacher’s responses as probabilistic inverse reinforcement learning.
Experiments on Bayesian Bernoulli multi-armed bandits and logistic regression active learners
demonstrated improved performance from teaching and from learning with teacher awareness. Better
theoretical understanding of the setting and studying a more varied set of assumptions and approaches
to planning for both the teacher and the teacher-aware learner are important future directions.

Our formulation provides a way to model users with strategic behaviour as boundedly optimal
teachers in interactive intelligent systems. We conducted a proof-of-concept user study, showing
encouraging results, where the user was tasked to steer a bandit system towards a target word. To
scale the approach to more realistic systems, for example, to interactive exploratory information
retrieval [43], of which our user study is a simplified instance, or to human-in-the-loop Bayesian
optimisation [44], where the user might not possess the exact knowledge of the goal, future work
should consider incorporating more advanced cognitive models of users. As an efficient teacher (user)
needs to be able to model the learner (system), our results also highlight the role of understandability
and predictability of interactive systems for the user as an important design factor, not only for user
experience, but also for the statistical modelling in the system.

While we focused here on teachers with bounded, short-horizon planning (as we would not expect
human users to be able to predict behaviour of interactive systems for long horizons), scaling the
computation to larger problems is of interest. Given the similarity of the teaching MDP to Bayes-
adaptive MDPs (and partially observable MDPs), planning methods developed for them could be
used for efficient search for teaching actions. The teaching setting has some advantages here: as the
teacher is assumed to have privileged information, such as a target model, that information could
be used to generate a reasonable initial policy for choosing actions y. Such policy could be then
refined, for example, using Monte Carlo tree search. The teacher-aware learning problem is more
challenging, as inverse reinforcement learning requires handling the planning problem in an inner
loop. Considering the application and adaptation of state-of-the-art inverse reinforcement learning
methods for teacher-aware learning is future work.
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