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Abstract

We aim to understand the value of additional labeled or unlabeled target data in
transfer learning, for any given amount of source data; this is motivated by prac-
tical questions around minimizing sampling costs, whereby, target data is usually
harder or costlier to acquire than source data, but can yield better accuracy.
To this aim, we establish the first minimax-rates in terms of both source and target
sample sizes, and show that performance limits are captured by new notions of
discrepancy between source and target, which we refer to as transfer exponents.
Interestingly, we find that attaining minimax performance is akin to ignoring one
of the source or target samples, provided distributional parameters were known a
priori. Moreover, we show that practical decisions – w.r.t. minimizing sampling
costs – can be made in a minimax-optimal way without knowledge or estimation
of distributional parameters nor of the discrepancy between source and target.

1 Introduction

The practice of transfer-learning often involves acquiring some amount of target data, and involves
various practical decisions as to how to best combine source and target data; however much of the
theoretical literature on transfer only addresses the setting where no target labeled data is available.

We aim to understand the value of target labels, that is, given nP labeled data from some source
distribution P , and nQ labeled target labels from a target Q, what is the best Q error achievable by
any classifier in terms of both nQ and nP , and which classifiers achieve such optimal transfer. In
this first analysis, we mostly restrict ourselves to a setting, similar to the traditional covariate-shift
assumption, where the best classifier – from a fixed VC class H – is the same under P and Q.

We establish the first minimax-rates, for bounded-VC classes, in terms of both source and target
sample sizes nP and nQ, and show that performance limits are captured by new notions of discrep-
ancy between source and target, which we refer to as transfer exponents.

The first notion of transfer-exponent, called ⇢, is defined in terms of discrepancies in excess risk,
and is most refined. Already here, our analysis reveals a surprising fact: the best possible rate
(matching upper and lower-bounds) in terms of ⇢ and both sample sizes nP , nQ is - up to constants
- achievable by an oracle which simply ignores the least informative of the source or target datasets.
In other words, if ˆhP and ˆhQ denote the ERM on data from P , resp. from Q, one of the two achieves
the optimal Q rate over any classifier having access to both P and Q datasets. However, which of
ˆhP or ˆhQ is optimal is not easily decided without prior knowledge: for instance, cross-validating on
a holdout target-sample would naively result in a rate of n�1/2

Q which can be far from optimal given
large nP . Interestingly, we show that the optimal (nP , nQ)-rate is achieved by a generic approach,
akin to so-called hypothesis-transfer [1, 2], which optimizes Q-error under the constraint of low
P -error, and does so without knowledge of distributional parameters such as ⇢.

We then consider a related notion of marginal transfer-exponent, called �, defined w.r.t. marginals
PX , QX . This is motivated by the fact that practical decisions in transfer often involve the use of
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cheaper unlabeled data (i.e., data drawn from PX , QX ). We will show that, when practical decisions
are driven by observed changes in marginals PX , QX , the marginal notion � is then most suited to
capture performance as it does not require knowledge (or observations) of label distribution QY |X .

In particular, the marginal exponent � helps capture performance limits in the following scenarios
of current practical interest:

• Minimizing sampling cost. Given different costs of labeled source and target data, and a desired
target excess error at most ✏, how to use unlabeled data to decide on an optimal sampling scheme
that minimizes labeling costs while achieving target error at most ✏. (Section 6)

• Choice of transfer. Given two sources P
1

and P
2

, each at some unknown distance from Q, given
unlabeled data and some or no labeled data from Q, how to decide which of P

1

, P
2

transfers best to
the target Q. (Appendix A.2)

• Reweighting. Given some amount of unlabeled data from Q, and some or no labeled Q data,
how to optimally re-weight (out of a fixed set of schemes) the source P data towards best target
performance. While differently motivated, this problem is related to the last one. (Appendix A.1)

Although optimal decisions in the above scenarios depend tightly on unknown distributional param-
eters such as different label noise in source and target data, and on unknown distance from source
to target (as captured by �), we show that such practical decisions can be made, near optimally,
with no knowledge of distributional parameters, and perhaps surprisingly, without ever estimating
�. Furthermore, the unlabeled sampling complexity can be shown to remain low. Finally, the proce-
dures described in this work remain of a theoretical nature, but yield new insights into how various
practical decisions in transfer can be made near-optimally in a data-driven fashion.

Related Work. Much of the theoretical literature on transfer can be subdivided into a few main
lines of work. As mentioned above, the main distinction with the present work is in that they mostly
focus on situations with no labeled target data, and consider distinct notions of discrepancy between
P and Q. We contrast these various notions with the transfer-exponents ⇢ and � in Section 3.1.

A first direction considers refinements of total-variation that quantify changes in error over classifiers
in a fixed class H. The most common such measures are the so-called dA-divergence [3, 4, 5] and
the Y-discrepancy [6, 7, 8]. In this line of work, the rates of transfer, largely expressed in terms
of nP alone, take the form op(1) + C · divergence(P,Q). In other words, transfer down to 0 error
seems impossible whenever these divergences are non-negligible; we will carefully argue that such
intuition can be overly pessimistic.

Another prominent line of work, which has led to many practical procedures, considers so-called
density ratios fQ/fP (importance weights) as a way to capture the similarity between P and Q
[9, 10]. A related line of work considers information-theoretic measures such as KL-divergence or
Renyi divergence [11, 12] but has received relatively less attention. Similar to these notions, the
transfer-exponents ⇢ and � are asymmetric measures of distance, attesting to the fact that it could be
easier to transfer from some P to Q than the other way around. However, a significant downside to
these notions is that they do not account for the specific structure of a hypothesis class H as is the
case with the aforementionned divergences. As a result, they can be sensitive to issues such as minor
differences of support in P and Q, which may be irrelevant when learning with certain classes H.

On the algorithmic side, many approaches assign importance weights to source data from P so as
to minimize some prescribed metric between P and Q [13, 14]; as we will argue, metrics, being
symmetric, can be inadequate as a measure of discrepancy given the inherent asymmetry in transfer.

The importance of unlabeled data in transfer-learning, given the cost of target labels, has always
been recognized, with various approaches developed over the years [15, 16], including more recent
research efforts into so-called semisupervised or active transfer, where, given unlabeled target data,
the goal is to request as few target labels as possible to improve classification over using source data
alone [17, 18, 19, 20, 21].

More recently, [22, 23, 24] consider nonparametric transfer settings (unbounded VC) allowing for
changes in conditional distributions. Also recent, but more closely related, [25] proposed a nonpara-
metric measure of discrepancy which successfully captures the interaction between labeled source
and target under nonparametric conditions and 0-1 loss; these notions however ignore the additional
structure afforded by transfer in the context of a fixed hypothesis class.

2



2 Setup and Definitions

We consider a classification setting where the input X 2 X , some measurable space, and the output
Y 2 {0, 1}. We let H ⇢ 2

X denote a fixed hypothesis class over X , denote dH the VC dimension
[26], and the goal is to return a classifier h 2 H with low error RQ(h)

.
= EQ[h(X) 6= Y ] under some

joint distribution Q on X,Y . The learner has access to two independent labeled samples SP ⇠ PnP

and SQ ⇠ QnQ , i.e., drawn from source distributions P and target Q, of respective sizes nP , nQ.
Our aim is to bound the excess error, under Q, of any ˆh learned from both samples, in terms of
nP , nQ, and (suitable) notions of discrepancy between P and Q. We will let PX , QX , PY |X , QY |X
denote the corresponding marginal and conditional distributions under P and Q.
Definition 1. For D 2 {Q,P}, denote ED(h)

.
= RD(h)� infh02H RD(h0

), the excess error of h.

Distributional Conditions. We consider various traditional assumptions in classification and
transfer. The first one is a so-called Bernstein Class Condition on noise [27, 28, 29, 30, 31].
(NC). Let h⇤

P
.
= argmin

h2H
RP (h) and h⇤

Q
.
= argmin

h2H
RQ(h) exist. 9�P ,�Q 2 [0, 1], cP , cQ > 0 s.t.

PX(h 6= h⇤
P )  cp · E�P

P (h), and QX(h 6= h⇤
Q)  cq · E�Q

Q (h). (1)

For instance, the usual Tsybakov noise condition, say on P , corresponds to the case where
h⇤
P is the Bayes classifier, with corresponding regression function ⌘P (x)

.
= E[Y |x] satisfying

PX(|⌘P (X)� 1/2|  ⌧)  C⌧�P /(1��P ). Classification is easiest w.r.t. P (or Q) when �P

(resp. �Q) is largest. We will see that this is also the case in Transfer.

The next assumption is stronger, but can be viewed as a relaxed version of the usual Covariate-Shift
assumption which states that PY |X = QY |X .

(RCS). Let h⇤
P , h

⇤
Q as defined above. We have EQ(h⇤

P ) = EQ(h⇤
Q) = 0. We then define h⇤ .

= h⇤
P .

Note that the above allows PY |X 6= QY |X . However, it is not strictly weaker than Covariate-Shift,
since the latter allows h⇤

P 6= h⇤
Q provided the Bayes /2 H. The assumption is useful as it serves to

isolate the sources of hardness in transfer beyond just shifts in h⇤. We will in fact see later that it is
easily removed, but at the additive (necessary) cost of EQ(h⇤

P ).

3 Transfer-Exponents from P to Q.

We consider various notions of discrepancy between P and Q, which will be shown to tightly capture
the complexity of transfer P to Q.
Definition 2. We call ⇢ > 0 a transfer-exponent from P to Q, w.r.t. H, if there exists C⇢ such that

8h 2 H, C⇢ · EP (h) � E⇢
Q(h). (2)

We are interested in the smallest such ⇢ with small C⇢. We generally would think of ⇢ as at least 1,
although there are situations – which we refer to as super-transfer, to be discussed, where we have
⇢ < 1; in such situations, data from P can yield faster EQ rates than data from Q.

While the transfer-exponent will be seen to tightly capture the two-samples minimax rates of trans-
fer, and can be adapted to, practical learning situations call for marginal versions that can capture
the rates achievable when one has access to unlabeled Q data.
Definition 3. We call � > 0 a marginal transfer-exponent from P to Q if 9C� such that

8h 2 H, C� · PX(h 6= h⇤
P ) � Q�

X(h 6= h⇤
P ). (3)

The following simple proposition relates � to ⇢.
Proposition 1 (From � to ⇢). Suppose Assumptions (NC) and (RCS) hold, and that P has marginal
transfer-exponent (�, C�) w.r.t. Q. Then P has transfer-exponent ⇢  �/�P , where C⇢ = C

�/�P
� .

Proof. 8h 2 H, we have EQ(h)  QX(h 6= h⇤
P )  C� · PX(h 6= h⇤

P )
1/�  C� · EP (h)�P /� .
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3.1 Examples and Relation to other notions of discrepancy.

In this section, we consider various examples that highlight interesting aspects of ⇢ and �, and their
relations to other notions of distance P ! Q considered in the literature. Though our results cover
noisy cases, in all these examples we assume no noise for simplicity, and therefore � = ⇢.

Example 1. (Non-overlapping supports) This first example emphasizes the fact that, unlike in much
of previous analyses of transfer, the exponents �, ⇢ do not require that QX and PX have overlapping
support. This is a welcome property shared also by the dA and Y discrepancy.

In the example shown on the right, H is the class of homogeneous linear separa-
tors, while PX and QX are uniform on the surface of the spheres depicted (e.g.,
corresponding to different scalings of the data). We then have that � = ⇢ = 1

with C� = 1, while notions such as density-ratios, KL-divergences, or the recent
nonparameteric notion of [25], are ill-defined or diverge to1.

Example 2. (Large dA, dY ) Let H be the class of one-sided thresholds on the line, but now we
let PX

.
= U [0, 2] and QX

.
= U [0, 1]. Let h⇤ be thresholded at 1/2. We then see that for all ht

thresholded at t 2 [0, 1], 2PX(ht 6= h⇤
) =

1

2

QX(ht 6= h⇤
), where for t > 1, PX(ht 6= h⇤

) =

1

2

(t � 1/2) � 1

2

QX(ht 6= h⇤
) =

1

4

. Thus, the marginal transfer exponent � = 1 with C� = 2, so
we have fast transfer at the same rate 1/nP as if we were sampling from Q (Theorem 3).

On the other hand, recall that the dA-divergence takes the form
dA(P,Q)

.
= suph2H |PX(h 6= h⇤

)�QX(h 6= h⇤
)|, while the Y-

discrepancy takes the form dY(P,Q)

.
= suph2H |EP (h)� EQ(h)|.

The two coincide whenever there is no noise in Y .

Now, take ht as the threshold at t = 1/2, and dA = dY =

1

4

which
would wrongly imply that transfer is not feasible at a rate faster than
1

4

; we can in fact make this situation worse, i.e., let dA = dY ! 1

2

by letting h⇤ correspond to a
threshold close to 0. A first issue is that these divergences get large in large disagreement regions;
this is somewhat mitigated by localization, as discussed in Example 4.

Example 3. (Minimum �, ⇢, and the inherent asymmetry of transfer) Suppose H is the class of
one-sided thresholds on the line, h⇤

= h⇤
P = h⇤

Q is a threshold at 0. The marginal QX has uniform
density fQ (on an interval containing 0), while, for some � � 1, PX has density fP (t) / t��1 on
t > 0 (and uniform on the rest of the support of Q, not shown). Consider any ht at threshold t > 0,
we have PX(ht 6= h⇤

) =

R t

0

fP / t� , while QX(ht 6= h⇤
) / t. Notice that for any fixed ✏ > 0,

lim

t>0, t!0

QX(ht 6=h⇤
)

��✏

PX(ht 6=h⇤
)

= lim

t>0, t!0

C t��✏

t� =1.

We therefore see that � is the smallest possible marginal transfer-
exponent (similarly, ⇢ = � is the smallest possible transfer expo-
nent). Interestingly, now consider transferring instead from Q to P :
we would have �(Q ! P ) = 1  �

.
= �(P ! Q), i.e., it could

be easier to transfer from Q to P than from P to Q, which is not
captured by symmetric notions of distance (dA, Wassertein, etc ...).
Finally note that the above example can be extended to more general hypothesis classes as it simply
plays on how fast fP decreases w.r.t. fQ in regions of space.

Example 4. (Super-transfer and localization). We continue on the above Example 2. Now let
0 < � < 1, and let fP (t) / |t|��1 on [�1, 1] \ {0}, with QX

.
= U [�1, 1], h⇤ at 0. As before, � is a

transfer-exponent P ! Q, and following from Theorem 3, we attain transfer rates of EQ . n
�1/�
P ,

faster than the rates of n�1

Q attainable with data from Q. We call these situations super-transfer, i.e.,
ones where the source data gets us faster to h⇤; here P concentrates more mass close to h⇤, while
more generally, such situations can also be constructed by letting PY |X be less noisy than QY |X
data, for instance corresponding to controlled lab data as source, vs noisy real-world data.
Now consider the following ✏-localization fix to the dA = dY divergences over h’s with small P
error (assuming we only observe data from P ): d⇤Y

.
= suph2H: EP (h)✏ |EP (h)� EQ(h)| . This is no

longer worst-case over all h’s, yet it is still not a complete fix. To see why, consider that, given nP

data from P , the best P -excess risk attainable is n�1

P so we might set ✏ / n�1

P . Now the subclass
{h 2 H : EP (h)  ✏} corresponds to thresholds t 2 [±n

�1/�
P ], since EP (ht) = P ([0, t]) / |t|� .
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We therefore have d⇤Y /
�

�

�

n�1

P � n
�1/�
P

�

�

�

/ n�1

P , wrongly suggesting a transfer rate EQ . n�1

P ,

while the super-transfer rate n�1/�
P is achievable as discussed above. The problem is that, even after

localization, d⇤Y treats errors under P and Q symmetrically.

4 Lower-Bounds

Definition 4 ((NC) Class). Let F(NC)(⇢,�P ,�Q, C) denote the class of pairs of distributions (P,Q)

with transfer-exponent ⇢, C⇢  C, satisfying (NC) with parameters �P ,�Q, and cP , cQ  C.

The following lower-bound in terms of ⇢ is obtained via information theoretic-arguments. In effect,
given the VC class H, we construct a set of distribution pairs {(Pi, Qi)} supported on dH datapoints,
which all belong to F(NC)(⇢,�P ,�Q, C). All the distributions share the same marginals PX , QX .
Any two pairs are close to each other in the sense that ⇧i,⇧j , where ⇧i

.
= PnP

i ⇥ Q
nQ

i , are close
in KL-divergence, while, however maintaining pairs (Pi, Qi), (Pj , Qj) far in a pseudo-distance in-
duced by QX . All the proofs from this section are in Appendix B.
Theorem 1 (⇢ Lower-bound). Suppose the hypothesis class H has VC dimension dH � 9. Let
ˆh =

ˆh(SP , SQ) denote any (possibly improper) classifier with access to two independent labeled
samples SP ⇠ PnP and SQ ⇠ QnQ . Fix any ⇢ � 1, 0  �P ,�Q < 1. Suppose either nP or nQ is
sufficiently large so that

✏(nP , nQ)
.
= min

(

✓

dH
nP

◆

1/(2��P )⇢

,

✓

dH
nQ

◆

1/(2��Q)

)

 1/2.

Then, for any ˆh, there exists (P,Q) 2 F(NC)(⇢,�P ,�Q, 1), and a universal constant c such that,

P
SP ,SQ

⇣

EQ(ˆh) > c · ✏(nP , nQ)

⌘

� 3� 2

p
2

8

.

As per Proposition 1 we can translate any upper-bound in terms of ⇢ to an upper-bound in terms of
� since ⇢  �/�P . We investigate whether such upper-bounds in terms of � are tight, i.e., given a
class F(NC)(⇢,�P ,�Q, C), are there distributions with ⇢ = �/�P where the rate is realized.

The proof of the next result is similar to that of Theorem 1, however with the added difficulty that
we need the construction to yield two forms of rates ✏

1

(nP , nQ), ✏2(nP , nQ) over the data support
(again dH points). Combining these two rates matches the desired upper-bound. In effect, we follow
the intuition that, to have ⇢ = �/�P achieved on some subset X

1

⇢ X , we need �Q to behave as 1
locally on X

1

, while matching the rate requires larger �Q on the rest of the suppport (on X \ X
1

).
Theorem 2 (� Lower-bound). Suppose the hypothesis class H has VC dimension dH, bdH/2c � 9.
Let ˆh =

ˆh(SP , SQ) denote any (possibly improper) classifier with access to two independent labeled
samples SP ⇠ PnP and SQ ⇠ QnQ . Fix any 0 < �P ,�Q < 1, ⇢ � max {1/�P , 1/�Q}. Suppose
either nP or nQ is sufficiently large so that

✏
1

(nP , nQ)
.
= min

(

✓

dH
nP

◆

1/(2��P )⇢·�Q

,

✓

dH
nQ

◆

1/(2��Q)

)

 1/2, and

✏
2

(nP , nQ)
.
= min

(

✓

dH
nP

◆

1/(2��P )⇢

,

✓

dH
nQ

◆

)

 1/2.

Then, for any ˆh, there exists (P,Q) 2 F(NC)(⇢,�P ,�Q, 2), with marginal-transfer-exponent � =

⇢ · �P � 1, with C�  2, and a universal constant c such that,

E
SP ,SQ

EQ(ˆh) � c ·max {✏
1

(nP , nQ), ✏2(np, nQ)} .

Remark 1 (Tightness with upper-bound). Write ✏
1

(nP , nQ) = min{✏
1

(nP ), ✏1(nQ)}, and simi-
larly, ✏

2

(nP , nQ) = min{✏
2

(nP ), ✏2(nQ)}. Define ✏L
.
= max{✏

1

(nP , nQ), ✏2(nP , nQ)} as in the
above lower-bound of Theorem 2. Next, define ✏H

.
= min{✏

2

(nP ), ✏1(nQ)}. It turns out that the
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best upper-bound we can show (as a function of �) is in terms of ✏H so defined. It is therefore natural
to ask whether or when ✏H and ✏L are of the same order.

Clearly, we have ✏
1

(nP )  ✏
2

(nP ) and ✏
1

(nQ) � ✏
2

(nQ) so that ✏L  ✏H (as to be expected).

Now, if �Q = 1, we have ✏
1

(nP ) = ✏
2

(nP ) and ✏
1

(nQ) = ✏
2

(nQ), so that ✏L = ✏H . More generally,
from the above inequalities, we see that ✏L = ✏H in the two regimes where either ✏

1

(nQ)  ✏
1

(nP )

(in which case ✏L = ✏H = ✏
1

(nQ)), or ✏
2

(nP )  ✏
2

(nQ) (in which case ✏L = ✏H = ✏
2

(nP )).

5 Upper-Bounds

The following lemma is due to [32].

Lemma 1. Let An =

dH
n log

⇣

max{n,dH}
dH

⌘

+

1

n log

�

1

�

�

. With probability at least 1� �
3

, 8h, h0 2 H,

R(h)�R(h0
)  ˆR(h)� ˆR(h0

) + c

q

min{P (h 6= h0
), ˆP (h 6= h0

)}An + cAn, (4)

and
1

2

P (h 6= h0
)� cAn  ˆP (h 6= h0

)  2P (h 6= h0
) + cAn, (5)

for a universal numerical constant c 2 (0,1), where ˆR denotes empirical risk on n iid samples.

Now consider the following algorithm. Let SP be a sequence of nP samples from P and
SQ a sequence of nQ samples from Q. Also let ˆhSP = argminh2H ˆRSP (h) and ˆhSQ =

argminh2H ˆRSQ(h). Choose ˆh as the solution to the following optimization problem.

Algorithm 1:

Minimize ˆRSP (h)

subject to ˆRSQ(h)� ˆRSQ(
ˆhSQ)  c

q

ˆPSQ(h 6= ˆhSQ)AnQ + cAnQ (6)

h 2 H.

The intuition is that, effectively, the constraint guarantees we maintain a near-optimal guarantee
on EQ(ˆh) in terms of nQ and the (NC) parameters for Q, while (as we show) still allowing the
algorithm to select an h with a near-minimal value of ˆRSP (h). The latter guarantee plugs into the
transfer condition to obtain a term converging in nP , while the former provides a term converging in
nQ, and altogether the procedure achieves a rate specified by the min of these two guarantees (which
is in fact nearly minimax optimal, since it matches the lower bound up to logarithmic factors).

Formally, we have the following result for this learning rule; its proof is below.

Theorem 3 (Minimax Upper-Bounds). Assume (NC). Let ˆh be the solution from Algorithm 1. For
a constant C depending on ⇢, C⇢,�P , c�P ,�Q, c�Q , with probability at least 1� �,

EQ(ˆh)  Cmin

⇢

A
1

(2��P )⇢
nP , A

1
2��Q
nQ

�

=

˜O

 

min

(

✓

dH
nP

◆

1
(2��P )⇢

,

✓

dH
nQ

◆

1
2��Q

)!

.

Note that, by the lower bound of Theorem 1, this bound is optimal up to log factors.
Remark 2 (Effective Source Sample Size). From the above, we might view (ignoring dH) ñP

.
=

n
(2��Q)/(2��P )⇢
P as the effective sample size contributed by P . In fact, the above minimax rate

is of order (ñP + nQ)
�1/(2��Q), which yields added intuition into the combined effect of both

samples. We have that, the effective source sample size ñP is smallest for large ⇢, but also depends
on (2� �Q)/(2� �P ), i.e., on whether P is noisier than Q.

Remark 3 (Rate in terms of �). Note that, by Proposition 1, this also immediately implies a bound
under the marginal transfer condition and RCS, simply taking ⇢  �/�P . Furthermore, by the lower
bound of Theorem 2, the resulting bound in terms of � is tight in certain regimes up to log factors.
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Proof of Theorem 3. In all the lines below, we let C serve as a generic constant (possibly depending
on ⇢, C⇢,�P , c�P ,�Q, c�Q ) which may be different in different appearances. Consider the event
of probability at least 1 � �/3 from Lemma 1 for the SQ samples. In particular, on this event, if
EQ(h⇤

P ) = 0, it holds that

ˆRSQ(h
⇤
P )� ˆRSQ(

ˆhSQ)  c

q

ˆPSQ(h
⇤
P 6= ˆhSQ)AnQ + cAnQ .

This means, under the (RCS) condition, h⇤
P satisfies the constraint in the above optimization problem

defining ˆh. Also, on this same event from Lemma 1 we have

EQ(ˆhSQ)  c
q

Q(

ˆhSQ 6= h⇤
Q)AnQ + cAnQ ,

so that (NC) implies

EQ(ˆhSQ)  C

q

EQ(ˆhSQ)
�QAnQ + cAnQ ,

which implies the well-known fact from [28, 29] that

EQ(ˆhSQ)  C

✓

dH
nQ

log

✓

nQ

dH

◆

+

1

nQ
log

✓

1

�

◆◆

1
2��Q

. (7)

Furthermore, following the analogous argument for SP , it follows that for any set G ✓ H with
h⇤
P 2 G, with probability at least 1� �/3, the ERM ˆh0

SP
= argminh2G ˆRSP (h) satisfies

EP (ˆh0
SP

)  C

✓

dH
nP

log

✓

nP

dH

◆

+

1

nP
log

✓

1

�

◆◆

1
2��P

. (8)

In particular, conditioned on the SQ data, we can take the set G as the set of h 2 H satisfying
the constraint in the optimization, and on the above event we have h⇤

P 2 G (assuming the (RCS)
condition); furthermore, if EQ(h⇤

P ) = 0, then without loss we can simply define h⇤
Q = h⇤

P = h⇤
(and it is easy to see that this does not affect the NC condition). We thereby establish the above
inequality (8) for this choice of G, in which case by definition ˆh0

SP
=

ˆh. Altogether, by the union
bound, all of these events hold simultaneously with probability at least 1 � �. In particular, on this
event, if the (RCS) condition holds then

EP (ˆh)  C

✓

dH
nP

log

✓

nP

dH

◆

+

1

nP
log

✓

1

�

◆◆

1
2��P

.

Applying the definition of ⇢, this has the further implication that (again if (RCS) holds)

EQ(ˆh)  C

✓

dH
nP

log

✓

nP

dH

◆

+

1

nP
log

✓

1

�

◆◆

1
(2��P )⇢

.

Also note that, if ⇢ = 1 this inequality trivially holds, whereas if ⇢ < 1 then (RCS) necessarily
holds so that the above implication is generally valid, without needing the (RCS) assumption explic-
itly. Moreover, again when the above events hold, using the event from Lemma 1 again, along with
the constraint from the optimization, we have that

RQ(
ˆh)�RQ(

ˆhSQ)  2c

q

ˆPSQ(
ˆh 6= ˆhSQ)AnQ + 2cAnQ ,

and (5) implies the right hand side is at most

C

q

Q(

ˆh 6= ˆhSQ)AnQ + CAnQ  C
q

Q(

ˆh 6= h⇤
Q)AnQ + C

q

Q(

ˆhSQ 6= h⇤
Q)AnQ + CAnQ .

Using the Bernstein class condition and (7), the second term is bounded by

C

✓

dH
nQ

log

✓

nQ

dH

◆

+

1

nQ
log

✓

1

�

◆◆

1
2��Q

,

while the first term is bounded by

C

q

EQ(ˆh)�QAnQ .
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Altogether, we have that

EQ(ˆh) = RQ(
ˆh)�RQ(

ˆhSQ) + EQ(ˆhSQ)

 C

q

EQ(ˆh)�QAnQ + C

✓

dH
nQ

log

✓

nQ

dH

◆

+

1

nQ
log

✓

1

�

◆◆

1
2��Q

,

which implies

EQ(ˆh)  C

✓

dH
nQ

log

✓

nQ

dH

◆

+

1

nQ
log

✓

1

�

◆◆

1
2��Q

.

Remark 4. Note that the above Theorem 3 does not require (RCS): that is, it holds even when
EQ(h⇤

P ) > 0, in which case ⇢ = 1. However, for a related method we can also show a stronger
result in terms of a modified definition of ⇢:
Specifically, define EQ(h, h⇤

P ) = max{RQ(h)�RQ(h
⇤
P ), 0}, and suppose ⇢0 > 0, C⇢0 > 0 satisfy

8h 2 H, C⇢0 · EP (h) � E⇢0
Q (h, h⇤

P ).

This is clearly equivalent to ⇢ (Definition 2) under (RCS); however, unlike ⇢, this ⇢0 can be finite
even in cases where (RCS) fails. With this definition, we have the following result.

Proposition 2 (Beyond (RCS)). If ˆRSQ(
ˆhSP )� ˆRSQ(

ˆhSQ)  c
q

ˆPSQ(
ˆhSP 6= ˆhSQ)AnQ + cAnQ ,

that is, if ˆhSP satisfies (6), define ˆh =

ˆhSP , and otherwise define ˆh =

ˆhSQ . Assume (NC). For a
constant C depending on ⇢0, C⇢0 ,�P , c�P ,�Q, c�Q , with probability at least 1� �,

EQ(ˆh)  min

⇢

EQ(h⇤
P ) + CA

1
(2��P )⇢0
nP , CA

1
2��Q
nQ

�

.

The proof of this result is similar to that of Theorem 3, and as such is deferred to Appendix C.

An alternative procedure. Similar results as in Theorem 3 can be obtained for a method that
swaps the roles of P and Q samples:

Algorithm 10 :

Minimize ˆRSQ(h)

subject to ˆRSP (h)� ˆRSP (
ˆhSP )  c

q

ˆPSP (h 6= ˆhSP )AnP + cAnP

h 2 H.

This version, more akin to so-called hypothesis transfer may have practical benefits in scenarios
where the P data is accessible before the Q data, since then the feasible set might be calculated (or
approximated) in advance, so that the P data itself would no longer be needed in order to execute
the procedure. However this procedure presumes that h⇤

P is not far from h⇤
Q, i.e., that data SP from

P is not misleading, since it conditions on doing well on SP . Hence we now require (RCS).

Proposition 3. Assume (NC) and (RCS). Let ˆh be the solution from Algorithm 10. For a constant C
depending on ⇢, C⇢,�P , c�P ,�Q, c�Q , with probability at least 1� �,

EQ(ˆh)  Cmin

⇢

A
1

(2��P )⇢
nP , A

1
2��Q
nQ

�

=

˜O

 

min

(

✓

dH
nP

◆

1
(2��P )⇢

,

✓

dH
nQ

◆

1
2��Q

)!

.

The proof is very similar to that of Theorem 3, so is omitted for brevity.

6 Minimizing Sampling Cost

In this section (and continued in Appendix A.1), we discuss the value of having access to unlabeled
data from Q. The idea is that unlabeled data can be obtained much more cheaply than labeled data,
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so gaining access to unlabeled data can be realistic in many applications. Specifically, we begin
by discussing an adaptive sampling scenario, where we are able to draw samples from P or Q, at
different costs, and we are interested in optimizing the total cost of obtaining a given excess Q-risk.

Formally, consider the scenario where we have as input a value ✏, and are tasked with producing
a classifier ˆh with EQ(ˆh)  ✏. We are then allowed to draw samples from either P or Q toward
achieving this goal, but at different costs. Suppose cP : N ! [0,1) and cQ : N ! [0,1) are cost
functions, where cP (n) indicates the cost of sampling a batch of size n from P , and similarly define
cQ(n). We suppose these functions are increasing, and concave, and unbounded.

Definition 5. Define n⇤
Q = dH/✏2��Q , n⇤

P = dH/✏(2��P )�/�P , and c⇤ = min

�

cQ(n⇤
Q), cP (n

⇤
P )
 

.
We call c⇤ = c⇤(✏; cP , cQ) the minimax optimal cost of sampling from P or Q to attain Q-error ✏.

Note that the cost c⇤ is effectively the smallest possible, up to log factors, in the range of parameters
given in Theorem 2. That is, in order to make the lower bound in Theorem 2 less than ✏, either
nQ =

˜

⌦(n⇤
Q) samples are needed from Q or nP =

˜

⌦(n⇤
P ) samples are needed from P . We show

that c⇤ is nearly achievable, adaptively with no knowledge of distributional parameters.

Procedure. We assume access to a large unlabeled data set UQ sampled from QX . For our pur-
poses, we will suppose this data set has size at least ⇥(

dH
✏ log

1

✏ +
1

✏ log
1

� ).

Let A0
n =

dH
n log(

max{n,dH}
dH

) +

1

n log(

2n2

� ). Then for any labeled data set S, define ˆhS =

argminh2H ˆRS(h), and given an additional data set U (labeled or unlabeled) define a quantity

ˆ�(S,U) = sup

⇢

ˆPU (h 6= ˆhS) : h 2 H, ˆRS(h)� ˆRS(
ˆhS)  c

q

ˆPS(h 6= ˆhS)A0
|S| + cA0

|S|

�

,

where c is as in Lemma 1. Now we have the following procedure.

Algorithm 2:
0. SP  {}, SQ  {}
1. For t = 1, 2, . . .
2. Let nt,P be minimal such that cP (nt,P ) � 2

t�1

3. Sample nt,P samples from P and add them to SP

4. Let nt,Q be minimal such that cQ(nt,Q) � 2

t�1

5. Sample nt,Q samples from Q and add them to SQ

6. If c
q

ˆ�(SQ, SQ)A|SQ| + cA|SQ|  ✏, return ˆhSQ

7. If ˆ�(SP , UQ)  ✏/4, return ˆhSP

The following theorem asserts that this procedure will find a classifier ˆh with EQ(ˆh)  ✏ while
adaptively using a near-minimal cost associated with achieving this. The proof is in Appendix D.
Theorem 4 (Adapting to Sampling Costs). Assume (NC) and (RCS). There exist a constant c0,
depending on parameters (C� , �, c�Q , �Q, c�P , �P ) but not on ✏ or �, such that the following holds.
Define sample sizes ñQ =

c0

✏2��Q

�

dH log

1

✏ + log

1

�

�

, and ñP =

c0

✏(2��P )�/�P

�

dH log

1

✏ + log

1

�

�

.

Algorithm 2 outputs a classifier ˆh such that, with probability at least 1� �, we have EQ(ˆh)  ✏, and
the total sampling cost incurred is at most min{cQ(ñQ), cP (ñP )} =

˜O(c⇤).

Thus, when c⇤ favors sampling from P , we end up sampling very few labeled Q data. These are sce-
narios where P samples are cheap relative to the cost of Q samples and w.r.t. parameters (�Q,�P ,�)
which determine the effective source sample size contributed for every target sample. Furthermore,
we achieve this adaptively: without knowing (or even estimating) these relevant parameters.
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