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Abstract

The Kalman filter (KF) is one of the most widely used tools for data assimilation
and sequential estimation. In this work, we show that the state estimates from the
KF in a standard linear dynamical system setting are equivalent to those given by
the KF in a transformed system, with infinite process noise (i.e., a “flat prior”)
and an augmented measurement space. This reformulation—which we refer to as
augmented measurement sensor fusion (SF)—is conceptually interesting, because
the transformed system here is seemingly static (as there is effectively no process
model), but we can still capture the state dynamics inherent to the KF by folding
the process model into the measurement space. Further, this reformulation of the
KF turns out to be useful in settings in which past states are observed eventually
(at some lag). Here, when the measurement noise covariance is estimated by the
empirical covariance, we show that the state predictions from SF are equivalent to
those from a regression of past states on past measurements, subject to particular
linear constraints (reflecting the relationships encoded in the measurement map).
This allows us to port standard ideas (say, regularization methods) in regression
over to dynamical systems. For example, we can posit multiple candidate process
models, fold all of them into the measurement model, transform to the regression
perspective, and apply ¢; penalization to perform process model selection. We give
various empirical demonstrations, and focus on an application to nowcasting the
weekly incidence of influenza in the US.

1 Introduction

Letz, € RF, ¢t =1,2,3,...denote states and z; € R% ¢ = 1,2,3, ... denote measurements evolving
according to the time-invariant linear dynamical system:

xy = Fay 1+ 0, (D
2t = Hry + ¢, (2
fort = 1,2,3,.... We assume the noise terms d;, ¢; have mean zero and covariances ) € R*** and
R € R respectively, forall t = 1,2,3, . ... Also, we assume that the initial state ;o and all noise

terms are mutually independent. We call (I)) the process model and (2)) the measurement model.
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Kalman filter. The Kalman filter (KF) [Kalman, [1960] is a method for sequential estimation in the
model (T)), 2). Given past estimates &1, . . ., Z; and measurements 2y, . . . , z¢+1, we form an estimate
Zy41 of the state x; via

Ty = Fiy, 3)
o1 = Tpy1 + K1 (241 — HTi41), 4

where K1 € RF*9is called the Kalman gain (at time ¢ + 1). It is itself updated sequentially, via

P, =FPFT +Q, 6)
Kiy1 = Py H'(HPp HT + R)7Y, (6)
Pt+1 = (I - Kt+1H)Pt+1- @)

where P, ; € RF** denotes the state error covariance (at time ¢ + 1). The step (3) is often called
the predict step: we form an intermediate estimate Z;1 of the state based on the process model and
our estimate at the previous time point. The step (4)) is often called the update step: we update our
estimate Z;1 based on the measurement model and the measurement 2; ;.

Under the data model (I), () and the conditions on the noise stated above, the Kalman filter attains
the optimal mean squared error E||Z; — 2|3 among all linear unbiased filters, ateach t = 1,2,3,. . ..
When the initial state zy and all noise terms are Gaussian, the Kalman filter estimates exactly reduce
to the Bayes estimates &; = E(z¢|21,...,2¢),t = 1,2,3,.... Numerous important extensions have
been proposed, e.g., the ensemble Kalman filter (EnKF) [Evensen, 1994, Houtekamer and Mitchell,
1998]], which approximates the noise process covariance ) by a sample covariance in an ensemble
of state predictions, as well as the extended Kalman filter (EKF) [Smith et al.l [1962]] and unscented
Kalman filter (UKF) [Julier and Uhlmannl 1997, which both allow for nonlinearities in the process
model. Particle filtering (PF) [Gordon et al.||1993]] has more recently become a popular approach for
modeling complex dynamics. PF adaptively approximates the posterior distribution, and in doing so,
avoids the linear and Gaussian assumptions inherent to the KF. This flexibility comes at the cost of a
greater computational burden.

In this paper, we revisit the standard KF (3), @) and show that its estimates 41, ¢t = 0,1,2,... are
equivalent to those from the KF applied to a transformed system, with infinite process noise and an
augmented measurement space. At first glance, this is perhaps surprising, because the transformed
system effectively lacks a process model and is therefore seemingly static; however, it is able to take
the state dynamics into account as part of its measurement model. Importantly, this reformulation of
the KF leads us to derive a second, key reformulation for problems in which past states are observed
(at some lag). This second reformulation is the methodological crux of our paper: it is a constrained
regression approach for predicting states from measurements, motivated by (derived from) SF and the
KF. We illustrate its effectiveness in an application to nowcasting weekly influenza levels in the US.

Sensor fusion. If we let the noise covariance in the process model diverge to infinity, Q — 00[1_1
then the Kalman filter estimate in (3), (@) simplifies to

G = (HTR'H)Y 'HTR 12, 44. (8)

This can be verified by rewriting the Kalman gain as K; 1 = (]%:_11 +HTR'H)"'HTR™!, and
observing that Pl;ll — 0 as Q — oo. Alternatively, we can verify this by specializing to the case of
Gaussian noise: as tr(@)) — oo, we approach a flat prior, and the Kalman filter (Bayes estimator)
just maximizes the likelihood of z¢ 1|21 1. From the measurement model (2) (assuming Gaussian

noise), this is a weighted regression of z;11 on the measurement map H, precisely as in (8).

We will call the sensor fusion (SF) estimate (at time ¢ + 1)E] In this setting, we will also refer to
the measurements as sensors. As defined, sensor fusion is a special case of the Kalman filter when
there is infinite process noise; said differently, it is a special case of the Kalman filter when there is no
process model at all. Thus, looking at (8], the state dynamics have apparently been completely lost.
Perhaps surprisingly, as we will show shortly, these dynamics can be exactly recovered by augmenting
the measurement vector z;,1 with the KF intermediate prediction Z;1 = F; in (3) (and adjusting
the map H and covariance R appropriately). We summarize this and our other contributions next.

"To make this unambiguous, we may take, say, Q = al and let a — oo.
2 “Sensor fusion™ is typically used as a generic term, similar to “data assimilation”; we use it to specifically
describe the estimate in (§) to distinguish it from the KF. This is useful when we describe equivalences, shortly.



Summary of contributions. An outline of our contributions in this paper is as follows.

1. We show in Section [2that, if we take the KF intermediate prediction Z;; in (3), append it
to the measurement vector 21, and perform SF (8) (with an appropriately adjusted H, R),
then the result is exactly the KF estimate ().

2. We show in Section [3|that, if we are in a problem setting in which past states are observed
(at some lag, which is the case in the flu nowcasting application), and we replace the noise
covariance R from the measurement model by the empirical covariance on past data, then
the sensor fusion estimate (§) can be written as Bz, 1, where B € R4*¥ is a matrix of
coefficients that solves a regression problem of the states on the measurements (using past
data), subject to the equality constraint H7' B = I.

3. We demonstrate the effectiveness of our new regression formulation of SF in Section [] by
describing an application of this methodology to nowcasting the incidence of weekly flu in
the US. This achieves state-of-the art performance in this problem.

4. We present in Section [5]some extensions of the regression formulation of SF; they do not
have direct equivalences to SF (or the KF), but are intuitive and extend dynamical systems
modeling in new directions (e.g., using ¢; penalization to perform a kind of process model
selection).

We make several remarks. The equivalences described in points 1-3 above are deterministic (they do
not require the modeling assumptions (I), (Z), or any modeling assumptions whatsoever). Further,
even though their proofs are elementary (they are purely linear algebraic) and the setting is a classical
one (linear dynamical systems), these equivalences are—as far as we can tell—new results. They
deserve to be widely known and may have implications beyond what is explored in this paper.

For example, the regression formulation of SF may still be a useful perspective for problems in which
past states are fully unobserved (this being the case in most KF applications). In such problems,
we may consider using smoothed estimates of past states, obtained by running a backward version
of the KF forward recursions (E])— (see, e.g., Chapter 7 of |/Anderson and Moore| [[1979])), for the
purposes of the regression formulation. As another example, the SF view of the KF may be a useful
formulation for the purposes of estimating the covariances R, (), or the maps F, H, or all of them;
in this paper, we assume that F', H, R, () are known (except for in the regression formulation of SF,
in which R is unknown but past states are available); in general, there are well-developed methods
for estimating F, H, R, () such as subspace identification algorithms (see, e.g., Overshee and Moor
[1996]), and it may be interesting to see if the SF perspective offers any advantages here.

Related work. The Kalman filter and its extensions, as previously referenced (EnKF, EKF, UKF),
are the de facto standard in state estimation and tracking problems; the literature surrounding them
is enormous and we cannot give a thorough treatment. Various authors have pointed out the simple
fact that maximum likelihood estimate in (IS]), which we call sensor fusion, is the limit of the KF as
the noise covariance in the process model approaches infinity (see, e.g., Chapter 5.9 of Brown and
Hwang|[2012]). We have not, however, seen any authors note that this static model can recover the
KF by augmenting the measurement vector with the KF intermediate prediction (Theorem |T]).

Along the lines of our second equivalence (Theorem|2)), there is older work in the statistical calibration
literature that studies the relationships between the regressions of y on x and x on y (for multivariate
x,y, see Brown| [1982]). This is somewhat related to our result, since we show that a backwards or
indirect approach, which models z;1 1|1, is actually equivalent to a forwards or direct approach,
which predicts z,4; from z;4; via regression. However, the details are quite different.

Finally, our SF methodology in the flu nowcasting application blends together individual predictors
in a way that resembles linear stacking [Wolpert, 1992, |Breiman, [1996]. In fact, one implication of
our choice of measurement map H in the flu nowcasting problem, as well as the constraints in our
regression formulation of SF, is that all regression weights must sum to 1, which is the standard in
linear stacking as well. However, the equality constraints in our regression formulation are quite a bit
more complex, and reflect aspects of the sensor hierarchy that linear stacking would not.



2 Equivalence between KF and SF

As already discussed, the sensor fusion estimate (8]) is a limiting case of the Kalman filter (3)), @), and
initially, it seems, one rather limited in scope: there is effectively no process model (as we have sent
the process variance to infinity). However, as we show next, the KF is actually itself a special case of
SF, when we augment the measurement vector by the KF intermediate predictions, and appropriately
adjust the measurement map H and noise covariance R. The proof is elementary, a consequence of
the Woodbury matrix and related manipulations. It is given in the supplement.

Theorem 1. At each timet =0,1,2, ..., suppose we augment our measurement vector by defining
Ziy1 = (241, Te41) € RYE ywhere ZTry1 = F2y is the KF intermediate prediction at time t + 1.
Suppose that we also augment our measurement map by defining H € RHR)IXE 1o be the rowwise
concatenation of H and the identity matrix I € RF*F . Furthermore, suppose we define an augmented
measurement noise covariance

~ R 0

Ry = 5 9

t+1 0 Pt+1 ( )

where Py, is the KF intermediate error covariance at time t + 1 (as in (3))). Then applying SF to
the augmented system produces an estimate at t + 1 that equals the KF estimate,

(H"R;NH) "H R Zpy = T + Ko (2041 — HIug), (10)
where K1 is the Kalman gain at t + 1 (as in (6)).

Remark 1. We can think of the last state estimate &; in the theorem (which is propagated forward
via Z;11 = F'2;) as the previous output from SF itself, when applied to the appropriate augmented
system. More precisely, by induction, Theorem|[I]says that iteratively applying SF to Z;41, H, Ry41
across times t = 0,1, 2, ..., where each Z;1 = F'Z; is the intermediate prediction using the last SF
estimate %, produces a sequence 411, ¢t = 0,1, 2, ... that matches the state estimates from the KF.

Remark 2. The result in Theorem|l|can be seen from a Bayesian perspective, as was pointed out by
an anonymous reviewer. When the initial state 2 and all noise terms in @, (IZ]) are Gaussian, recall
the KF reduces to the Bayes estimator. Here the posterior is the product of a Gaussian likelihood and
Gaussian prior, and is thus itself Gaussian. (The proof of this standard fact uses similar arguments
to the proof of Theorem ) Meanwhile, in augmented SF, we can view the Gaussian likelihood
being maximized as the product of the Gaussian density of 2,41 and that of Z;,1. This matches the
posterior used by the KF, where the density of Z;,1 plays the role of the prior in the KF. Therefore in
each case, we are defining our estimate to be the mean of the same Gaussian distribution.

Remark 3. The equivalence between SF and KF can be extended beyond the case of linear process
and linear measurement models. Given a nonlinear process map f and a nonlinear process model h,
suppose we define Z;1 = f(&:), Fi+1 = Df(&;) (the Jacobian of f at &;), and H; 1 = Dh(Z41)
(the Jacobian of h at Z;1). Suppose we define the augmented measurement vector as

Zip1 = (2041 + Hip1Zig1 — R(Ze41)s Tigr)s (11)

where we have offset the measurement z;,1 by the residual H11Z+41 — h(Z¢41) from linearization.
Suppose, as in the theorem, we define the augmented measurement map H;, € R(A+HR)XE (0 be the
rowwise concatenation of H;,; and I € R¥** and define R,y € R(d+R)X(d+K) 45 in @), for P,
as in (9), but with Fy;1, Hyy1 in place of F, H. In the supplement, we prove that

(H G Ry He) "HE G Ry 2 = B + Ko (2001 — M(Ze41), (12)

where K1 is as in (6)), but with Fy1, H;41 in place of F, H. The right-hand side above is precisely
the extended KF (EKF). The left-hand side is what we might call extended SF (ESF).

3 Equivalence between SF and regression

Suppose that in our linear dynamical system, at each time ¢, we observe the measurement z;, make a
prediction &, for x;, then later observe the state x; itself. (This setup indeed describes the influenza
nowcasting problem, a central motivating example that we will describe shortly.) In such problems,
we can estimate R using the empirical covariance on past data. When we plug this into (8], it turns
out SF reduces to a prediction from a constrained regression of past states on past measurements.



3.1 Equivalent regression problem

In making a prediction at time ¢ + 1, we assume in this section that we observe past states. We may
assume without a loss of generality that we observe the full past x;, ¢ = 1, ..., ¢ (if this is not the
case, and we observe only some subset of the past, then the only changes to make in what follows are
notational). Assuming the measurement noise covariance R is unknown, we may use

t
N 1 T
Rt+1 = ; Z(ZZ - Hl‘i)(Zl - HlEl) 5 (13)
i=1
the empirical (uncentered) covariance based on past data, as an estimate. Under this choice, it turns
out that sensor fusion (8) is exactly equivalent to a regression of states on measurements, subject to
certain equality constraints. The proof is elementary, but requires detailed arguments. It is deferred

until the supplement.

Theorem 2. Let Rt+1 be as in (assumed to be invertible). Consider the SF prediction at time
t + 1, with Ry 1 in place of R. Denote this by T141 = BthH, where

B" = (HT"R N H)'HTRY
(and HTR;llH is assumed invertible). Each column ofB, denoted l;j € RY, j=1,...,k, solves

t

minimize Z(IU - b]Tzi)2

b; ERY P (14)

subject to HTbj =ej,

where e; € R? is the jth standard basis vector (all Os except for a 1 in the jth component).

Remark 4. As discussed in the introduction, the interpretation of (H” R}, H) " HT R; ! 2,41 as
the coefficients from regressing z;4 1 (the response) onto H (the covariates) is more or less immediate.
Interpreting the same quantity as BT 2,11 = (b7 z441,..., b 241), the predictions from historically
regressing x;, @ = 1, ..., t (the response) onto z;,© = 1, ..., t (the covariates), however, is much less
obvious. The latter is a forwards or direct regression approach to predicting x;1, whereas SF was
originally defined via the backwards or indirect perspective inherent to the measurement model (2)).

3.2 Influenza nowcasting

An example that we will revisit frequently, for the rest of the paper, is the following influenza (or flu)
nowcasting problem. The state variable of interest is the weekly percentage of weighted influenza-like
illness (WILI), a measure of flu incidence provided by the Centers for Disease Control and Prevention
(CDCQ), in each of the k = 51 US states (including DC). Because it takes time for the CDC to collect
and compile this data, they release wILI values with a 1 week delay. Meanwhile, various proxies for
the flu (i.e., data sources that are potentially correlated with flu incidence) are available in real time,
e.g., web search volume for flu-related terms, site traffic metrics for flu-related pages, pharmaceutical
sales for flu-related products, etc. We can hence train (using historical data) sensors to predict wiLlI,
one from each data source, and plug them into sensor fusion (8) in order to “nowcast” the current flu
incidence (that would otherwise remain unknown for another week).

Such a sensor fusion system for flu nowcasting, using d = 308 sensors (flu proxies), is described in
Chapter 4 of |Farrow [2016ﬂ In addition to the surveillance sensors described above (search volume
for flu terms, site traffic metrics for flu pages, etc.), the measurement vector in this nowcasting system
also uses a sensor that is trained to make predictions of wILI using a seasonal autoregression with
3 lags (SAR3). From the KF-SF equivalence established in Section [2] we can think of this SAR3
sensor as serving the role of something like a process model, in the underlying dynamical system.

While wiLlI itself is available at the US state level, the data source used to train each sensor may only
be available at coarser geographic resolution. Thus, importantly, each sensor outputs a prediction at a
different geographic resolution (which reflects the resolution of its corresponding data source). As an

3This is more than just a hypothetical system; it is fully operational, and run by the Carnegie Mellon DELPHI
group to provide real-time nowcasts of flu incidence every week, in all US states, plus select regions, cities, and
territories. (See https://delphi.midas.cs.cmu.edu).
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example, the number of visits to flu-related CDC pages are available for each US state separately; so
for each US state, we train a separate sensor to predict wILI from CDC site traffic. However, counts
for Wikipedia page visits are only available nationally; so we train just one sensor to predict national
wlILI from Wikipedia page visits.

Assuming unbiasedness of all the sensors, we construct the map H in (2)) so that its rows reflect the
geography of the sensors. For example, if a sensor is trained on data that is available at the ith US
state, then its associated row in H is

0,...1,...0);
©,...1,...0)

i
and if a sensor is trained on data from the aggregate of the first 3 US states, then its associated row is
('UJ1, wa, W3, 07 CIIR 0)7

for weights wy, wa, w3 > 0 such that wy 4+ wy + w3 = 1, based on relative state populations; and so
on. Figure[I]illustrates the setup in a simple example.

3.3 Interpreting the constraints

At a high-level, the constraints in (T4) encode information about the measurement model ). They
also provide some kind of implicit regularization. Interestingly, as we will see later in Section[d] this
can still be useful when used in addition to more typical (explicit) regularization.

How can we interpret these constraints? We give three interpretations, the first one specific to the flu
forecasting setting, and the next two general.

Flu interpretation. In the flu nowcasting problem, recall, the map H has rows that sum to 1, and
they reflect the geographic level at which the corresponding sensors were trained (see Section [3.2)).
The constraints H'b; = ej, j = 1,..., k can be seen in this case as a mechanism that accounts for
the geographical hierachy underlying the sensors. As a concrete example, consider the simplified
setup in Figure and j = 3. The constraint H' b3 = e3 reads:

bsi + /3bss + '/5b3s =0,
bsa + /3bss + '/5b3s =0,
bss + /3bss + /5bss =1,
bss + '/3bsz + /5 b3 =0,
bss + '/3bsr + /5 b3s = 0.

The third line can be interpreted as follows: an increase of 1 unit in sensor 23, 1/3 units in zg, and
1/5 units in zg, holding all other sensors fixed, should lead to an increase in 1 unit of our prediction
for 3. This is a natural consequence of the hierarchy in the sensor model (2)), visualized in Figure|T]
The first line can be read as: an increase of 1 unit in sensor z1, 1/3 units in zg, and 1/5 in zg, with
all others fixed, should not change our prediction for x3. This is also natural, following from the
hierachy (i.e., such a change must have been propogated by z1). The other lines are similar.



Invariance interpretation. The SF prediction (at time ¢t + 1) is &1 = Bth+1. To denoise (i.e.,
estimate the mean of) the measurement 2,1, based on the model @, we could use 241 = Hyy1.
Given the denoised Z;41, we could then refit our state prediction via T;4; = BTétH. But due to
the constraint H” B = I (a compact way of expressing HZb; = e;, for j = 1,..., k), it holds that
Tigp1 = BTH 241 = Z441. This is a kind of invariance property. In other words, we can go from
estimating states, to refitting measurements, to refitting states, etc., and in this process, our state
estimates will not change.

Generative interpretation. Assume ¢ > k, and fix an arbitrary j = 1,...,k as well as b; € R*.
The constraint H Tbj = e; implies, by taking an inner product on both sides with z;, i = 1,..., k,

(Hz;)"b; =25, i=1,...,k.

If we assume z;, ¢ = 1, ..., k are linearly independent, then the above linear equalities are not only
implied by HT b; = e;, they are actually equivalent to it. Invoking the model (2), we may rewrite the
constraint HZ'b; = e; as

E(b] zilw;) = @i, i=1,....k (15)

In the context of problem (T4), this is a statement about a generative model for the data (as z;|x;
describes the distribution of the covariates conditional on the response). The representation in (T3]
shows that (T4) constrains the regression estimator to have the correct conditional predictions, on
average, on the data we have already seen (z;, z;), i = 1, ..., k. (Note here we did not have to use
the first k& time points; any past k time points would suffice.)

3.4 Modifications and equivalences

In the supplement, we show that two modifications of the basic SF formulation also have equivalences
in the regression perspective: namely, shrinking the empirical covariance in (T3] towards the identity
is equivalent to adding a ridge (squared ¢3) penalty to the criterion in (I4); and also, adding a null
sensor at each state (one that always outputs 0) is equivalent to removing the constraints in (T4). The
latter equivalence here provides indirect but fairly compelling evidence that the constraints in the
regression formulation play an important role (under the model (2)): it says that removing them
is equivalent to including meaningless null sensors, which intuitively should worsen its predictions.

4 Flu nowcasting application

Experimental setup. We examine the performance of our methods for nowcasting (one-week-
ahead prediction of) wILI across 5 flu seasons, from 2013 to 2018 (total of 140 weeks). Recall the
setup described in Section with k = 51 states and d = 308 measurements. At week ¢ + 1, we
derive an estimate 21 of the current wiLI in the 51 US states, based on sensors 2,1 (each sensor
being the output of an algorithm trained to predict wILI at a different geographic resolution from a
given data source), and past wILI and sensor data. We consider 7 methods for computing the nowcast
Z+11: (i) SF, or equivalently, constrained regression (T4)); (ii) SF as in (T4)), but with an additional
ridge (squared ¢3) penalty (equivalently, SF with covariance shrinkage); (iii) SF as in (T4), but with
an additional lasso (¢1) penalty; (iv/v) regression as in (14}, but without constraints, and using a
ridge/lasso penalty; (vi) random forests (RF) [Breiman, [2001], trained on all of the sensors; (vii) RF,
but trained on all of the underlying data sources used to fit the sensors.

At prediction week ¢ + 1, we use the last 3 years (weeks ¢ — 155 through ¢) as the training set for all
7 methods. We do not implement unpenalized regression (as in (T4), but without constraints), as it
is not well-defined (156 observations and 308 covariates)|*| All ridge and lasso tuning parameters
are chosen by optimizing one-week-ahead prediction error over the latest 10 weeks of data (akin to
cross-validation, but for a time series context like ours). Python code for this nowcasting experiment
is available at http://github.com/mariajahja/kf-sf-flu-nowcasting.

*SF is still well-defined, due of the constraint in (T4): a nonunique solution only occurs when the (random)
null space of the covariate matrix has a nontrivial intersection with the null space of H”, which essentially never
happens.
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Figure 2: Top row, from left to right: data sources, sensors, and nowcasts are compared to the underlying wiLI
values for Pennsylvania during flu season 2017-18. For visualization purposes, the sources are scaled to fit the
range of wiLI. On the rightmost plot, we display nowcasts using select methods. Bottom row: MAE:s (full colors)
and MAD:s (light colors) of nowcasts over 5 flu seasons from 2013-14 to 2017-18.

Missing data. Unfortunately, sensors are observed at not only varying geographic resolutions, but
also varying temporal resolutions (since their underlying data sources are), and missing values occur.
In our experiments, we choose to compute predictions using the regression perspective, and apply a
simple mean imputation approach (using only past sensor data), before fitting all models.

Nowcasting results. The bottom row of Figure[2]displays the mean absolute errors (MAEs) from
one-week-ahead predictions by the 7 methods considered, averaged over the 51 US states, for each
of the 5 seasons. Also displayed are the mean absolute deviations (MADs), in light colors. We see
that SF with ridge regularization is generally the most accurate over the 5 seasons, SF with lasso
regularization is a close second, and SF without any regularization is the worst. Thus, clearly, explicit
regularization helps. Importantly, we also see that the constraints in the regression problem (T4)
(which come from its connection to SF) play a key role: in each season, SF with ridge regularization
outperforms ridge regression, and SF with lasso regularization outperforms the lasso. Therefore, the
constraints provide additional (beneficial) implicit regularization.

RF trained on sensors performs somewhat competitively. RF trained on sources is more variable (in
some seasons, much worse than RF on sensors). This observation indicates that training the sensors
is an important step for nowcasting accuracy, as this can be seen as a form of denoising, and suggests
a view of all the methods we consider here (except RF on sources) as prediction assimilators (rather
than data assimilators). Finally, the top row Figure [2] visualizes the nowcasts for Pennsylvania in the
2017-18 season. We can see that SF, RF (on sensors), and even ridge regression are noticeably more
volatile than SF with ridge regularization.

5 Discussion and extensions

In this paper, we studied connections between the Kalman filter, sensor fusion, and regression. We
derived equivalences between the first two and latter two, discussed the general implications of our
results, and studied the application of our work to nowcasting the weekly influenza levels in the US.
We conclude with some ideas for extending the constrained regression formulation (T4) of SF.



Sensor selection. The problem of selecting a small number of relevant sensors (on which to perform
sensor fusion) among a possibly large number, which we can call sensor selection, is quite a difficult
problem. Beyond this, measurement selection in the Kalman filter is a generally difficult problem. As
far as we know, this is an active and relatively open area of research. On the other hand, in regression,
variable selection is extremely well-studied, and ¢; regularization (among many other tools) is now
very well-developed (see, e.g.,[Hastie et al. [2009} 2015]]). Starting from the regression formulation
for SF in (T4), it would be natural to add to the criterion an ¢; or lasso penalty [Tibshiranil [1996] to
select relevant sensors,

t
L 1 T
minimize {E (zij — b] 2i)* + Ajlbjla
i—1

b; R4 (16)

subject to  H'b; = e;,
where [|b;]|; = lezl lbjel, j = 1,..., k. Itis not clear (nor likely) that (TI6) has an equivalent SF
formulation, but the exact equivalence when \; = 0 suggests that could be a reasonable tool for
sensor selection. (Indeed, without even considering its sensor selection capabilities, this performed
respectably for predictive purposes in the experiments in Section[d}) Further, we can perform a kind

of process model selection with (T6) by augmenting our measurement vector with multiple candidate
process models, and penalizing only their coefficients. An example is given in the supplement.

Joint sensor learning. In the flu nowcasting problem, recall, the sensors are outputs of predictive
models, each trained individually to predict wILI from a particular data source (flu proxy). Denote by
u; € R4, i =1,...,tthe data sources at times 1 through ¢. Instead of learning the sensors (predictive
transformations of these sources) individually, we could learn them jointly, by extending into:

t
1 2
minimize n ; (Iij - b]Tfj (Uz)) + X Pi(f;)

fi€F; a7
subject to HTbj = ej.
for j = 1,..., k. Here, each F; is a space of functions from R? to R? (e.g., diagonal linear maps)

and P; is a penalty to be specified by the modeler (e.g., the Frobenius norm in the linear map case).
The key in (T7) is that we are simultaneously learning the sensors and assimilating them.

Gradient boosting. Solving is computationally difficult (even in the simple linear map case, it
is nonconvex). An alternative that is more tractable is to proceed iteratively, in a manner inspired by
gradient boosting [Friedman| [2001]]. For each j =1, ...,d, let A; be an algorithm (“base learner”)
that we use to fit sensor j from data source j. Write y; = Hx;, 1 =1,. ., ,)t, and let > 0 be a small
fixed learning rate. To make a prediction at time ¢ + 1, we initialize :z:io =0,1=1,...,t+1(or
initialize at the fits from the usual linear SF), and repeat, for boosting iterations b = 1, ..., B:
e Forj=1,...,d
— Let y(b y_ = (Hz® V), fori=1,...,t.

— Run A; with responses {y;; — yfjb 1)}1-:1 and covariates {u;; }!_,, to produce f;b).

l]?

— Define intermediate sensors z<b f;b) (ugj), fori=1,...,t+ 1.
e Forj=1,... k:
- Run SF as in (T4) (possibly with regularization) with responses {z;; — xz(-?fl) }_, and
covariates {z(?)}!_, , to produce b;.

— Define intermediate state fits x(b) bT (b) Jfori=1,...,t+ 1.

— Update total state fits x( ) = (b Dy nm( ), fori = 1,...,t+ 1.

’L

We return at the end our final prediction Z;41 = 935 JJ. It would be interesting to pursue this approach
in detail, and study the extent to which it can improve on the usual linear SF.
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