
We thank all the reviewers for their insightful comments and suggestions. We will add citations and discussions of all1

the suggested related works in the full version. Reviewer-specific comments follow.2

Reviewer 1 We consider our mutual information framework to be a core contribution of our paper. In particular, our3

formalization of “how well a linear classifier explains the performance of a model” has many advantages over prior4

formalizations (e.g. see our response to Reviewer 3). Regarding our theory example (Section 5): We separate the5

question of why SGD learns simple concepts first (Claim 1) from the question of why it does not forget them (Claim6

2). Our current theory is only relevant to the second question, and it shows that in a simplified setting: SGD does not7

“forget” the simple component even when trained to completion, provided it somehow learns the simple component8

first. We argue that this simple example captures many properties of real settings (overparametrization, existence of9

non-generalizable ERMs) and hence is valuable as a step towards more general theory. Regarding Claim 1, it is true10

that we currently have no theoretical understanding of why linear learning occurs. We consider this one of the most11

important open questions of our paper, and we are attempting to make progress on this in ongoing work.12

Reviewer 2 Thank you for pointing out the relevant papers. We also agree that it is scientifically valuable to describe13

settings where these phenomenon fail to occur (bad initialization, bad architecture/parameterization, bad optimizer, or14

pathological distributions). We plan on including a separate section with such examples in the final version.15

Reviewer 3 Regarding novelty of our claims: Although the idea that SGD learns functions of increasing complexity16

has been informally floating in the community, our formalization has many advantages over prior formalizations, as17

described below. Notably, our metrics respect the data distribution, are independent of network-parameterization, are18

tractable to estimate in high dimensions, and are experimentally demonstrated for real-world distributions.19

Concretely, regarding “On the spectral bias of neural networks” [1]: They consider measuring “simplicity” via the20

Fourier spectrum of the learnt functions. However, the Fourier decomposition is taken with respect to a uniform21

distribution on inputs. This notion is not as meaningful – if the data is not uniform (for example, natural images are22

certainly not uniform in pixel-space), then a function which is highly correlated with a linear function when restricted23

to the data distribution may appear highly non-linear with respect to the uniform distribution. And vice-versa – a24

function which is nearly linear under the uniform distribution may in fact be highly non-linear when restricted to the25

data distribution. Our metrics do not suffer from this issue – they are taken with respect to the true data distribution.26

The synthetic experiments in [1] are all for 1-dimensional inputs, since to quote [1]: "explicitly evaluating the Fourier27

coefficients ... becomes prohibitively expensive for larger d (e.g. on MNIST)". Instead, their MNIST experiments28

are only heuristically related to the metrics they propose. In contrast, the metrics in our paper are tractable even for29

high-dimensional inputs, and we estimate them to high-precision on real datasets (MNIST and CIFAR).30

Regarding “Understanding ... deep learning by Fourier analysis” [2]: This work also performs Fourier analysis with31

respect to the uniform distribution on inputs, and so suffers from the same issues as [1]. Moreover [2] requires that32

the input distribution is itself uniform to carry through the analysis1. That is, the theorems of [2] do not hold for33

non-uniform input distributions, such as images. The experiments in [2] are not relevant to our claims, since they34

conflate the Fourier transform in the spatial domain (i.e. 2D Fourier transforming the input image, treated as a function35

R2 → R) with the Fourier transform in function space. (i.e. Fourier transforming the classification function Rd → R).36

Finally, the work of [3] is largely unrelated to our work. The authors of [3] study how the internal layers of a network37

vary with the depth of the layer, while we study how the end-to-end classification function evolves as a function of SGD38

steps.39

Reviewer 3 brings up two concerns with the performance correlation metric. First: why do we use µY (F ;L) instead of40

simply I(F ;L)? While it is true that µY (F ;L) ≤ I(F ;L), µY captures the degree to which the information learned by41

F about Y is explained by L – whereas I(F ;L) only captures the correlation of F and L, regardless of whether this42

correlation is useful for predicting Y or not. For example, consider if F (x) = L(x) · Bernoulli(p). That is, F is a43

linear classifier L with noisy outputs. Here, I(F ;L)� 1, due to the noise in F . However, µY (F ;L) = I(F ;Y ), and44

thus our metric recovers the fact that all the performance of F in predicting Y is explained by the linear L. Second,45

Reviewer 3 describes a scenario where F first learns to classify the examples that are incorrectly classified by a linear46

model L, and notes that µ treats this the same as learning the correct portion of L. This isn’t a problem, though, because47

the incorrect portion of L is exactly the correct portion of the classifier 1− L, which is also linear. Contrast this with48

the following scenario: the samples come from a mixture of L and an uncorrelated nonlinear model N , and F learns N49

first. This is a true example of F not learning the linear part of the distribution, and accordingly µY (F,L) will equal50

zero. We will include formal examples to build intuition for our metric in the final version.51
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1For Equation (5) in https://arxiv.org/pdf/1808.04295v4.pdf, applying Parseval’s Theorem.
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