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Abstract

We study the column subset selection problem with respect to the entrywise `1-
norm loss. It is known that in the worst case, to obtain a good rank-k approxima-
tion to a matrix, one needs an arbitrarily large nΩ(1) number of columns to obtain
a (1 + ε)-approximation to the best entrywise `1-norm low rank approximation of
an n × n matrix. Nevertheless, we show that under certain minimal and realistic
distributional settings, it is possible to obtain a (1+ε)-approximation with a nearly
linear running time and poly(k/ε) + O(k log n) columns. Namely, we show that
if the input matrixA has the formA = B+E, whereB is an arbitrary rank-k ma-
trix, and E is a matrix with i.i.d. entries drawn from any distribution µ for which
the (1 + γ)-th moment exists, for an arbitrarily small constant γ > 0, then it is
possible to obtain a (1 + ε)-approximate column subset selection to the entrywise
`1-norm in nearly linear time. Conversely we show that if the first moment does
not exist, then it is not possible to obtain a (1 + ε)-approximate subset selection
algorithm even if one chooses any no(1) columns. This is the first algorithm of any
kind for achieving a (1 + ε)-approximation for entrywise `1-norm loss low rank
approximation.

1 Introduction

Numerical linear algebra algorithms are fundamental building blocks in many machine learning and
data mining tasks. A well-studied problem is low rank matrix approximation. The most common
version of the problem is also known as Principal Component Analysis (PCA), in which the goal is
to find a low rank matrix to approximate a given matrix such that the Frobenius norm of the error
is minimized. The optimal solution of this objective can be obtained via the singular value decom-
position (SVD). Hence, the problem can be solved in polynomial time. If approximate solutions are
allowed, then the running time can be made almost linear in the number of non-zero entries of the
given matrix [1, 2, 3, 4, 5, 6].

An important variant of the PCA problem is the entrywise `1-norm low rank matrix approximation
problem. In this problem, instead of minimizing the Frobenius norm of the error, we seek to mini-
mize the `1-norm of the error. In particular, given an n × n input matrix A, and a rank parameter
k, we want to find a matrix B with rank at most k such that ‖A − B‖1 is minimized, where for
a matrix C, ‖C‖1 is defined to be

∑
i,j |Ci,j |. There are several reasons for using the `1-norm as

the error measure. For example, solutions with respect to the `1-norm loss are usually more robust
than solutions with Frobenius norm loss [7, 8]. Further, the `1-norm loss is often used as a relax-
ation of the `0-loss, which has wide applications including sparse recovery, matrix completion, and
robust PCA; see e.g., [9, 8]. Although a number of algorithms have been proposed for the `1-norm
loss [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], the problem is known to be NP-hard [23]. The
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first `1-low rank approximation with provable guarantees was proposed by [24]. To cope with NP-
hardness, the authors gave a solution with a poly(k log n)-approximation ratio, i.e., their algorithm
outputs a rank-k matrix B′ ∈ Rn×n for which

‖A−B′‖1 ≤ α · min
rank−k B

‖A−B‖1 (1)

for α = poly(k log n). The approximation ratio α was further improved to O(k log k) by allowing
B′ to have a slightly larger k′ = O(k log n) rank [25]. Such B′ with larger rank is referred to as
a bicriteria solution. However, in high precision applications, such approximation factors are too
large. A natural question is if one can compute a (1 + ε)-approximate solution efficiently for `1-
norm low rank approximation. In fact, a (1 + ε)-approximation algorithm was given in [26], but
the running time of their algorithm is a prohibitive npoly(k/ε). Unfortunately, [26] shows in the
worst case that a 2k

Ω(1)

running time is necessary for any constant approximation given a standard
conjecture in complexity theory.

Notation. To describe our results, let us first introduce some notation. We will use [n] to denote the
set {1, 2, · · · , n}. We use Ai to denote the ith column of A. We use Aj to denote the jth row of A.
Let Q ⊆ [n]. We use AQ to denote the matrix which is comprised of the columns of A with column
indices in Q. Similarly, we use AQ to denote the matrix which is comprised of the rows of A with
row indices in Q. We use

(
[n]
t

)
to denote the set of all the size-t subsets of [n]. Let ‖A‖F denote the

Frobenius norm of a matrix A, i.e., ‖A‖F is the square root of the sum of squares of all the entries
in A. For 1 ≤ p < 2, we use ‖A‖p to denote the entry-wise `p-norm of a matrix A, i.e., ‖A‖p is the
p-th root of the sum of p-th powers of the absolute values of the entries of A. ‖A‖1 is an important
special case of ‖A‖p, which corresponds to the sum of absolute values of the entries inA. A random
variable X has the Cauchy distribution if its probability density function is f(z) = 1

π(1+z2) .

1.1 Our Results

We propose an efficient bicriteria (1 + ε)-approximate column subset selection algorithm for the
`1-norm. We bypass the running time lower bound mentioned above by making a mild assumption
on the input data, and also show that our assumption is necessary in a certain sense.

Our main algorithmic result is described as follows.
Theorem 1.1 (Informal version of Theorem 2.13). Suppose we are given a matrix A = A∗ + ∆ ∈
Rn×n, where rank(A∗) = k for k = no(1), and ∆ is a random matrix for which the ∆i,j are
i.i.d. symmetric random variables with E[|∆i,j |p] = O(E[|∆i,j |]p) for some constant p > 1. Let
ε ∈ (0, 1/2) satisfy 1/ε = no(1). There is an Õ(n2 + n poly(k/ε))2 time algorithm (Algorithm 1)
which can output a subset S ⊆ [n] with |S| ≤ poly(k/ε) +O(k log n) for which

min
X∈R|S|×n

‖ASX −A‖1 ≤ (1 + ε)‖∆‖1,

holds with probability at least 99/100.

Note the running time in Theorem 1.1 is nearly linear in the number of non-zero entries of A, since
for an n×nmatrix with i.i.d. noise drawn from any continuous distribution, the number of non-zero
entries of A will be n2 with probability 1. We also show the moment assumption of Theorem 1.1 is
necessary in the following precise sense.
Theorem 1.2 (Hardness, informal version of Theorem B.20). Let n > 0 be sufficiently large. Let
A = η · 1 · 1>+ ∆ ∈ Rn×n be a random matrix where η = nc0 for some sufficiently large constant
c0, 1 ∈ Rn is the all-ones vector, and ∀i, j ∈ [n],∆i,j ∼ C(0, 1) are i.i.d. standard Cauchy random
variables. Let r = no(1). Then with probability at least 1−O(1/ log log n), ∀S ⊆ [n] with |S| = r,

min
X∈Rr×n

‖ASX −A‖1 ≥ 1.002‖∆‖1.

1.2 Our Techniques

For an overview of our hardness result, we refer readers to the supplementary material, namely,
Appendix B. In the following, we will outline the main techniques used in our algorithm.

2We use the notation Õ(f) := O(f · logO(1) f).
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(1 + ε)-Approximate `1-Low Rank Approximation. We make the following distributional as-
sumption on the input matrix A ∈ Rn×n: namely, A = A∗ + ∆ where A∗ is an arbitrary rank-k
matrix and the entries of ∆ are i.i.d. from any symmetric distribution with E[|∆i,j |] = 1 and
E[|∆i,j |p] = O(1) for any real number p strictly greater than 1, e.g., p = 1.000001 would suffice.
Note that such an assumption is mild compared to typical noise models which require the noise be
Gaussian or have bounded variance; in our case the random variables may even be heavy-tailed with
infinite variance. In this setting we show it is possible to obtain a subset of poly(k(ε−1 + log n))
columns spanning a (1 + ε)-approximation. This provably overcomes the column subset selection
lower bound of [24] which shows for entrywise `1-low rank approximation that there are matrices
for which any subset of poly(k) columns spans at best a kΩ(1)-approximation.

Consider the following algorithm: sample poly(k/ε) columns of A, and try to cover as many of the
remaining columns as possible. Here, by covering a column i, we mean that if AI is the subset of
columns sampled, then miny ‖AIy − Ai‖1 ≤ (1 + O(ε))n. The reason for this notion of covering
is that we are able to show in Lemma 2.1 that in this noise model, ‖∆‖1 ≥ (1 − ε)n2 w.h.p., and
so if we could cover every column i, our overall cost would be (1 + O(ε))n2, which would give a
(1 +O(ε))-approximation to the overall cost.

We will not be able to cover all columns, unfortunately, with our initial sample of poly(k/ε) columns
of A. Instead, though, we will show that we will be able to cover all but a set T of εn/(k log k) of
the columns. Fortunately, we show in Lemma 2.4 another property of the noise matrix ∆ is that all
subsets S of columns of size at most n/r, for r ≥ (1/γ)1+1/(p−1) satisfy

∑
j∈S ‖∆j‖1 = O(γn2).

Thus, for the above set T that we do not cover, we can apply this lemma to it with γ = ε/(k log k),
and then we know that

∑
j∈T ‖∆j‖1 = O(εn2/(k log k)), which then enables us to run a previous

Õ(k)-approximate `1 low rank approximation algorithm [25] on the set T , which will only incur
total cost O(εn2), and since by Lemma 2.1 above the overall cost is at least (1 − ε)n2, we can still
obtain a (1 +O(ε))-approximation overall.

The main missing piece of the algorithm to describe is why we are able to cover all but a small
fraction of the columns. One thing to note is that our noise distribution may not have a finite variance,
and consequently, there can be very large entries ∆i,j in some columns. In Lemma 2.3, we show
the number of columns in ∆ for which there exists an entry larger than n1/2+1/(2p) in magnitude is
O(n(2−p)/2), which since p > 1 is a constant bounded away from 1, is sublinear. Let us call this set
with entries larger than n1/2+1/(2p) in magnitude the set H of “heavy" columns; we will not make
any guarantees about H , rather, we will stuff it into the small set T of columns above on which we
will run our earlier O(k log k)-approximation.

For the remaining, non-heavy columns, which constitute almost all of our columns, we show in
Lemma 2.5 that ‖∆i‖1 ≤ (1 + ε)n w.h.p. The reason this is important is that recall to cover some
column i by a sample set I of columns, we need miny ‖AIy−Ai‖1 ≤ (1 +O(ε))n. It turns out, as
we now explain, that we will get miny ‖AIy−Ai‖1 ≤ ‖∆i‖1 + ei, where ei is a quantity which we
can control and makeO(εn) by increasing our sample size I . Consequently, since ‖∆i‖1 ≤ (1+ε)n,
overall we will have miny ‖AIy − Ai‖1 ≤ (1 + O(ε))n, which means that i will be covered. We
now explain what ei is, and why miny ‖AIy −Ai‖1 ≤ ‖∆i‖1 + ei.

Towards this end, we first explain a key insight in this model. Since the p-th moment exists for
some real number p > 1 (e.g., p = 1.000001 suffices), averaging helps reduce the noise of fitting a
column Ai by subsets of other columns. Namely, we show in Lemma 2.2 that for any t non-heavy
column ∆i1 , . . . ,∆it of ∆, and any coefficients α1, α2, . . . , αt ∈ [−1, 1], ‖

∑t
j=1 αj∆ij‖1 =

O(t1/pn), that is, since the individual coordinates of the ∆ij are zero-mean random variables, their
sum concentrates as we add up more columns. We do not need bounded variance for this property.

How can we use this averaging property for subset selection? The idea is, instead of sampling
a single subset I of O(k) columns and trying to cover each remaining column with this subset
as shown in [25], we will sample multiple independent subsets I1, I2, . . . , It. Each set has size
poly(k/ε) and we will sample at most poly(k/ε) subsets. By a similar argument of [25], for any
given column index i ∈ [n], for most of these subset Ij , we have that A∗i /‖∆i‖1 can be expressed
as a linear combination of columns A∗`/‖∆`‖1, ` ∈ Ij , via coefficients of absolute value at most 1.
Note that this is only true for most i and most j; we develop terminology for this in Definitions 2.6,
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2.7, 2.8, and 2.9, referring to what we call a good core. We quantify what we mean by most i and
most j having this property in Lemma 2.11 and Lemma 2.12.

The key though, that drives the analysis, is Lemma 2.10, which shows that miny ‖Aiy − Ai‖1 ≤
‖∆i‖1 + ei, where ei = O(q1/p/t1−1/pn), where q is the size of each Ij , and t is the number of
different Ij . We need q to be at least k, just as before, so that we can be guaranteed that when we
adjoin a column index i to Ij , there is some positive probability that A∗i /‖∆i‖1 can be expressed
as a linear combination of columns A∗`/‖∆`‖1, ` ∈ Ij , with coefficients of absolute value at most
1. What is different in our noise model though is the division by t1−1/p. Since p > 1, if we set t
to be a large enough poly(k/ε), then ei = O(εn), and then we will have covered Ai, as desired.
This captures the main property that averaging the linear combinations for expression A∗i /‖∆i‖1
using different subsets Ij gives us better and better approximations to A∗i /‖∆i‖1. Of course we
need to ensure several properties such as not sampling a heavy column (the averaging in Lemma 2.2
does not apply when this happens), we need to ensure most of the Ij have small-coefficient linear
combinations expressing A∗i /‖∆i‖1, etc. This is handled in our main theorem, Theorem 2.13.

2 `1-Norm Column Subset Selection

We first present two subroutines.

Linear regression with `1 loss. The first subroutine needed is an approximate `1 linear regression
solver. In particular, given a matrix M ∈ Rn×d, n vectors b1, b2, · · · , bn ∈ Rn, and an error
parameter ε ∈ (0, 1), we want to compute x1, x2, · · · , xn ∈ Rd for which ∀i ∈ [n], we have

‖Mxi − bi‖1 ≤ (1 + ε) · min
x∈Rd

‖Mx− bi‖1.

Furthermore, we also need an estimate vi of the regression cost ‖Mxi − bi‖1 for each i ∈ [n] such
that ‖Mxi − bi‖1 ≤ vi ≤ (1 + ε)‖Mxi − bi‖1. Such an `1-regression problem can be solved
efficiently (see [28] for a survey). The total running time to solve these n regression problems
simultaneously is at most Õ(n2) + n · poly(d log n), and the success probability is at least 0.999.

`1 Column subset selection for general matrices. The second subroutine needed is an `1-low rank
approximation solver for general input matrices, though we allow a large approximation ratio. We
use the algorithm proposed by [25] for this purpose. In particular, given an n× d (d ≤ n) matrix M
and a rank parameter k, the algorithm can output a small set S ⊂ [n] with size at most O(k log n),
such that

min
X∈R|S|×d

‖MSX −M‖1 ≤ O(k log k) · min
rank−k B

‖M −B‖1.

Furthermore, the running time is at most Õ(n2) + n · poly(k log n), and the success probability is
at least 0.999. Now we can present our algorithm, Algorithm 1.

Algorithm 1 `1-Low Rank Approximation with Input Assumption

1: procedure L1NOISYLOWRANKAPPROX(A ∈ Rn×n, k, ε) . Theorem 2.13
2: Sample a set I from

(
[n]
s

)
uniformly at random, where s = poly(k/ε).

3: Solve the approximate `1-regression problem minx∈R|I| ‖AIx−Ai‖1 for each i ∈ [n], and
let vi be the estimated regression cost.

4: Compute the set T = {i ∈ [n] | vi is one of the top l largest values among v1, v2, · · · , vn},
where l = n/poly(k/ε).

5: Solve `1-column subset selection for AT . Let the solution be AQ.
6: Solve the approximate `1-regression problem minX∈R(|I|+|Q|)×n ‖A(I∪Q)X − A‖1, and let
X̂ be the solution. Return A(I∪Q) and X̂ . . A(I∪Q)X̂ is a good low rank approximation to A

7: end procedure

Running time. Uniformly sampling a set I can be done in poly(k/ε) time. According to our `1-
regression subroutine, solving minx ‖AIx − Ai‖1 for all i ∈ [n] can be finished in Õ(n2) + n ·
poly(k log(n)/ε) time. We only need sorting to compute the set T which takes O(n log n) time. By
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our second subroutine, the `1-column subset selection for AT will take Õ(n2) + n · poly(k log n).
The last step only needs an `1-regression solver, which takes Õ(n2) + n · poly(k log(n)/ε) time.
Thus, the overall running time is Õ(n2) + n · poly(k log(n)/ε).

The remaining parts in this section will focus on analyzing the correctness of the algorithm.

2.1 Properties of the Noise Matrix

Recall that the input matrixA ∈ Rn×n can be decomposed asA∗+∆, whereA∗ is the ground truth,
and ∆ is a random noise matrix. In particular, A∗ is an arbitrary rank-k matrix, and ∆ is a random
matrix where each entry is an i.i.d. sample drawn from an unknown symmetric distribution. The
only assumption on ∆ is that each entry ∆i,j satisfies E[|∆i,j |p] = O(E[|∆i,j |p]) for some constant
p > 1, i.e., the p-th moment of the noise distribution is bounded. Without loss of generality, we will
suppose E[|∆i,j |] = 1, E[|∆i,j |p] = O(1), and p ∈ (1, 2) throughout the paper. In this section, we
will present some key properties of the noise matrix.

The following lemma provides a lower bound on ‖∆‖1. Once we have the such lower bound, we
can focus on finding a solution for which the approximation cost is at most that lower bound.
Lemma 2.1 (Lower bound on the noise matrix). Let ∆ ∈ Rn×n be a random matrix where ∆i,j are
i.i.d. samples drawn from a symmetric distribution. Suppose E[|∆i,j |] = 1 and E[|∆i,j |p] = O(1)

for some constant p ∈ (1, 2). Then, ∀ε ∈ (0, 1) which satisfies 1/ε = no(1), we have

Pr
[
‖∆‖1 ≥ (1− ε)n2

]
≥ 1− e−Θ(n).

The next lemma shows the main reason why we are able to get a small fitting cost when running
regression. Consider a toy example. Suppose we have a target number a ∈ R, and another t numbers
a + g1, a + g2, · · · , a + gt ∈ R, where gi are i.i.d. samples drawn from the standard Gaussian
distribution N(0, 1). If we use a+ gi to fit a, then the expected cost is E[|a+ gi − a|] = E[|gi|] =√

2/π. However, if we use the average of a + g1, a + g2, · · · , a + gt to fit a, then the expected
cost is E[|

∑t
i=1 gi|/t]. Since the gi are independent,

∑t
i=1 gi is a random Gaussian variable with

variance t, which means that the above expected cost is
√

2/π/
√
t. Thus the fitting cost is reduced

by a factor
√
t. By generalizing the above argument, we obtain the following lemma.

Lemma 2.2 (Averaging reduces the noise). Let ∆1,∆2, · · · ,∆t ∈ Rn be t random vectors. The
∆i,j are i.i.d. symmetric random variables with E[|∆i,j |] = 1 and E[|∆i,j |p] = O(1) for some
constant p ∈ (1, 2). Let α1, α2, · · · , αt ∈ [−1, 1] be t real numbers. Conditioned on ∀i ∈ [n], j ∈
[t], |∆i,j | ≤ n1/2+1/(2p), with probability at least 1− 2−n

Θ(1)

,∥∥∥∥∥
t∑
i=1

αi∆i

∥∥∥∥∥
1

≤ O(t1/pn).

The above lemma needs a condition that each entry in the noise column should not be too large.
Fortunately, we can show that most of the (noise) columns do not have any large entry.
Lemma 2.3 (Only a small number of columns have large entries). Let ∆ ∈ Rn×n be a random
matrix where the ∆i,j are i.i.d. symmetric random variables with E[|∆i,j |] = 1 and E[|∆i,j |p] =
O(1) for some constant p ∈ (1, 2). Let

H = {j ∈ [n]
∣∣ ∃i ∈ [n], |∆i,j | > n1/2+1/(2p)}.

Then with probability at least 0.999 |H| ≤ O(n1−(p−1)/2).

The following lemma shows that any small subset of the columns of the noise matrix ∆ cannot
contribute too much to the overall error. By combining with the previous lemma, the entrywise `1
cost of all columns containing large entries can be bounded.
Lemma 2.4. Let ∆ ∈ Rn×n be a random matrix where ∆i,j are i.i.d. symmetric random variables
with E[|∆i,j |] = 1 and E[|∆i,j |p] = O(1) for some constant p ∈ (1, 2). Let ε ∈ (0, 1) satisfy
1/ε = no(1). Let r ≥ (1/ε)1+1/(p−1). Then, with probability at least .999, ∀S ⊂ [n] with |S| ≤ n/r,∑
j∈S ‖∆j‖1 = O(εn2).
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We say a (noise) column is good if it does not have a large entry. We can show that, with high
probability, the entry-wise `1 cost of a good (noise) column is small.

Lemma 2.5 (Cost of good noise columns). Let ∆ ∈ Rn be a random vector where ∆i are i.i.d.
symmetric random variables with E[|∆i|] = 1 and E[|∆i|p] = O(1) for some constant p ∈ (1, 2).
Let ε ∈ (0, 1) satisfy 1/ε = no(1). If ∀i ∈ [n], |∆i| ≤ n1/2+1/(2p), then with probability at least
1− 2−n

Θ(1)

, ‖∆‖1 ≤ (1 + ε)n.

2.2 Definition of Tuples and Cores

In this section, we provide some basic definitions, e.g., of a tuple, a good tuple, the core of a tuple,
and a coefficients tuple. These definitions will be heavily used later when we analyze the correctness
of our algorithm.

Before we present the definitions, we introduce a notion RA∗(S). Given a matrix A∗ ∈ Rn1×n2 , for
a set S ⊆ [n2], we define

RA∗(S) := arg max
P :P⊆S

{∣∣∣det
(

(A∗)QP

)∣∣∣ ∣∣∣∣ |P | = |Q| = rank(A∗S), Q ⊆ [n1]

}
,

where for a squared matrix C, det(C) denotes the determinant of C. The above maximum is over
both P and Q while RA∗(S) only takes the value of the corresponding P . By Cramer’s rule, if we
use the columns of A∗ with index in the set RA∗(S) to fit any column of A∗ with index in the set S,
the absolute value of any fitting coefficient will be at most 1. The use of Cramer’s rule is as follows.
Consider a rank k matrix M ∈ Rn×(k+1). Let P ⊆ [k + 1], Q ⊆ [n], |P | = |Q| = k be such that
|det(MQ

P )| is maximized. Since M has rank k, we know det(MQ
P ) 6= 0 and thus the columns of

MP are independent. Let i ∈ [k+ 1] \P . Then the linear equation MPx = Mi is feasible and there
is a unique solution x. Furthermore, by Cramer’s rule xj = det(MQ

[k+1]\{j})/det(MQ
P ). Since

|det(MQ
P )| ≥ |det(MQ

[k+1]\{j})|, we have ‖x‖∞ ≤ 1.

Small fitting coefficients are good since they will not increase the noise by too much. For example,
suppose A∗i = A∗Sx and ‖x‖∞ ≤ 1, i.e., the i-th column can be fit by the columns with indices in
the set S and the fitting coefficients x ∈ R|S| are small. If we use the noisy columns of A∗S + ∆S

to fit the noisy column A∗i + ∆i, then the fitting cost is at most ‖(A∗S + ∆S)x − (A∗i + ∆i)‖1 ≤
‖∆i‖1 + ‖∆Sx‖1. Since ‖x‖∞ ≤ 1, it is possible to give a good upper bound for ‖∆Sx‖1.

Definition 2.6 (Tuple). A (q, t, n)−tuple is defined to be (S1, S2, · · · , St, i), where ∀j ∈ [t], Sj ⊂
[n] with |Sj | = q. Let S =

⋃t
j=1 Sj . Then |S| = qt, i.e., S1, S2, · · · , St are disjoint. Furthermore,

i ∈ [n] and i 6∈ S. For simplicity, we use (S[t], i) to denote (S1, S2, · · · , St, i).

We next provide the definition of a good tuple.

Definition 2.7 (Good tuple). Given a rank-k matrix A∗ ∈ Rn×n, an (A∗, q, t, α)-good tuple is a
(q, t, n)-tuple (S[t], i) which satisfies

|{j ∈ [t] | i 6∈ RA∗(Sj ∪ {i})}| ≥ α · t.

We need the definition of the core of a tuple.

Definition 2.8 (Core of a tuple). The core of (S[t], i) is defined to be the set

{j ∈ [t] | i 6∈ RA∗(Sj ∪ {i})}.

We define a coefficients tuple as follows.

Definition 2.9 (Coefficients tuple). Given a rank-k matrix A∗ ∈ Rn×n, let (S[t], i) be an
(A∗, q, t, α)-good tuple. Let C be the core of (S[t], i). A coefficients tuple corresponding to (S[t], i)
is defined to be (x1, x2, · · · , xt) where ∀j ∈ [t], xj ∈ Rq. The vector xj ∈ Rq satisfies: xj = 0
if j ∈ [t]\C, while A∗Sj

xj = A∗i and ‖xj‖∞ ≤ 1, if j ∈ C. To guarantee the coefficients tuple is
unique, we restrict each vector xj ∈ Rq to be one that has the minimum lexicographic order.
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2.3 Properties of a Good Tuple and a Coefficients Tuple

Consider a good tuple (S1, S2, · · · , St, i). By the definition of a good tuple, the size of the core C
of the tuple is large. For each j ∈ C, the coefficients xj of using A∗Sj

to fit A∗i should have absolute
value at most 1. Now consider the noisy setting. As discussed in the previous section, usingASj to fit
Ai has cost at most ‖∆i‖1 +‖∆Sj

xj‖1. Although ‖∆Sj
xj‖1 has a good upper bound, it is not small

enough. To further reduce the `1 fitting cost, we can now apply the averaging argument (Lemma 2.2)
over all the fitting choices corresponding to C. Formally, we have the following lemma.
Lemma 2.10 (Good tuples imply low fitting cost). Suppose we are given a matrix A ∈ Rn×n which
satisfies A = A∗ + ∆, where A∗ ∈ Rn×n has rank k. Here ∆ ∈ Rn×n is a random matrix where
∆i,j are i.i.d. symmetric random variables with E[|∆i,j |] = 1 and E[|∆i,j |p] = O(1) for some
constant p ∈ (1, 2). Let H ⊂ [n] be defined as follows:

H =

{
j ∈ [n]

∣∣∣∣ ∃i ∈ [n], |∆i,j | > n1/2+1/(2p)

}
.

Let q, t ≤ no(1). Then, with probability at least 1 − 2−n
Θ(1)

, for all (A∗, q, t, 1/2)-good tuples

(S1, S2, · · · , St, i) which satisfy H ∩
(⋃t

j=1 Sj

)
= ∅, we have

min
y∈Rqt

∥∥∥A{⋃t
j=1 Sj}y −Ai

∥∥∥
1
≤

∥∥∥∥∥∥ 1

|C|

t∑
j=1

ASj
xj −Ai

∥∥∥∥∥∥
1

≤ ‖∆i‖1 +O(q1/p/t1−1/pn),

where C is the core of (S1, S2, · · · , St, i), and (x1, x2, · · · , xt) is the coefficients tuple correspond-
ing to (S1, S2, · · · , St, i).

We next show that if we choose columns randomly, it is easy to find a good tuple.
Lemma 2.11. Given a rank-k matrix A∗ ∈ Rn×n, let q > 10k, t > 0. Let I = {i1, i2, · · · , iqt+1}
be a subset drawn uniformly at random from

(
[n]
qt+1

)
. Let π : I → I be a random permutation of

qt+ 1 elements. ∀j ∈ [t], let

Sj =
{
iπ((j−1)q+1), iπ((j−1)q+2), · · · , iπ((j−1)q+q)

}
.

We use i to denote iπ(qt+1). With probability ≥ 1 − 2k/q, (S1, S2, · · · , St, i) is an
(A∗, q, t, 1/2)−good tuple.

Lemma 2.11 implies that if we randomly choose S1, S2, · · · , St, then with high probability, there
are many choices of i ∈ [n], such that (S1, S2, · · · , St, i) is a good tuple. Precisely, we can show
the following.
Lemma 2.12. Given a rank-k matrixA∗ ∈ Rn×n, let q > 10k, t > 0. Let I = {i1, i2, · · · , iqt} be a
random subset uniformly drawn from

(
[n]
qt

)
. Let π be a random permutation of qt elements. ∀j ∈ [t],

we define Sj as follows:

Sj =
{
iπ((j−1)q+1), iπ((j−1)q+2), · · · , iπ((j−1)q+q)

}
.

Then with probability at least 2k/q,∣∣{i ∈ [n] \ I
∣∣ (S1, S2, · · · , St, i) is an (A∗, q, t, 1/2)−good tuple

}∣∣ ≥ (1− 4k/q)(n− qt).

2.4 Main Result

Now we are able to put all ingredients together to prove our main theorem, Theorem 2.13.
Theorem 2.13 (Formal version of Theorem 1.1). Suppose we are given a matrix A = A∗ + ∆ ∈
Rn×n, where rank(A∗) = k for k = no(1), and ∆ is a random matrix for which the ∆i,j are
i.i.d. symmetric random variables with E[|∆i,j |] = 1 and E[|∆i,j |p] = O(1) for some constant
p ∈ (1, 2). Let ε ∈ (0, 1/2) satisfy 1/ε = no(1). There is an Õ(n2 + npoly(k/ε)) time algorithm
(Algorithm 1) which can output a subset S ∈ [n] with |S| ≤ poly(k/ε) +O(k log n) for which

min
X∈R|S|×n

‖ASX −A‖1 ≤ (1 + ε)‖∆‖1,

holds with probability at least 99/100.
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Proof. We discussed the running time at the beginning of Section 2. Next, we turn to correctness.

Let q = Ω

(
k(k log k)

1+ 1
p−1

ε
1+ 1

p−1

)
, t = q

1
p−1

ε
1+ 1

p−1
. Let r = Θ(q/k). Let

I1 =
{
i
(1)
1 , i

(1)
2 , · · · , i(1)

qt

}
, I2 =

{
i
(2)
1 , i

(2)
2 , · · · , i(2)

qt

}
, · · · , Ir =

{
i
(r)
1 , i

(r)
2 , · · · , i(r)qt

}
,

be r independent subsets drawn uniformly at random from
(

[n]
qt

)
. Let I =

⋃
s∈[r] Is, which is

the same as that in Algorithm 1. Let π1, π2, · · · , πr be r independent random permutations of qt
elements. Due to Lemma 2.12 and a Chernoff bound, with probability at least .999, ∃s ∈ [r],∣∣{i ∈ [n] \ Is

∣∣ (S1, S2, · · · , St, i) is an (A∗, q, t, 1/2)−good tuple
}∣∣ ≥ (1− 4k/q)(n− qt)

where

Sj =
{
i
(s)
πs((j−1)q+1), i

(s)
πs((j−1)q+2), · · · , i

(s)
πs((j−1)q+q)

}
,∀j ∈ [t].

Let set H ⊂ [n] be defined as follows:

H = {j ∈ [n] | ∃i ∈ [n], |∆i,j | > n1/2+1/(2p)}.

Then due to Lemma 2.3, with probability at least 0.999, |H| ≤ O(n1−(p−1)/2). Thus, for j ∈ [r],
the probability that H ∩ Ij 6= ∅ is at most O(qt · n1−(p−1)/2/(n − qt)) = 1/nΩ(1). By taking a
union bound over all j ∈ [r], with probability at least 1− 1/nΩ(1), ∀j ∈ [r], Ij ∩H = ∅. Thus, we
can condition on Is ∩H = ∅. Due to Lemma 2.10 and q1/p/t1−1/p = ε,∣∣∣∣{i ∈ [n] \ Is

∣∣∣∣ min
y∈Rqt

‖AIsy −Ai‖1 ≤ ‖∆i‖1 +O(εn)

}∣∣∣∣ ≥ (1− 4k/q)(n− qt).

Due to Lemma 2.5 and a union bound over all i ∈ [n] \ H , with probability at least .999, ∀i 6∈
H, ‖∆i‖ ≤ (1 + ε)n. Thus,∣∣∣∣{i ∈ [n] \ Is

∣∣∣∣ min
y∈Rqt

‖AIsy −Ai‖1 ≤ (1 +O(ε))n

}∣∣∣∣ ≥ (1− 4k/q)(n− qt)− |H|.

Let

T ′ = [n] \
{
i ∈ [n]

∣∣∣∣ min
y∈Rqt

‖AIsy −Ai‖1 ≤ (1 +O(ε))n

}
.

Then |T ′| ≤ O(kn/q + n1−(p−1)/2) = O(kn/q) = O((ε/(k log k))1+1/(p−1)n). By our selec-
tion of T in algorithm 1, T ′ should be a subset of T . Due to Lemma 2.4, with probability at
least .999, ‖∆T ‖1 ≤ O(εn2/(k log k)). By our second subroutine mentioned at the beginning
of Section 2 it can find a set Q ⊂ [n] with |Q| = O(k log n) such that minX∈R|Q|×|T |‖AQX −
AT ‖1 ≤ O(k log k)‖∆T ‖1 ≤ O(εn2). Thus, we have minX∈R(|Q|+q·t·r)×n ‖A(Q∪I)X −
A‖1 ≤ minX1∈R(q·t·r)×n ‖AIX1 − A[n]\T ‖1 + minX2∈R|Q|×n ‖AQX2 − AT ‖1 ≤ (1 +

O(ε))n2. Due to Lemma 2.1, with probability at least .999, ‖∆‖1 ≥ (1 − ε)n2, and thus
minX∈R(|Q|+q·t·r)×n ‖A(Q∪I)X −A‖1 ≤ (1 +O(ε))‖∆‖1.

3 Experiments

The take-home message from our theoretical analysis is that although the noise distribution may be
heavy-tailed, if the p-th (p > 1) moment of the distribution exists, averaging the noise may reduce
the noise. In the spirit of averaging, we found that taking a median works a bit better in practice.
Inspired by our theoretical analysis, we propose a simple heuristic algorithm (Algorithm 2) which
can output a rank-k solution. We tested Algorithm 2 on both synthetic and real datasets.

Datasets. For each rank-k experiment, we chose a high rank matrix Â ∈ Rn×d, applied top-k SVD
to Â and obtained a rank-k matrixA∗ as our ground truth matrix. For our synthetic data experiments,
the matrix Â ∈ R500×500 was generated at random, where each entry was drawn uniformly from
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Algorithm 2 Median Heuristic

1: procedure L1NOISYLOWRANKAPPROXHEU(A ∈ Rn×d, k ≥ 1)
2: Sample a set I = {i1, i2, · · · , isk} from

(
[n]
sk

)
uniformly at random.

3: Compute B ∈ Rn×k s.t., for t ∈ [n], q ∈ [k], Bt,q = median(At,is(q−1)+1
, · · · , At,isq ).

4: Solve minX∈Rk×d ‖BX −A‖1 and let the solution be X∗. Output BX∗.
5: end procedure
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Figure 1: Empirical results. The noise distributions of the experiments in the first row are from a 1.1-
stable distribution. The noise distributions corresponding to the second row are the 1.1-th root of a Cauchy
distribution. The blue, red, orange and yellow bar denote SVD, the entrywise `1-norm low rank algorithm in
[24], the uniform k-column subset sampling algorithm in [25], and Algorithm 2 respectively.

{0, 1, · · · , 9}. For real datasets, we chose isolet3 (617 × 1559) or mfeat4 (651 × 2000) as Â [29].
We tested two different noise distributions. One distribution is the standard Lévy 1.1-stable distribu-
tion [30]. Another distribution is constructed from the standard Cauchy distribution, i.e., to draw a
sample from the constructed distribution, we draw a sample from the Cauchy distribution, keep the
sign unchanged, and take the 1

1.1 -th power of the absolute value. Notice that both distributions have
bounded 1.1-th moment, but do not have a p-th moment for any p > 1.1. To construct the noise
matrix ∆ ∈ Rn×d, we drew a matrix ∆̂ where each entry is an i.i.d. sample from one of the two
noise distributions, and then scaled the noise: ∆ = ∆̂ · ‖A

∗‖1
20·n·d . We set A = A∗ + ∆ as the input.

Methodologies. We compare Algorithm 2 with SVD, poly(k, log n)-approximate entrywise `1 low
rank approximation [24], and uniform k-column subset sampling [25]5. For Algorithm 2, we set
s = min(50, bn/kc). For all of algorithms we repeated the experiment the same number of times
and compared the best solution obtained by each algorithm. We report the approximation ratio
‖B − A‖1/‖∆‖1 for each algorithm, where B ∈ Rn×d is the output rank-k matrix. The results are
shown in Figure 1. As shown in the figure, Algorithm 2 outperformed all of the other algorithms.
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5We chose to compare with [24, 25] due to their theoretical guarantees. Though the uniform k-column

subset sampling described in the experiments of [25] is a heuristic algorithm, it is inspired by their theoretical
algorithm.
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