
Learning GANs and Ensembles Using Discrepancy

Ben Adlam

Google Research
New York, NY 10011
adlam@google.com

Corinna Cortes

Google Research
New York, NY 10011
corinna@google.com

Mehryar Mohri

Google Research & CIMS
New York, NY 10012
mohri@google.com

Ningshan Zhang

New York University
New York, NY 10012
nzhang@stern.nyu.edu

Abstract

Generative adversarial networks (GANs) generate data based on minimizing a
divergence between two distributions. The choice of that divergence is therefore
critical. We argue that the divergence must take into account the hypothesis set
and the loss function used in a subsequent learning task, where the data generated
by a GAN serves for training. Taking that structural information into account
is also important to derive generalization guarantees. Thus, we propose to use
the discrepancy measure, which was originally introduced for the closely related
problem of domain adaptation and which precisely takes into account the hypothesis
set and the loss function. We show that discrepancy admits favorable properties for
training GANs and prove explicit generalization guarantees. We present efficient
algorithms using discrepancy for two tasks: training a GAN directly, namely
DGAN, and mixing previously trained generative models, namely EDGAN. Our
experiments on toy examples and several benchmark datasets show that DGAN
is competitive with other GANs and that EDGAN outperforms existing GAN
ensembles, such as AdaGAN.

1 Introduction

Generative adversarial networks (GANs) consist of a family of methods for unsupervised learning. A
GAN learns a generative model that can easily output samples following a distribution P✓, which
aims to mimic the real data distribution Pr. The parameter ✓ of the generator is learned by minimizing
a divergence between Pr and P✓, and different choices of this divergence lead to different GAN
algorithms: the Jensen-Shannon divergence gives the standard GAN [Goodfellow et al., 2014,
Salimans et al., 2016], the Wasserstein distance gives the WGAN [Arjovsky et al., 2017, Gulrajani
et al., 2017], the squared maximum mean discrepancy gives the MMD GAN [Li et al., 2015, Dziugaite
et al., 2015, Li et al., 2017], and the f -divergence gives the f -GAN [Nowozin et al., 2016], just to
name a few. There are many other GANs that have been derived using other divergences in the past,
see [Goodfellow, 2017] and [Creswell et al., 2018] for more extensive studies.

The choice of the divergence seems to be critical in the design of a GAN. But, how should that
divergence be selected or defined? We argue that its choice must take into consideration the structure
of a learning task and include, in particular, the hypothesis set and the loss function considered. In
contrast, divergences that ignore the hypothesis set typically cannot benefit from any generalization
guarantee (see for example Arora et al. [2017]). The loss function is also crucial: while many GAN
applications aim to generate synthetic samples indistinguishable from original ones, for example
images [Karras et al., 2018, Brock et al., 2019] or Anime characters [Jin et al., 2017], in many other

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

applications, the generated samples are used to improve subsequent learning tasks, such as data
augmentation [Frid-Adar et al., 2018], improved anomaly detection [Zenati et al., 2018], or model
compression [Liu et al., 2018b]. Such subsequent learning tasks require optimizing a specific loss
function applied to the data. Thus, it would seem beneficial to explicitly incorporate this loss in the
training of a GAN.

A natural divergence that accounts for both the loss function and the hypothesis set is the discrepancy

measure introduced by Mansour et al. [2009]. Discrepancy plays a key role in the analysis of domain
adaptation, which is closely related to the GAN problem, and other related problems such as drifting
and time series prediction [Mohri and Medina, 2012, Kuznetsov and Mohri, 2015]. Several important
generalization bounds for domain adaptation are expressed in terms of discrepancy [Mansour et al.,
2009, Cortes and Mohri, 2014, Ben-David et al., 2007]. We define discrepancy in Section 2 and give
examples illustrating the benefit of using discrepancy to measure the divergence between distributions.

In this work, we design a new GAN technique, discrepancy GAN (DGAN), that minimizes the
discrepancy between P✓ and Pr. By training GANs with discrepancy, we obtain theoretical guarantees
for subsequent learning tasks using the samples it generates. We show that discrepancy is continuous
with respect to the generator’s parameter ✓, under mild conditions, which makes training DGAN easy.
Another key property of the discrepancy is that it can be accurately estimated from finite samples
when the hypothesis set admits bounded complexity. This property does not hold for popular metrics
such as the Jensen-Shannon divergence and the Wasserstein distance.

Moreover, we propose to use discrepancy to learn an ensemble of pre-trained GANs, which results
in our EDGAN algorithm. By considering an ensemble of GANs, one can greatly reduce the
problem of missing modes that frequently occurs when training a single GAN. We show that the
discrepancy between the true and the ensemble distribution learned on finite samples converges to the
discrepancy between the true and the optimal ensemble distribution, as the sample size increases. We
also show that the EDGAN problem can be formulated as a convex optimization problem, thereby
benefiting from strong convergence guarantees. Recent work of Tolstikhin et al. [2017], Arora et al.
[2017], Ghosh et al. [2018] and Hoang et al. [2018] also considered mixing GANs, either motived by
boosting algorithms such as AdaBoost, or by the minimax theorem in game theory. These algorithms
train multiple generators and learn the mixture weights simultaneously, yet none of them explicitly
optimizes for the mixture weights once the multiple GANs are learned, which can provide additional
improvement as demonstrated by our experiments with EDGAN.

The term “discrepancy” has been previously used in the GAN literature under a different definition.
The squared maximum mean discrepancy (MMD), which was originally proposed by Gretton et al.
[2012], is used as the distance metric for training MMD GAN [Li et al., 2015, Dziugaite et al., 2015,
Li et al., 2017]. MMD between two distributions is defined with respect to a family of functions
F , which is usually assumed to be a reproducing kernel Hilbert space (RKHS) induced by a kernel
function, but MMD does not take into account the loss function. LSGAN [Mao et al., 2017] also
adopts the squared loss function for the discriminator, and as we do for DGAN. Feizi et al. [2017],
Deshpande et al. [2018] consider minimizing the quadratic Wasserstein distance between the true
and the generated samples, which involves the squared loss function as well. However, their training
objectives are vastly different from ours. Finally, when the hypothesis set is the family of linear
functions with bounded norm and the loss function is the squared loss, DGAN coincides with the
objective sought by McGAN [Mroueh et al., 2017], that of matching the empirical covariance matrices
of the true and the generated distribution. However, McGAN uses nuclear norm while DGAN uses
spectral norm in that case.

The rest of this paper is organized as follows. In Section 2, we define discrepancy and prove that
it benefits from several favorable properties, including continuity with respect to the generator’s
parameter and the possibility of accurately estimating it from finite samples. In Section 3, we
describe our discrepancy GAN (DGAN) and ensemble discrepancy GAN (EDGAN) algorithms
with a discussion of the optimization solution and theoretical guarantees. We report the results of a
series of experiments (Section 4), on both toy examples and several benchmark datasets, showing that
DGAN is competitive with other GANs and that EDGAN outperforms existing GAN ensembles,
such as AdaGAN.

2

2 Discrepancy

Let Pr denote the real data distribution on X , which, without loss of generality, we can assume to be
X = {x 2 Rd : kxk2  1}. A GAN generates a sample in X via the following procedure: it first
draws a random noise vector z 2 Z from a fixed distribution Pz , typically a multivariate Gaussian,
and then passes z through the generator g✓ : Z ! X , typically a neural network parametrized by
✓ 2 ⇥. Let P✓ denote the resulting distribution of g✓(z). Given a distance metric d(·, ·) between two
distributions, a GAN’s learning objective is to minimize d(Pr,P✓) over ✓ 2 ⇥.

In Appendix A, we present and discuss two instances of the distance metric d(·, ·) and two widely-
used GANs: the Jensen-Shannon divergence for the standard GAN [Goodfellow et al., 2014], and
the Wasserstein distance for WGAN [Arjovsky et al., 2017]. Furthermore, we show that Wasserstein
distance can be viewed as discrepancy without considering the hypothesis set and the loss function,
which is one of the reasons why it cannot benefit from theoretical guarantees. In this section, we
describe the discrepancy measure and motivate its use by showing that it benefits from several
important favorable properties.

Consider a hypothesis set H and a symmetric loss function ` : Y ⇥ Y ! R, which will be used in
future supervised learning tasks on the true (and probably also the generated) data. Given H and `,
the discrepancy between two distributions P and Q is defined by the following:

discH,`(P,Q) = sup
h,h02H

��� E
x⇠P

⇥
`
�
h(x), h0(x)

�⇤
� E

x⇠Q

⇥
`
�
h(x), h0(x)

�⇤���. (1)

Equivalently, let `H =
�
`
�
h(x), h0(x)

�
: h, h0

2 H

be the family of discriminators induced by `

and H, then, the discrepancy can be written as discH,`(P,Q) = supf2`H

��EP[f(x)]� EQ[f(x)]
��.

How would subsequent learning tasks benefit from samples generated by GANs trained with dis-
crepancy? We show that, under mild conditions, any hypothesis performing well on P✓ (with loss
function `) is guaranteed to perform well on Pr, as long as the discrepancy discH,`(P✓,Pr) is small.
Theorem 1. Assume the true labeling function f : X ! Y is contained in the hypothesis set H.

Then, for any hypothesis h 2 H,

E
x⇠Pr

[`(h, f)]  E
x⇠P✓

[`(h, f)] + discH,`(P✓,Pr).

Theorem 1 suggests that the learner can learn a model using samples drawn from P✓, whose generation
error on Pr is guaranteed to be no more than its generation error on P✓ plus the discrepancy, which is
minimized by the algorithm. The proof uses the definition of discrepancy. Due to space limitation,
we provide all the proofs in Appendix B.

2.1 Hypothesis set and loss function

We argue that discrepancy is more favorable than Wasserstein distance measures, since it makes
explicit the dependence on loss function and hypothesis set. We consider two widely used learning
scenarios: 0-1 loss with linear separators, and squared loss with Lipschitz functions.

0-1 Loss, Linear Separators Consider the two distributions on R2 illustrated in Figure 1a: Q
(filled circles •) is equivalent to P (circles �), but with all points shifted to the right by a small amount
✏. Then, by the definition of Wasserstein distance, W (P,Q) = ✏, since to transport P to Q, one just
need to move each point to the right by ✏. When ✏ is small, WGAN views the two distributions as close
and thus stops training. On the other hand, when ` is the 0-1 loss and H is the set of linear separators,
discH,`(P,Q) = 1, which is achieved at the h, h

0 as shown in Figure 1a, with EP[1h(x) 6=h0(x)] = 1
and EQ[1h(x) 6=h0(x)] = 0. Thus, DGAN continues training to push Q towards P.

The example above is an extreme case where P and Q are separable. In more practical scenarios, the
domain of the two distributions may overlap significantly, as illustrated in Figure 1b, where P is in
red and Q is in blue, and the shaded areas contain 95% probably mass. Again, Q equals P shifting to
the right by ✏ and thus W (P,Q) = ✏. Since the non-overlapping area has a sizable probability mass,
the discrepancy between P and Q is still large, for the same reason as for Figure 1a.

These examples demonstrate the importance of taking hypothesis sets and loss functions into account
when comparing two distributions: even though two distributions appear geometrically “close”

3

(a) Non-overlapping distributions, P: {�}, Q: {•}.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

−−++ −−

(b) Overlapping distributions, P: {red}, Q: {blue}.

Figure 1: Distributions P and Q may appear “close” under Wasserstein distance, but the discrepancy
between the two is still large, where the discrepancy is defined by 0-1 loss and linear separators.

under Wasserstein distance, a classifier trained on one distribution may perform poorly on another
distribution. According to Theorem 1, such unfortunate behaviors are less likely to happen with
discH,`.

Squared Loss, Lipschitz Functions Next, we consider the squared loss and the hypothesis set
of 1-Lipschitz functions H = {h : |h(x)� h(x0)|  kx� x

0
k2, 8x, x

0
2 X}, then `H = {[h(x)�

h
0(x)]2 : h, h0

2 H}. We can show that `H is a subset of 4-Lipschitz functions on X . Then, by the
definition of discrepancy and Wasserstein distance, discH,`(P,Q) is comparable to W (P,Q):

discH,`(P,Q) = sup
f2`H

E
P

⇥
f(x)

⇤
� E

Q

⇥
f(x)

⇤
 sup

f : 4-Lipschitz
E
P

⇥
f(x)

⇤
� E

Q

⇥
f(x)

⇤
= 4W (P,Q).

However, the inequality above can be quite loose since, depending on the hypothesis set, `H may be
only a small subset of all 4-Lipschitz functions. For instance, when H is the set of linear functions
with norm bounded by one, then `H = {(wT

x)2 : kwk  2}, which is a significantly smaller set than
the family of all 4-Lipschitz functions. Thus, discH,`(P,Q) could potentially be a tighter measure
than W (P,Q), depending on H.

2.2 Continuity and estimation

In this section, we discuss two favorable properties of discrepancy: its continuity under mild assump-
tions with respect to the generator’s parameter ✓, a property shared with the Wasserstein distance,
and the fact that it can be accurately estimated from finite samples, which does not hold for either the
Jensen-Shannon or the Wasserstein distance. The continuity property is summarized in the following
theorem.
Theorem 2. Let H = {h : X ! Y} be a family of µ-Lipschitz functions and assume that the loss

function ` is continuous and symmetric in its arguments, and is bounded by M . Assume further that `

admits the triangle inequality, or that it can be written as `(y, y0) = f(|y � y
0
|) for some Lipschitz

function f . Assume that g✓ : Z ! X is continuous in ✓. Then, discH,`(Pr,P✓) is continuous in ✓.

The assumptions of Theorem 2 are easily satisfied in practice, where h 2 H and g✓ are neural
networks whose parameters are limited within a compact set, and where the loss function can be
either the `1 loss, `(y, y0) = |y � y

0
|, or the squared loss, `(y, y0) = (y � y

0)2. If the discrepancy
is continuous in ✓, then, as the sequence of parameters ✓t converges to ✓

⇤, the discrepancy also
converges: |discH,`(Pr,P✓t) � discH,`(Pr,P✓⇤)| ! 0, which is a desirable property for training
DGAN. The reader is referred to Arjovsky et al. [2017] for a more extensive discussion of the
continuity properties of various distance metrics and their effects on training GANs.

Next, we show that discrepancy can be accurately estimated from finite samples. Let Sr and S✓ be
i.i.d. samples drawn from Pr and P✓ with |Sr| = m and |S✓| = n, and let bPr and bP✓ be the empirical
distributions induced by Sr and S✓, respectively. Recall that the empirical Radmacher complexity of
a hypothesis set G on sample S of size m is defined by: bRS(G) =

2
m E�

⇥
supg2G

Pm
i=1 �ig(xi)

⇤
,

where �1,�2, . . . ,�m are i.i.d. random variables with P(�i = 1) = P(�i = �1) = 1/2. The
empirical Radmacher complexity measures the complexity of the hypothesis set G. The next theorem
presents the learning guarantees of discrepancy.

4

Theorem 3. Assume the loss is bounded, `  M . For any � > 0, with probability at least 1� � over

the draw of Sr and S✓,

��discH,`(Pr,P✓)� discH,`(bPr,
bP✓)

��  bRSr (`H) + bRS✓ (`H) + 3M
⇣q

log(4/�)
2m +

q
log(4/�)

2n

⌘
.

Furthermore, when the loss function `(h, h0) is a q-Lipschitz function of h� h
0
, we have

��discH,`(Pr,P✓)� discH,`(bPr,
bP✓)

��  4q
⇣
bRSr (H) + bRS✓ (H)

⌘
+ 3M

⇣q
log(4/�)

2m +
q

log(4/�)
2n

⌘
.

In the rest of this paper, we will consider the squared loss `(y, y0) = (y�y
0)2, which is bounded and 2-

Lipschitz when |h(x)|  1 for all h 2 H and x 2 X . Furthermore, when H is a family of feedforward
neural networks, Cortes et al. [2017] provided an explicit upper bound of bRS(H) = O(1/

p
m) for

its complexity, and thus the right-hand side of the above inequality is in O(1
p
m

+ 1
p
n
). Then, for m

and n sufficiently large, the empirical discrepancy is close to the true discrepancy. It is important that
the discrepancy can be accurately estimated from finite samples since, when training DGAN, we
can only approximate the true discrepancy with a batch of samples. In contrast, the Jensen-Shannon
distance and the Wasserstein distance do not admit this favorable property [Arora et al., 2017].

3 Algorithms

In this section, we show how to compute the discrepancy and train DGAN for various hypothesis
sets and the squared loss. We also propose to learn an ensemble of pre-trained GANs via minimizing
discrepancy. We name this method EDGAN, and present its learning guarantees.

3.1 DGAN algorithm

Given a parametric family of hypotheses H = {hw : w 2 W}, DGAN is defined as the following
min-max optimization problem:

min
✓2⇥

max
w,w02W

��� E
x⇠Pr

⇥
`
�
hw(x), hw0(x)

�⇤
� E

x⇠P✓

⇥
`
�
hw(x), hw0(x)

�⇤���. (2)

As with other GANs, DGAN is trained by iteratively solving the min-max problem (2). The
minimization over the generator’s parameters ✓ can be tackled by standard stochastic gradient
descent (SGD) algorithm with back-propagation. The inner maximization problem that computes the
discrepancy, however, can be efficiently solved when ` is the squared loss function.

We first consider H to be the set of linear functions with bounded norm: H = {x ! w
T
x : kwk2 

1, w 2 Rd
}. Recall the definition of Sr, S✓, Pr and P✓ from Section 2.2. In addition, let Xr and X✓

denote the corresponding m⇥ d and n⇥ d data matrices, where each row represents one input.
Proposition 4. When ` is the squared loss and H the family of linear functions with norm bounded

by 1, discH,`(bPr,
bP✓) = 2

�� 1
nX

T
✓ X✓ �

1
mX

T
r Xr

��
2
, where k · k2 denotes the spectral norm.

Thus, the discrepancy discH,`(bPr,
bP✓) equals twice the largest eigenvalue in absolute value of the

data-dependent matrix M(✓) = 1
nX

T
✓ X✓ �

1
mX

T
r Xr. Given v

⇤(✓), the corresponding eigenvector
at the optimal solution, we can then back-propagate the loss discH,`(bPr,

bP✓) = 2v⇤T (✓)M(✓)v⇤(✓)
to optimize for ✓. The maximum or minimum eigenvalue of M(✓) can be computed in O(d2) [Golub
and van Van Loan, 1996], and the power method can be used to closely approximate it.

The closed-form solution in Proposition 4 holds for a family H of linear mappings. To generate
realistic outcomes with DGAN, however, we need a more complex hypothesis set H, such as the
family of deep neural networks (DNN). Thus, we consider the following approach: first, we fix a
pre-trained DNN classifier, such as the inception network, and pass the samples through this network
to obtain the last (or any other) layer of embedding f : X ! E , where E is the embedding space.
Next, we compute the discrepancy on the embedded samples with H being the family of linear
functions with bounded norm, which admits a closed-form solution according to Proposition 4. In
practice, it also makes sense to train the embedding network together with the generator: let f⇣ be the
embedding network parametrized by ⇣, then DGAN optimizes for both f⇣ and g✓ . See Algorithm 1
for a single step of updating DGAN. In particular, the learner can either compute F (⇣t, ✓t) exactly,
or use an approximation based on the power method. Note that when the learner uses a pre-fixed
embedding network f , the update step of ⇣t+1 can be skipped.

5

Algorithm 1 UPDATE DGAN(⇣t, ✓t, ⌘)

Xr [f⇣t(x1), · · · , f⇣t(xm)]T , where xi ⇠ Pr

X✓ [f⇣t(x
0
1), · · · , f⇣t(x0

n)]
T , where x0

i ⇠ P✓t

F (⇣t, ✓t)
�� 1

nX
T
✓ X✓ � 1

mXT
r Xr

��
2

Update: ⇣t+1 ⇣t + ⌘r⇣F (⇣t, ✓t)
Update: ✓t+1 ✓t � ⌘r✓F (⇣t, ✓t)

Algorithm 2 UPDATE EDGAN(↵t
, f, ⌘)

Xr [f(x1), · · · , f(xnr)]
T , where xi ⇠ Pr

Xk [f(xk
1), · · · , f(xk

nk
)]T , where xk

i ⇠ P✓k

F (↵t) k
�Pp

k=1
↵t

k
nk

XT
k Xk

�
� 1

nr
XT

r Xrk2
Update: ↵t+1 ↵t � ⌘r↵F (↵t)

3.2 EDGAN algorithm

Next, we show that discrepancy provides a principled way of choosing the ensemble weights to mix
pre-trained GANs, which admits favorable convergence guarantees.

Let g1, . . . , gp be p pre-trained GANs. For a given mixture weight ↵ = (↵1, . . . ,↵p) 2 �, where
� = {(↵1, . . . ,↵p) : ↵k � 0,

Pp
k=1 ↵k = 1} is the simplex in Rp, we define the ensemble of p

GANs by g↵ =
Pp

k=1 ↵kgk. To draw a sample from the ensemble g↵, we first sample an index
k 2 [p] = {1, 2, · · · , p} according to the multinomial distribution with parameter ↵, and then return a
random sample generated by the chosen GAN gk. We denote by P↵ the distribution of g↵. EDGAN
determines the mixture weight ↵ by minimizing the discrepancy between P↵ and the real data Pr:
min↵2� discH,`(P↵,Pr).

To learn the mixture weight ↵, we approximate the true distributions by their empirical counterparts:
for each k 2 [p], we randomly draw a set of nk samples from gk, and randomly draw nr samples
from the real data distribution Pr. Let Sk and Sr denote the corresponding set of samples, and let bPk

and bPr denote the induced empirical distributions, respectively. For a given ↵, let bP↵ =
Pp

k=1 ↵k
bPk

be the empirical counterparts of P↵. We first present a convergence result for the EDGAN method,
and then describe how to train EDGAN.

Let ↵⇤ and b↵ be the discrepancy minimizer under the true and the empirical distributions, respectively:

↵⇤ = argmin
↵2�

discH,`(P↵,Pr), b↵ = argmin
↵2�

discH,`(bP↵,
bPr).

For simplicity, we set nk = nr = n for all k 2 [p], but the following result can be easily extended to
arbitrary batch size for each generator.
Theorem 5. For any � > 0, with probability at least 1� � over the draw of samples,

|discH,`(Pb↵,Pr)� discH,`(P↵⇤ ,Pr)|  2
⇣
bRS(`H) + 3M

p
log[4(p+ 1)/�]/2n

⌘
,

where bRS(`H) = max
�bRS1(`H), . . . , bRSp(`H), bRSr (`H)

. Furthermore, when the loss function

`(h, h0) is a q-Lipschitz function of h� h
0
, the following holds with probability 1� �:

|discH,`(Pb↵,Pr)� discH,`(P↵⇤ ,Pr)|  2
⇣
4q bRS(H) + 3M

p
log[4(p+ 1)/�]/2n

⌘
,

where bRS(H) = max
�bRS1(H), . . . , bRSp(H), bRSr (H)

.

When ` is the squared loss and H is the family of feedforward neural networks, the upper bound on
bRS(`H) is in O(1/

p
n). Since we can generate unlimited samples from each of the p pre-trained

GANs, n can be as large as the number of available real samples, and thus the discrepancy between
the learned ensemble Pb↵ and the real data Pr can be very close to the discrepancy between the
optimal ensemble P↵⇤ and the real data Pr. This is a very favorable generalization guarantee for
EDGAN, since it suggests that the mixture weight learned on the training data is guaranteed to
generalize and perform well on the test data, a fact also corroborated by our experiments.

To compute the discrepancy for EDGAN, we again begin with linear mappings H = {x !

w
T
x : kwk2  1, w 2 Rd

}. For each generator k 2 [p], we obtain a nk ⇥ d data matrix Xk, and
similarly we have the nr ⇥ d data matrix for the real samples. Then, by the proof of Proposition 4,
discrepancy minimization can be written as

min
↵2�

discH,`(bP↵,
bPr) = 2 min

↵2�
kM(↵)k2, with M(↵) =

 pX

k=1

↵k

nk
X

T
k Xk

�
�

1

nr
X

T
r Xr. (3)

6

Figure 2: Random samples from DGAN trained on MNIST.

Figure 3: Random samples from DGAN trained on CIFAR10.

Since M(↵) and �M(↵) are affine and thus convex functions of ↵, kM(↵)k2 =
sup

kvk21

��vTM(↵)v
�� is also convex in ↵, as the supremum of a set of convex functions is convex.

Thus, problem (3) is a convex optimization problem, thereby benefitting from strong convergence
guarantees.

Note that we have kM(↵)k2 = max{�max(M(↵)),�max(�M(↵))}. Thus, one way to solve
problem (3) is to cast it as a semi-definite programming (SDP) problem:

min
↵,�

�, s.t. �I �M(↵) ⌫ 0, �I +M(↵) ⌫ 0, ↵ � 0, 1T↵ = 1.

An alternative solution consists of using the power method to approximate the spectral norm, which is
faster when the sample dimension d is large. As with DGAN, we can also consider a more complex
hypothesis set H, by first passing samples through an embedding network f , and then letting H be
the set of linear mappings on the embedded samples. Since the generators are already pre-trained
for EDGAN, we no longer need to train the embedding network, but instead keep it fixed. See
Algorithm 2 for one training step of EDGAN.

4 Experiments

4.1 DGAN

In this section, we show that DGAN obtains competitive results on the benchmark datasets MNIST,
CIFAR10, CIFAR100, and CelebA (at resolution 128 ⇥ 128). We did unconditional generation
and did not use the labels in the dataset. We trained both the discriminator’s embedding layer and
the generator with discrepancy loss as in Algorithm 1. Note, we did not attempt to optimize the
architecture and other hyperparameters to get state-of-the-art results. We used a standard DCGAN
architecture. The main architectural modification for DGAN is that the final dense layer of the
discriminator has output dimension greater than 1 since, in DGAN, the discriminator outputs an
embedding layer rather than a single score. The size of this embedding layer is a hyperparameter
that can be tuned, but we refrained from doing so here. See Table 6 in Appendix C for DGAN
architectures. One important observation is that larger embedding layers require more samples to
accurately estimate the population covariance matrix of the embedding layer under the data and
generated distributions (and hence the spectral norm of the difference).

To enforce the Lipschitz assumption of our Theorems, either weight clipping [Arjovsky et al., 2017],

7

Figure 4: Random samples from DGAN trained on CIFAR100.

Figure 5: Random samples from DGAN trained on CelebA at resolution 128⇥ 128.

Table 1: Inception Score (IS) and Fréchet Incep-
tion Distance (FID) for various datasets.

Dataset IS FID (train) FID (test)

CIFAR10 7.02 26.7 30.7
CIFAR100 7.31 28.9 33.3
CelebA 2.15 59.2 -

gradient penalization [Gulrajani et al., 2017], spec-
tral normalization [Miyato et al., 2018], or some
combination can be used. We found gradient pe-
nalization useful for its stabilizing effect on train-
ing, and obtained the best performance with this
and weight clipping. Table 1 lists Inception score
(IS) and Fréchet Inception distance (FID) on var-
ious datasets. All results are the best of five trials.
While our scores are not state-of-the-art [Brock
et al., 2019], they are close to those achieved by similar unconditional DCGANs [Miyato et al., 2018,
Lucic et al., 2018]. Figures 2-5 show samples from a trained DGAN that are not cherry-picked.

4.2 EDGAN

Toy example We first considered the toy datasets described in section 4.1 of AdaGAN [Tolstikhin
et al., 2017], where we can explicitly compare various GANs with well-defined, likelihood-based
performance metrics. The true data distribution is a mixture of 9 isotropic Gaussian components
on X = R2, with their centers uniformly distributed on a circle. We used the AdaGAN algorithm
to sequentially generate 10 GANs, and compared various ensembles of these 10 networks: GAN1

generated by the baseline GAN algorithm; Ada5 and Ada10, generated by AdaGAN with the first 5
or 10 GANs, respectively; EDGAN5 and EDGAN10, the ensembles of the first 5 or 10 GANs by
EDGAN, respectively.

The EDGAN algorithm ran with squared loss and linear mappings. To measure the performance, we
computed the likelihood of the generated data under the true distribution L(S✓), and the likelihood
of the true data under the generated distribution L(Sr). We used kernel density estimation with
cross-validated bandwidth to approximate the density of both P✓ and Pr, as in Tolstikhin et al. [2017].
We provide part of the ensembles here and present the full results in Appendix C. Table 2 compares
the two likelihood-based metrics averaged over 10 repetitions, with standard deviation in parentheses.

8

Table 2: Likelihood-based metrics of var-
ious ensembles of 10 GANs.

L(Sr) L(S✓)

GAN1 -12.39 (± 2.12) -796.05 (± 12.48)
Ada10 -4.33 (± 0.30) -266.60 (± 24.91)
EDGAN10 -3.99 (± 0.20) -148.97 (± 14.13)

(a) (b) (c)
Figure 6: The true (red) and the generated (blue) distri-
butions using (a) GAN1; (b) Ada10; (c) EDGAN10.

Table 3: Each row uses a different embedding to calculate the discrepancy between the generated
images and the CIFAR10 test set.

GAN1 GAN2 GAN3 GAN4 GAN5 Best GAN Average EDGAN

InceptionLogits 285.09 259.61 259.64 271.21 272.23 259.61 259.12 255.3

InceptionPool 70.52 64.37 69.48 69.69 68.7 64.37 66.08 63.98

MobileNet 109.09 90.47 88.01 90.9 93.08 88.01 85.71 81.83

PNASNet 35.18 36.42 34.94 34.38 36.52 34.38 34.66 33.97

NASNet 54.61 52.66 59.01 61.79 64.97 52.66 55.66 52.46

AmoebaNet 97.71 110.83 108.61 105.31 110.5 97.71 104.91 97.71

We can see that for both metrics, ensembles of networks by EDGAN outperformed AdaGAN using
the same number of base networks. Figure 6 shows the true distribution (in red) and the generated
distribution (in blue). The single GAN model (Figure 6(a)) does not work well. As AdaGAN
gradually mixes in more networks, the generated distribution is getting closer to the true distribution
(Figure 6(b)). By explicitly learning the mixture weights using discrepancy, EDGAN10 (Figure 6(c))
further improves over Ada10, such that the span of the generated distribution is reduced, and the
generated distribution now closely concentrates around the true one.

CIFAR10 We used five pre-trained generators from Lucic et al. [2018] (all are publicly available on
TF-Hub) as base learners in the ensemble. The models were trained with different hyperparameters
and had different levels of performance. We then took 50k samples from each generator and the
training split of CIFAR10, and embedded these images using a pre-trained classifier. We used several
embeddings: InceptionV3’s logits layer [Szegedy et al., 2016], InceptionV3’s pooling layer [Szegedy
et al., 2016], MobileNet [Sandler et al., 2018], PNASNet Liu et al. [2018a], NASNet [Zoph and Le,
2017], and AmoebaNet [Real et al., 2019]. All of these models are also available on TF-Hub. For
each embedding, we trained an ensemble and evaluated its discrepancy on the test set of CIFAR10
and 10k independent samples from each generator. We report these results in Table 3. In all cases
EDGAN performs as well or better than the best individual generator or a uniform average of the
generators. This also shows that discrepancy generalizes well from the training to the testing data.
Interestingly, depending on which embedding is used for the ensemble, drastically different mixture
weights are optimal, which demonstrates the importance of the hypothesis class for discrepancy. We
list the learned ensemble weights in Table 5 in Appendix C.

5 Conclusion

We advocated the use of discrepancy for defining GANs and proved a series of favorable properties
for it, including continuity, under mild assumptions, the possibility of accurately estimating it from
finite samples, and the generalization guarantees it benefits from. We also showed empirically that
DGAN is competitive with other GANs, and that EDGAN, which we showed can be formulated
as a convex optimization problem, outperforms existing GAN ensembles. For future work, one can
use generative models with discrepancy in adaptation, as shown in Appendix D, where the goal is to
learn a feature embedding for the target domain such that its distribution is close to the distribution of
the embedded source domain. DGAN also has connections with standard Maximum Entropy models
(Maxent) as discussed in Appendix E.

Acknowledgments

This work was partly supported by NSF CCF-1535987, NSF IIS-1618662, and a Google Research
Award. We thank Judy Hoffman for helpful pointers to the literature.

9

References

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In International

Conference on Machine Learning (ICML), pages 214–223, 2017.

S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang. Generalization and equilibrium in generative
adversarial nets (GANs). In International Conference on Machine Learning (ICML), pages
224–232, 2017.

S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Analysis of representations for domain
adaptation. In Advances in Neural Information Processing Systems, pages 137–144, 2007.

A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity natural image
synthesis. In International Conference on Learning Representations (ICLR), 2019.

C. Cortes and M. Mohri. Domain adaptation and sample bias correction theory and algorithm for
regression. Theor. Comput. Sci., 519:103–126, 2014.

C. Cortes, X. Gonzalvo, V. Kuznetsov, M. Mohri, and S. Yang. Adanet: Adaptive structural learning
of artificial neural networks. In International Conference on Machine Learning (ICML), pages
874–883, 2017.

A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath. Generative
adversarial networks: An overview. IEEE Signal Processing Magazine, 35(1):53–65, 2018.

I. Deshpande, Z. Zhang, and A. G. Schwing. Generative modeling using the sliced wasserstein
distance. In Computer Vision and Pattern Recognition (CVPR), pages 3483–3491, 2018.

M. D. Donsker and S. S. Varadhan. Asymptotic evaluation of certain markov process expectations
for large time, i. Communications on Pure and Applied Mathematics, 28(1):1–47, 1975.

G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training generative neural networks via maximum
mean discrepancy optimization. In Conference on Uncertainty in Artificial Intelligence (UAI),
pages 258–267, 2015.

S. Feizi, C. Suh, F. Xia, and D. Tse. Understanding GANs: the LQG setting. arXiv preprint

arXiv:1710.10793, 2017.

M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan. GAN-based
synthetic medical image augmentation for increased CNN performance in liver lesion classification.
Neurocomputing, 321:321–331, 2018.

A. Ghosh, V. Kulharia, V. P. Namboodiri, P. H. Torr, and P. K. Dokania. Multi-agent diverse generative
adversarial networks. In Computer Vision and Pattern Recognition (CVPR), pages 8513–8521,
2018.

G. H. Golub and C. F. van Van Loan. Matrix Computations. The Johns Hopkins University Press,
3rd edition, 1996.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems,
pages 2672–2680, 2014.

I. J. Goodfellow. Advances in Neural Information Processing Systems 2016 tutorial: Generative
adversarial networks. arXiv preprint arXiv:1701.00160, 2017.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. J. Smola. A kernel two-sample test.
Journal of Machine Learning Research, 13(Mar):723–773, 2012.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of
wasserstein GANs. In Advances in Neural Information Processing Systems, pages 5769–5779,
2017.

Q. Hoang, T. D. Nguyen, T. Le, and D. Q. Phung. MGAN: training generative adversarial nets with
multiple generators. In International Conference on Learning Representations (ICLR), 2018.

10

Y. Jin, J. Zhang, M. Li, Y. Tian, H. Zhu, and Z. Fang. Towards the automatic anime characters
creation with generative adversarial networks. arXiv preprint arXiv:1708.05509, 2017.

T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial
networks. arXiv preprint arXiv:1812.04948, 2018.

V. Kuznetsov and M. Mohri. Learning theory and algorithms for forecasting non-stationary time
series. In Advances in Neural Information Processing Systems, pages 541–549, 2015.

C. Li, W. Chang, Y. Cheng, Y. Yang, and B. Póczos. MMD GAN: towards deeper understanding
of moment matching network. In Advances in Neural Information Processing Systems, pages
2200–2210, 2017.

Y. Li, K. Swersky, and R. S. Zemel. Generative moment matching networks. In International

Conference on Machine Learning (ICML), volume 37, pages 1718–1727, 2015.

C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, and
K. Murphy. Progressive neural architecture search. In European Conference on Computer Vision

(ECCV), pages 19–34, 2018a.

R. Liu, N. Fusi, and L. Mackey. Model compression with Generative Adversarial Networks. arXiv

preprint arXiv:1812.02271, 2018b.

M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet. Are gans created equal? a large-scale
study. In Advances in Neural Information Processing Systems, pages 700–709, 2018.

Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adaptation: Learning bounds and algorithms.
In Conference on Learning Theory (COLT), 2009.

X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley. Least squares generative adversarial
networks. In International Conference on Computer Vision (ICCV), pages 2794–2802, 2017.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative adversarial
networks. In International Conference on Learning Representations (ICLR), 2018.

M. Mohri and A. M. Medina. New analysis and algorithm for learning with drifting distributions. In
Algorithmic Learning Theory (ALT), pages 124–138, 2012.

Y. Mroueh, T. Sercu, and V. Goel. McGan: Mean and covariance feature matching GAN. In
International Conference on Machine Learning (ICML), pages 2527–2535, 2017.

S. Nowozin, B. Cseke, and R. Tomioka. f-GAN: Training generative neural samplers using variational
divergence minimization. In Advances in Neural Information Processing Systems, pages 271–279,
2016.

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image classifier architecture
search. In AAAI Conference on Artificial Intelligence, pages 4780–4789, 2019.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques
for training gans. In Advances in Neural Information Processing Systems, pages 2234–2242, 2016.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted residuals
and linear bottlenecks. In Computer Vision and Pattern Recognition (CVPR), pages 4510–4520,
2018.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for
computer vision. In Computer Vision and Pattern Recognition (CVPR), pages 2818–2826, 2016.

I. O. Tolstikhin, S. Gelly, O. Bousquet, C.-J. Simon-Gabriel, and B. Schölkopf. Adagan: Boosting
generative models. In Advances in Neural Information Processing Systems, pages 5424–5433,
2017.

E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative domain adaptation. In
Computer Vision and Pattern Recognition (CVPR), pages 2962–2971, 2017.

11

C. Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media, 2008.

H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chandrasekhar. Efficient GAN-based anomaly
detection. arXiv preprint arXiv:1802.06222, 2018.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In International

Conference on Learning Representations (ICLR), 2017.

12

