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Abstract

For embodied agents to infer representations of the underlying 3D physical world
they inhabit, they should efficiently combine multisensory cues from numerous
trials, e.g., by looking at and touching objects. Despite its importance, multisen-
sory 3D scene representation learning has received less attention compared to the
unimodal setting. In this paper, we propose the Generative Multisensory Network
(GMN) for learning latent representations of 3D scenes which are partially observ-
able through multiple sensory modalities. We also introduce a novel method, called
the Amortized Product-of-Experts, to improve the computational efficiency and the
robustness to unseen combinations of modalities at test time. Experimental results
demonstrate that the proposed model can efficiently infer robust modality-invariant
3D-scene representations from arbitrary combinations of modalities and perform
accurate cross-modal generation. To perform this exploration, we also develop the
Multisensory Embodied 3D-Scene Environment (MESE).

1 Introduction

Learning a world model and its representation is an effective way of solving many challenging
problems in machine learning and robotics, e.g., via model-based reinforcement learning (Silver et al.,
2016). One characteristic aspect in learning the physical world is that it is inherently multifaceted
and that we can perceive its complete characteristics only through our multisensory modalities. Thus,
incorporating different physical aspects of the world via different modalities should help build a
richer model and representation. One approach to learn such multisensory representations is to learn
a modality-invariant representation as an abstract concept representation of the world. This is an
idea well supported in both psychology and neuroscience. According to the grounded cognition
perspective (Barsalou, 2008), such abstract concepts like objects and events can only be obtained
through perceptual signals. For example, what represents a cup in our brain is its visual appearance,
the sound it could make, the tactile sensation, etc. In neurosciences, the existence of concept
cells (Quiroga, 2012) that responds only to a specific concept regardless of the modality sourcing the
concept (e.g., by showing a picture of Jennifer Aniston or listening her name) can be considered as a
biological evidence of the metamodal brain perspective (Pascual-Leone & Hamilton, 2001;|Yildirim,
2014) and the modality-invariant representation.

An unanswered question from the computational perspective (our particular interest in this paper) is
how to learn such modality-invariant representation of the complex physical world (e.g., 3D scenes
placed with objects). We argue that it is a particularly challenging problem because the following
requirements need to be satisfied for the learned world model. First, the learned representation should
reflect the 3D nature of the world. Although there have been some efforts in learning multimodal
representations (see Section[3)), those works do not consider this fundamental 3D aspect of the physical
world. Second, the learned representation should also be able to model the intrinsic stochasticity
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of the world. Third, for the learned representation to generalize, be robust, and to be practical in
many applications, the representation should be able to be inferred from experiences of any partial
combinations of modalities. It should also facilitate the generative modelling of other arbitrary
combinations of modalities (Yildirim, 2014)), supporting the metamodal brain hypothesis — for which
human evidence can be found from the phantom limb phenomenon (Ramachandran & Hirstein,
1998). Fourth, even if it is evidenced that there exists metamodal representation, there still exist
modality-dependent brain regions, revealing the modal-to-metamodal hierarchical structure (Rohe &
Noppeneyl 2016). A learning model can also benefit from such hierarchical representation as shown
by |Hsu & Glass|(2018). Lastly, the learning should be computationally efficient and scalable, e.g.,
with respect to the number of possible modalities.

Motivated by the above desiderata, we propose the Generative Multisensory Network (GMN) for
neural multisensory scene inference and rendering. In GMN, from an arbitrary set of source modalities
we infer a 3D representation of a scene that can be queried for generation via an arbitrary target
modality set, a property we call generalized cross-modal generation. To this end, we formalize the
problem as a probabilistic latent variable model based on the Generative Query Network (Eslami
et al., 2018) framework and introduce the Amortized Product-of-Experts (APoE). The prior and the
posterior approximation using APoE makes the model trainable only with a small combinations
of modalities, instead of the entire combination set. The APoE also resolves the inherent space
complexity problem of the traditional Product-of-Experts model and also improves computation
efficiency. As a result, the APoE allows the model to learn from a large number of modalities without
tight coupling among the modalities, a desired property in many applications such as Cloud Robotics
(Saha & Dasgupta, [2018) and Federated Learning (Konecny et al.,2016). In addition, with the APoE
the modal-to-metamodal hierarchical structure is easily obtained. In experiments, we show the above
properties of the proposed model on 3D scenes with blocks of various shapes and colors along with a
human-like hand.

The contributions of the paper are as follows: (i) We introduce a formalization of modality-invariant
multisensory 3D representation learning using a generative query network model and propose the
Generative Multisensory Network (GMNﬂ (i) We introduce the Amortized Product-of-Experts
network that allows for generalized cross-modal generation while resolving the problems in the GQN
and traditional Product-of-Experts. (iii) Our model is the first to extend multisensory representation
learning to 3D scene understanding with human-like sensory modalities (such as haptic information)
and cross-modal generation. (iv) We also develop the Multisensory Embodied 3D-Scene Environment
(MESE) used to develop and test the model.

2 Neural Multisensory Scene Inference

2.1 Problem Description

Our goal is to understand 3D scenes by learning a metamodal representation of the scene through the
interaction of multiple sensory modalities such as vision, haptics, and auditory inputs. In particular,
motivated by human multisensory processing (Deneve & Pouget, 2004} |Shams & Seitz, [2008; [Murray
& Wallace| |2011), we consider a setting where the model infers a scene from experiences of a set
of modalities and then to generate another set of modalities given a query for the generation. For
example, we can experience a 3D scene where a cup is on a table only by touching or grabbing it
from some hand poses and ask if we can visually imagine the appearance of the cup from an arbitrary
query viewpoint (see Fig. [T). We begin this section with a formal definition of this problem.

A multisensory scene, simply a scene, S consists of context C' and observation O. Given the set
of all available modalities M, the context and observation in a scene are obtained through the
context modalities M. (S) C M and the observation modalities M, (S) C M, respectively. In the
following, we omit the scene index S when the meaning is clear without it. Note that M, and M,
are arbitrary subsets of M including the cases M, N M. =0, M, = M,, and M, U M, C M.
We also use Mg to denote all modalities available in a scene, M, (S) U M.(S).

The context and observation consist of sets of experience trials represented as query(v)-sense(x)

pairs, i.e., C = {(Vp,x,)}0e, and O = {(v,,,x,)}2,. For convenience, we denote the set

of queries and senses in observation by V' and X, respectively, i.e., O = (V, X). Each query
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Figure 1: Cross-modal inference using scene representation. (a) A single image context. (b) Haptic
contexts. (c) Generated images for some viewpoints (image queries) in the scene, given the contexts. (d)
Ground truth images for the same queries. Conditioning on an image context and multiple haptic contexts,
modality-agnostic latent scene representation, z, is inferred. Given sampled zs, images are generated using
various queries; in (c), each row corresponds to the same latent sample. Note that the shapes of predicted objects
are consistent given different samples 2™ while color pattern of the object changes except the parts seen by the
image context (a).

(d)

v, and sense X, in a context consists of modality-wise queries and senses corresponding to each
modality in the context modalities, i.e., (v,,,X,) = {(VI", Xx7")} e, (See Fig. [SI). Similarly,
the query and the sense in observation O is constrained to have only the observation modalities
M,. For example, for modality m = vision, an unimodal query v'*i°® can be the viewpoint
and the sense x7*5°® is the observation image obtained from the query viewpoint. Similarly, for
m = haptics, an unimodal query vii***°® can be the hand position, and the sense x5""*°° is the
tactile and pressure senses obtained by a grab from the query hand pose. For a scene, we may
have M. = {haptics,auditory} and M, = {vision,auditory}. For convenience, we also
introduce the following notations. We denote the context corresponding only to a particular modality
mby C,, = {(V,T,xﬁ)}nNgl such that N, = Y~ N!" and C = {C,;, };nem. . Similarly, O, X,
and V,,, are used to denote modality m part of O, X, and V, respectively.

Given the above definitions, we formalize the problem as learning a generative model of a scene
that can generate senses X corresponding to queries V' of a set of modalities, provided a context
C from other arbitrary modalities. Given scenes from the scene distribution (O, C) ~ P(S), our
training objective is to maximize E(o o)~ p(s)[log Py(X |V, C)], where 0 is the model parameters to
be learned.

2.2 Generative Process

We formulate this problem as a probabilistic latent variable model where we introduce the latent
metamodal scene representation z from a conditional prior Py(z|C'). The joint distribution of the
generative process becomes:

Py(X,z|V,C) = Py(X|V,2)P(z|C)

N,
= [[ Pxalvn.2)Po(2C) = [ TI Pon. i Ivits2)Po(=lC). (D)
n=1 EM,

n=1lm

2.3 Prior for Multisensory Context

As the prior Py(z|C') is conditioned on the context, we need an encoding mechanism of the context
to obtain z. A simple way to do this is to follow the Generative Query Network (GQN) (Eslami
et al., [2018) approach: each context query-sense pair (v,,X,) is encoded to v, = fene(Vn,Xn)
and summed (or averaged) to obtain permutation-invariant context representationr = ) r,. A
ConvDRAW module (Gregor et al., 2016) is then used to sample z from r.

In the multisensory setting, however, this approach cannot be directly adopted due to a few challenges.
First, unlike GQN the sense and query of each sensor modality has different structure, and thus we



cannot have a single and shared context encoder that deals with all the modalities. In our model, we
therefore introduce a modality encoder ™ =}, ). fane(x, v) for each m € M.

The second challenge stems from the fact that we want our model capable of generating from
any context modality set M.(S) to any observation modality set M,(S) — a property we call
generalized cross-modal generation (GCG). However, at test time we do not know which sensory
modal combinations will be given as a context and a target to generate. This hence requires collecting
a training data that contains all possible combinations of context-observation modalities M*. This
equals the Cartesian product of M’s powersets, i.e., M* = Power(M) x Power(M). This is a
very expensive requirement as | M*| increases exponentially with respect to the number of modalitie

(M.

Although one might consider dropping-out random modalities during training to achieve the gener-
alized cross-modal generation, this still assumes the availability of the full modalities from which
to drop off some modalities. Also, it is unrealistic to assume that we always have access to the full
modalities; to learn, we humans do not need to touch everything we see. Therefore, it is important to
make the model learnable only with a small subset of all possible modality combinations while still
achieving the GCG property. We call this the missing-modality problem.

To this end, we can model the conditional prior as a Product-of-Experts (PoE) network (Hinton, 2002)
with one expert per sensory modality parameterized by 0,,,. That is, P(z|C) o [],,,c uq, P, (2|Crn)-
While this could achieve our goal at the functional level, it comes at a computational cost of increased
space and time complexity w.r.t. the number of modalities. This is particularly problematic when we
want to employ diverse sensory modalities (as in, e.g., robotics) or if each expert has to be a powerful
(hence expensive both in computation and storage) model like the 3D scene inference task (Eslami
et al.| 2018)), where it is necessary to use the powerful ConvDraw network to represent the complex
3D scene.

2.4 Amortized Product-of-Experts as Metamodal Representation

To deal with the limitations of PoE, we introduce the Amortized Product-of-Experts (APoE). For
each modality m € M., we first obtain modality-level representation r”* using the modal-encoder.
Note that this modal-encoder is a much lighter module than the full ConvDraw network. Then, each
modal-encoding r™ along with its modality-id m is fed into the expert-amortizer Py (z|r"™, m) that
is shared across all modal experts through shared parameter . In our case, this is implemented as a
ConvDraw module (see Appendix [B]for the implementation details). We can write the APoE prior as
follows:

P(z|C)= [ Pu(zlt™ m). 2)

meM.
We can extend this further to obtain a hierarchical representation model by treating r’™ as a latent

variable:
P(z,{r"}|C) x H Py(z|r™,m)Py,, (x™|C,) ,
meM.
where r'™” is modality-level representation and z is metamodal representation. Although we can train
this hierarchical model with reparameterization trick and Monte Carlo sampling, for simplicity in our
experiments we use deterministic function for Py_ (r™|C,,) = 6[r™ = fp, (Cy,)] where ¢ is a dirac
delta function. In this hierarchical version, the generative process becomes:

P(X,z,{r"}|V,C) = Py(X|V,z) [[ Pulzlt™ m)Ps, (x"|Cp) . 3)
meM,

An illustration of the generative process is provided in Fig[S2] (b), on the Appendix. From the
perspective of cognitive psychology, the APoE model can be considered as a computational model
of the metamodal brain hypothesis (Pascual-Leone & Hamilton, [2001), which states the existence
of metamodal brain area (the expert-of-experts in our case) which perform a specific function not
specific to input sensory modalities.

The number of modalities or sensory input sources can be very large depending on the application. Even in
the case of ‘human-like’ embodied learning, it is not only, vision, haptics, auditory, etc. For example, given a
robotic hand, the context input sources can be only a part of the hand, e.g., some parts of some fingers, from
which we humans can imagine the senses of other parts.
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Figure 2: Baseline model, PoE and APoE. In the baseline model (left), a single inference network (denoted as
Encoder) get an input as sum of all modality encoders’s outputs. In PoE (middle), each of the experts contains an
integrated network combining the modality encoder and a complex inference network like ConvDraw, resulting
in O(|M]) space cost of inference networks. In APoE (right), the modality encoding and the inference network
are detached, and the inference networks are integrated into a single amortized expert inference network serving
for all experts. Thus, the space cost of inference networks reduces to O(1).

2.5 Inference

Since the optimization of the aforementioned objective is intractable, we perform variational inference
by maximizing the following evidence lower bound (ELBO), Ls(8, ¢), with the reparameterization
trick (Kingma & Welling, 2013; |Rezende et al., 2014):

log Py(X|V,C) = Eq,(zc,0) [log Po(X|V 2)] — KL[Qy(2|C, O)[|P(2|C)] , )
where Py(X|V,z) = Hgil [Lnem, Po.. (%312, vy)'). This can be considered a cognitively-

plausible objective as, according to the “grounded cognition” perspective (Barsalou, |2008), the
modality-invariant representation of an abstract concept, z, can never be fully modality-independent.

APoE Approximate Posterior. The approximate posterior () (z|C, O) is implemented as follows.
Following [Wu & Goodman|(2018), we first represent the true posterior as P(z|C, O) =

P(O,C|z)P(z)  P(z) P(z)

P(z|Cny Om)P(Crny, Om)
= I | P(Cyy, Op|2) = == | I .
P(0,0) P(C,0) mEMe P(C,0) meMe P(z)
. . . . HMEM P(Z‘Cm7o7n)
After ignoring the terms that are not a function of z, we obtain P(z|C, O) x ATt .

P(z)
IMg|—1
Replacing the numerator terms with an approximation P(z|Cy,, Oy,) = Q(2z|Cyy, O.,) P(2) s ,

we can remove the priors in the denominator and obtain the following APoE approximate posterior:

P(z|C,0)~ [] Q¢(zCm.Om). (5)

meMg

i=1

Although the above product is intractable in general, a closed form solution exists if each expert is
a Gaussian (Wu & Goodman, |2018). The mean p and covariance 1" of the APOE are, respectively,

= U)X, Un)  and T = (X, Un) , where i, and U, are the mean and the
inverse of the covariance of each expert. The posterior APoE Q4 (z|C)y,, O,y,) is implemented first
by encoding r"* = fI (C,,, O,,) and then putting r™ and modality-id m into the amortized expert
Q4 (z|r™,m), which is a ConvDraw module in our implementation. The amortized expert outputs
tm and U, for m € Mg while sharing the variational parameter ¢ across the modality-experts. Fig.
[Z] compares the inference network architectures of CGQN, PoE, and APoE.

3 Related Works

Multimodal Generative Models. Multimodal data are associated with many interesting learning
problems, e.g. cross-modal inference, zero-shot learning or weakly-supervised learning. Regarding
these, latent variable models have provided effective solutions: from a model with global latent
variable shared among all modalities (Suzuki et al.,|2016) to hierarchical latent structures (Hsu &
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Figure 3: Results on cross-modal density estimation. (a) log-likelihood of target images (gray) vs. the number
of haptic observation. (b) log-likelihood of target images (rgb) vs. the number of haptic observation. (c) log-
likelihood of target haptic values vs. the number of image observations. The dotted lines show fully cross-modal
inference where the context does not include any target modality. For the inference with additional context from
the target modality, the results are denoted as dashed, dashdot, and solid lines.

Glass, 2018) and scalable inference networks with Product-of-Experts (PoE) (Hinton, |[2002; Wu &
Goodman, 2018; |[Kurle et al., 2018). In contrast to these works, the current study addresses two
additional challenges. First, this work aims at achieving the any-modal to any-modal conditional
inference regardless of modality configurations during training: it targets on generalization under
distribution shifts at test time. On the other hand, the previous studies assume to have full modality
configurations in training even when missing modality configuration at test time is addressed. Second,
the proposed model considers each source of information to be rather partially observable, while each
modality-specific data has been treated as fully observable. As a result, the modality-agnostic meta-
modal representation is inferred from modality-specific representations, each of which is integrated
from a set of partially observable inputs.

3D Representations and Rendering. Learning representations of 3D scenes or environments with
partially observable inputs has been addressed by supervised learning (Choy et al., 2016 |Wu
et al., 2017;[Shin et al.| 2018;|Mescheder et al.| [2018), latent variable models (Eslami et al., |2018;
Rosenbaum et al., 2018; Kumar et al., 2018), and generative adversarial networks (Wu et al., 2016;
Rajeswar et al., 2019; |Nguyen-Phuoc et al., 2019). The GAN-based approaches exploited domain-
specific functions, e.g. 3D representations, 3D-to-2D projection, and 3D rotations. Thus, it is hard to
apply to non-visual modalities whose underlying transformations are unknown. On the other hand,
neural latent variable models for random processes (Eslami et al., [2018} [Rosenbaum et al., [2018;
Kumar et al., 2018; |Garnelo et al., 2018a.b; [Le et al.,[2018; |Kim et al., 2019) has dealt with more
generalized settings and studied on order-invariant inference. However, these studies focus on single
modality cases, so they are contrasted from our method, addressing a new problem setting where
qualitatively different information sources are available for learning the scene representations.

4 Experiment

The proposed model is evaluated with respect to the following criteria: (i) cross-modal density
estimation in terms of log-likelihood, (ii) ability to perform cross-modal sample generation, (iii)
quality of learned representation by applying it to a downstream classification task, (iv) robustness to
the missing-modality problem, and (v) space and computational cost.

To evaluate our model we have developed an environment, the Multisensory Embodied 3D-Scene
Environment (MESE). MESE integrates MuJoCo (Todorov et al., 2012)), MuJoCo HAPTIX (Kumar
& Todorov, 2015), and the OpenAl gym (Brockman et al., 2016) for 3D scene understanding
through multisensory interactions. In particular, from MuJoCo HAPTIX the Johns Hopkins Modular
Prosthetic Limb (MPL) (Johannes et al., 2011) is used. The resulting MESE, equipped with vision
and proprioceptive sensors, makes itself particularly suitable for tasks related to human-like embodied
multisensory learning. In our experiments, the visual input is 64 x 64 RGB image and the haptic
input is 132-dimension consisting of the hand pose and touch senses. Our main task is similar to the
Shepard-Metzler object experiments used in [Eslami et al. (2018]) but extends it with the MPL hand.

As a baseline model, we use a GQN variant (Kumar et al.| [2018) (discussed in Section [2.3). In
this model, following GQN, the representations from different modalities are summed and then
given to a ConvDraw network. We also provide a comparison to PoE version of the model in terms



of computation speed and memory footprint. For more details on the experimental environments,
implementations, and settings, refer to Appendix [A.

Cross-Modal Density Estimation. Our first evaluation is the cross-modal conditional den-
sity estimation. For this, we estimate the conditional log-likelihood log P(X|V,C) for M =
{RGB-image, haptics}, i.e. |[M| = 2. During training, we use both modalities for each sam-
pled scene and use O to 15 randomly sampled context query-sense pairs for each modality. At test
time, we provide uni-modal context from one modality and generate the other.

Fig. Eshows results on 3 different experiments: (a) HAPTIC—GRAY, (b) HAPTIC—RGB and (c)
RGB—HAPTIC. Note that we include HAPTIC—GRAY - although GRAY images are not used
during training — to analyze the effect of color in haptic-to-image generation. The APoE and the
baseline are plotted in blue and orange, respectively. In all cases our model (blue) outperforms
the baseline (orange). This gap is even larger when the model is provided limited amount of
context information, suggesting that the baseline requires more context to improve the representation.
Specifically, in the fully cross modal setting where the context does not include any target modality
(the dotted lines), the gap is largest. We believe that our model can better leverage modal-invariant
representations from one modality to another. Also, when we provide additional context from the
target modality (dashed, dashdot, solid lines), we still see that our model outperforms the baseline.
This implies that our models can successfully incorporate information from different modalities
without interfering each other. Furthermore, from Fig.[3[a) and (b), we observe that haptic information
captures only shapes: the prediction in RGB has lower likelihood without any image in the context.
However, for the GRAY image in (a), the likelihood approaches near the upper bound.

Cross-Modal Generation. We now qualitatively evaluate the ability for cross-generation. Fig. [l
shows samples of our cross-modal generation for various query viewpoints. Here, we condition the
model on 15 haptic context signal but provide only a single image. We note that the single image
provides limited color information about the object, namely, red and cyan are part of the object and
almost no information about the shape. We can see that the model is able to almost perfectly infer the
shape of the object. However, it fails to predict the correct colors (Fig.[I[c)) which is expected due to
the limited visual information provided. Interestingly, the object part for which the context image
provides color information has correct colors, while other parts have random colors for different
samples, showing that the model captures the uncertainty in z. Additional results provided in the
Appendix D suggest further that: (i) our model gradually aggregates numerous evidences to improve
predictions (Fig. and (ii) our model successfully integrates distinctive multisensory information
in their inference (Fig.[S6).

Classification. To further evaluate the quality of the
modality-invariant scene representations, we test on a
downstream classification task. We randomly sample 10
scenes and from each scene we prepare a held-out query-
sense pairs to use as the input to the classifier. The models
are then asked to classify which scene (1 out of 10) a
given query-sense pair belongs to. We use Eq. (6) for this
classification. To see how the provided multi-modal con-
text contributes to obtaining useful representation for this
task, we test the following three context configurations:
(i) image-query pairs only (1), (ii) haptic-query pairs only
(H), and (iii) all sensory contexts (H + I).

classification

# of contexts

Figure 4: Classification result.

In Fig. ] both models use contexts to classify scenes and their performance improves as the number
of contexts increases. APoE outperforms the baseline in the classification accuracy, while both
methods have similar ELBO (see Fig. [S4). This suggests that the representation of our model tends to
be more discriminative than that of the baseline. In APoE, the results with individual modality (I or
H) are close to the one with all modalities (H + I). The drop in performance with only haptic-query
pairs (H) is due to the fact that certain samples might have same shape, but different colors. On the
other hand, the baseline shows worse performance when inferring modality-invariant representation
with single sensory modality, especially for images. This demonstrates that the APoE model helps
learning better representations for both modality-specific ( and H) and modality-invariant tasks
(H + D).
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Figure 5: Results of missing-modality experiments for (a,b) | M| = 8, and (c,d) 14 environments.
During training (train), limited combinations of all possible modalities are presented to the model. The size of
exposed multimodal senses per scene is denoted as | ME2™|. For validation dataset, the models are evaluated
with the same limited combinations as done in training (valnissing), as Well as all combinations (valsuii).

Missing-modality Problem. In practical scenarios, since it is difficult to assume that we always have
access to all modalities, it is important to make the model learn when some modalities are missing.
Here, we evaluate this robustness by providing unseen combinations of modalities at test time. This is
done by limiting the set of modality combinations observed during training. That is, we provide only
a subset of modality combinations for each scene S, i.e, ME2" C M. At test time, the model is
evaluated on every combinations of all modalities M thus including the settings not observed during
training. As an example, for total 8 modalities M = {1left, righ‘ﬁi[} x {R,G,B} x {haptics,} X
{haptics,}, we use |M52"| € {1, 2} to indicate that each scene in training data contains only one
or two modalities. Fig. a) and (b) show results with | M| = 8 while (c) and (d) with |[M| = 14.

Fig. E] (a) and (c) are results when a much more restricted number of modalities are available during
training: 2 out of 8 and 4 out of 14, respectively. At test time, however, all combinations of modalities
are used. We denote the performance on the full configurations by vals,;; and on the limited modality
configurations used during training by valy;issing. Fig.[5[(b) and (d) show the opposite setting where,
during training, a large number of modalities (e.g., 7~8 modalities) are always provided together for
each scene. Thus, the scenes have not trained on small modalities such as only one or two modalities
but we tested on this configurations at test time to see its ability to learn to perform the generalized
cross-modal generation. For more results, see Appendix [E.

Overall, for all cases our model shows good test time performance on the unseen context modality
configurations whereas the baseline model mostly overfits (except (c)) severely or converges slowly.
This is because, in the baseline model, the sum representation on the unseen context configuration
is likely to be also unseen at test time and thus overfit. In contrast, our model as a PoE is robust to
this problem as all experts agree to make a similar representation. The baseline results for case (c)
seem less prone to this problem but converged much slowly. As it converges slowly, we believe that
it might still overfit in the end with a longer run.

Space and Time Complexity. The expert amortizer of APoE significantly reduces the inherent space
problem of PoE while it still requires separate modality encoders. Specifically, in our experiments,
for the M = 5 case, PoE requires 53M parameters while APoE uses 29M. For M = 14, PoE uses
131M parameters while APoE used only 51M. We also observed a reduction in computation time by
using APoE. For M = 5 model, one iteration of PoE takes, in average, 790 ms while APoE takes
679 ms. This gap becomes more significant for M = 14 where PoE takes 2059 ms while APoE takes
1189 ms. This is partly due to the number of parameters. Moreover, unlike POE, APoE can parallelize
its encoder computation via convolution. For more results, see Table[I]in Appendix.

5 Conclusion

We propose the Generative Multisensory Network (GMN) for understanding 3D scenes via modality-
invariant representation learning. In GMN, we introduce the Amortized Product-of-Experts (APoE) in
order to deal with the problem of missing-modalities while resolving the space complexity problem
of standard Product-of-Experts. In experiments on 3D scenes with blocks of different shapes and a
human-like hand, we show that GMN can generate any modality from any context configurations.
We also show that the model with APoE learns better modality-agnostic representations, as well as

3left and right half of an image



modality-specific ones. To the best of our knowledge this is the first exploration of multisensory
representation learning with vision and haptics for generating 3D objects. Furthermore, we have
developed a novel multisensory simulation environment, called the Multisensory Embodied 3D-Scene
Environment (MESE), that is critical to performing these experiments.
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