
Provable Certificates for Adversarial Examples:
Fitting a Ball in the Union of Polytopes

Matt Jordan∗
University of Texas at Austin
mjordan@cs.utexas.edu

Justin Lewis∗
University of Texas at Austin
justin94lewis@utexas.edu

Alexandros G. Dimakis
University of Texas at Austin

dimakis@austin.utexas.edu

Abstract

We propose a novel method for computing exact pointwise robustness of deep
neural networks for all convex `p norms. Our algorithm, GeoCert, finds the largest
`p ball centered at an input point x0, within which the output class of a given neural
network with ReLU nonlinearities remains unchanged. We relate the problem
of computing pointwise robustness of these networks to that of computing the
maximum norm ball with a fixed center that can be contained in a non-convex
polytope. This is a challenging problem in general, however we show that there
exists an efficient algorithm to compute this for polyhedral complices. Further
we show that piecewise linear neural networks partition the input space into a
polyhedral complex. Our algorithm has the ability to almost immediately output a
nontrivial lower bound to the pointwise robustness which is iteratively improved
until it ultimately becomes tight. We empirically show that our approach generates
distance lower bounds that are tighter compared to prior work, under moderate
time constraints.

1 Introduction

The problem we consider in this paper is that of finding the `p-pointwise robustness of a neural net
with ReLU nonlinearities with respect to general `p norms. The pointwise robustness of a neural net
classifier, f , for a given input point x0 is defined as the smallest distance from x0 to the decision
boundary [1]. Formally, this is defined as

ρ(f, x0, p) := inf
x
{ε ≥ 0 | f(x) 6= f(x0) ∧ ||x− x0||p = ε}. (1)

Computing the pointwise robustness is the central problem in certifying that neural nets are robust to
adversarial attacks. Exactly computing this quantity this problem has been shown to be NP-complete
in the `∞ setting [11], with hardness of approximation results under the `1 norm [25]. Despite these
hardness results, multiple algorithms have been devised to exactly compute the pointwise robustness,
though they may require exponential time in the worst case. As a result, efficient algorithms have
also been developed to give provable lower bounds to the pointwise robustness, though these lower
bounds may be quite loose.

In this work, we propose an algorithm that initially outputs a nontrivial lower bound to the pointwise
robustness and continually improves this lower bound until it becomes tight. Although our algorithm
∗First two authors have equal contribution

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

has performance which is theoretically poor in the worst case, we find that in practice it provides a
fundamental compromise between the two extremes of complete and incomplete verifiers. This is
useful in the case where a lower-bound to the pointwise robustness is desired under a moderate time
budget.

The central mathematical problem we address is how to find the largest `p ball with a fixed center
contained in the union of convex polytopes. We approach this by decomposing the boundary of such
a union into convex components. This boundary may have complexity exponential in the dimension
in the general case. However, if the polytopes form a polyhedral complex, an efficient boundary
decomposition exists and we leverage this to develop an efficient algorithm to compute the largest `p
ball with a fixed center contained in the polyhedral complex. We connect this geometric result to the
problem of computing the pointwise robustness of piecewise linear neural networks by proving that
the linear regions of piecewise linear neural networks indeed form a polyhedral complex. Further, we
leverage the lipschitz continuity of neural networks to both initialize at a nontrivial lower bound, and
guide our search to tighten this lower bound more quickly.

Our contributions are as follows:

• We provide results on the boundary complexity of polyhedral complices, and use these
results to motivate an algorithm to compute the the largest interior `p ball centered at x0.

• We prove that the linear regions of piecewise linear neural networks partition the input space
into a polyhedral complex.

• We incorporate existing incomplete verifiers to improve our algorithm and demonstrate that
under a moderate time budget, our approach can provide tighter lower bounds compared to
prior work.

2 Related Work

Complete Verifiers: We say that an algorithm is a complete verifier if it exactly computes the
pointwise robustness of a neural network. Although this problem is NP-Complete in general under
an `∞ norm [11], there are two main algorithms to do so. The first leverages formal logic and
SMT solvers to generate a certificate of robustness [11], though this approach only works for `∞
norms. The second formulates certification of piecewise linear neural networks as mixed integer
programs and relies on fast MIP solvers to be scalable to reasonably small networks trained on
MNIST [20, 8, 13, 6, 4]. This approach extends to the `2 domain so long as the mixed integer
programming solver utilized can solve linearly-constrained quadratic programs [20]. Both of these
approaches are fundamentally different than our proposed method and do not provide a sequence of
ever-tightening lower bounds. Certainly each can be used to certify any given lower bound, or provide
a counterexample, but the standard technique to do so is unable to reuse previous computation.

Incomplete Verifiers: There has been a large body of work on algorithms that output a certifiable
lower bound on the pointwise robustness. We call these techniques incomplete verifiers. These
approaches employ a variety of relaxation techniques. Linear programming approaches admit efficient
convex relaxations that can provide nontrivial lower bounds [26, 25, 17, 7]. Exactly computing the
Lipschitz constant of neural networks has also been shown to be NP-hard [22], but overestimations
of the Lipschitz constant have been shown to provide lower bounds to the pointwise robustness
[15, 25, 19, 10, 21]. Other relaxations, such as those leveraging semidefinite programming, or
abstract representations with zonotopes are also able to provide provable lower bounds [16, 14]. An
equivalent formulation of this problem is providing overestimations on the range of neural nets, for
which interval arithmetic has been shown useful [23, 24]. Other approaches generate lower bounds by
examining only a single linear region of a PLNN [18, 5], though we extend these results to arbitrarily
many linear regions. These approaches, while typically more efficient, may provide loose lower
bounds.

3 Centered Chebyshev Ball

Notations and Assumptions
Before we proceed, we introduce some notation. A convex polytope is a bounded subset of Rn that

2

can be described as the intersection of a finite number of halfspaces. The polytopes we study are
described succinctly by their linear inequalities (i.e., they are H-polytopes), which means that the
number of halfspaces defining the polytope, denoted by m, is at most O(poly(n)), i.e. polynomial
in the ambient dimension. If a polytope P is described as {x | Ax ≤ b}, an (n− k)-face of P is a
nonempty subset of P defined as the set {x | x ∈ P ∧ A=x = b=} where A= is a matrix of rank k
composed of a subset of the rows of A, and b= is the corresponding subset of b. We use the term
facet to refer to an (n− 1) face of P . We define the boundary δP of a polytope as the union of the
facets of P . We use the term nonconvex polytope to describe a subset of Rn that can be written as
a union of finitely many convex polytopes, each with nonempty interior. The `p-norm ball of size
t centered at point x0 is denoted by Bpt (x0) := {x | ||x − x0||p ≤ t}. The results presented hold
for `p norms for p ≥ 1. When the choice of norm is arbitrary, we use || · || to denote the norm and
Bt(x0) to refer to the corresponding norm ball.

Centered Chebyshev Balls: Working towards the case of a union of polytopes, we first consider the
simple case of fitting the largest `p-ball with a fixed center inside a single polytope. The uncentered
version of this problem is typically referred to as finding the Chebyshev center of a polytope and
can be computed via a single linear program [3, 2]. When the center is fixed, this can be viewed as
computing the projection to the boundary of the polytope. In fact, in the case for a single polytope,
it suffices to compute the projection onto the hyperplanes containing each facet. See Appendix A
for further discussion computing projections onto polytopes. Ultimately, because of the polytope’s
geometric structure, the problem’s decomposition is straightforward. This theme of efficient boundary
decomposition will prove to hold true for polyhedral complices as shown in the following sections.

Now, we turn our attention to the case of finding a centered Chebyshev ball inside a general nonconvex
polytope. This amounts to computing the projection to the boundary of the region. The key idea
here is that the boundary of a nonconvex polytope can be described as the union of finitely many
(n− 1)-dimensional polytopes; however, the decomposition may be quite complex. We define this
set formally as follows:

Definition 1. The boundary of a non-convex polytope P is the largest set T ⊆ P such that every
point x ∈ T satisfies the following two properties:

(i) There exists an ε0 and a direction u such that for all ε ∈ (0, ε0), there exists a neighborhood
centered around x+ εu that is contained in P .

(ii) There exists an η0 and a direction v such that for all η ∈ (0, η0), x+ ηv /∈ P .

The boundary is composed of finitely many convex polytopes, and computing the projection to a
single convex polytope is an efficiently computable convex program. If there exists an efficient
decomposition of the boundary of a nonconvex polytope into convex sets, then a viable algorithm
is to simply compute the minimal distance from x0 to each component of the boundary and return
the minimum. Unfortunately, for general nonconvex polytopes, there may not be an efficient convex
decomposition. See Theorem B.1 in Appendix B.

However, there do exist classes of nonconvex polytopes that admit a convex decomposition with size
that is no larger than the description of the nonconvex polytope itself. To this end, we introduce the
following definition (see also Ch. 5 of [27]):

Definition 2. A nonconvex polytope, described as the union of elements of the set P = {P1, ...,Pk}
forms a polyhedral complex if, for every Pi,Pj ∈P with nonempty intersection, Pi ∩ Pj is a face
of both Pi and Pj . Additionally, for brevity, if a pair of polytopes P,Q, form a polyhedral complex,
we say they are PC. (See Figure 2 for examples.)

We can now state our main theorem concerning the computation of the centered Chebyshev ball
within polyhedral complices:

Theorem 3.1. Given a polyhedral complex, P = {P1, . . .Pk}, where Pi is defined as the intersec-
tion of mi closed halfspaces. Let M =

∑
imi, and let x0 be a point contained by at least one such

Pi. Then the boundary of
⋃
i∈[k] Pi is represented by at most M (n − 1)-dimensional polytopes.

There exists an algorithm that can compute this boundary in O(poly(n,M, k)) time.

Returning to our desired application, we now prove a corollary about the centered Chebyshev ball
contained in a union of polytopes.

3

Figure 1: Three potential configurations of a nonconvex polytope. Note that only the rightmost
nonconvex polytope forms a polyhedral complex.

Corollary 3.2. Given a collection, P = {P1, . . .Pk} that meets all the conditions outlined in
theorem 3.1, with the boundary of P computed as in theorem 3.1, the centered Chebyshev ball
around x0 has size

t := inf
x∈T
||x− x0|| (2)

This can be solved by at most M linear programs in the case of `∞ norm, or at most M linearly
constrained quadratic programs in the case of the `2-norm.

Graph Theoretic Formulation:

Theorem 3.1 and its corollary provide a natural algorithm to computing the centered Chebyshev ball
of a polyhedral complex: compute the convex components of the boundary and then compute the
projection to each component. In the desired application of computing robustness of neural networks,
the number of such convex components may be large and therefore it may be inefficient to even
enumerate each component. While we demonstrate in Appendix G that the number of linear regions
of ReLU networks tends to be much smaller than their theoretical upper bound, it is of interest to
develop algorithms that do not have to compute projections to every boundary facet. In the absence
of other information, one must at least compute the projection to every facet, boundary or otherwise,
intersecting the centered Chebyshev ball.

A more natural way to view this problem is as a local-search problem along a bipartite graph. For
a given polyhedral complex P composed of polytopes P1,P2, . . . , we construct a bipartite graph
where each right vertex correspond to an n-dimensional polytope Pi, and each left vertex corresponds
to a facet of the polyhedral complex. We abuse notation and let Pi refer to the right-vertex and its
corresponding polytope and similarly for left-vertex and facet Fj . An edge exists between right-
vertex Pi and left-vertex Fj iff polytope Pi contains facet Fj . In other words, the graph of interest is
composed of the terminal elements of the face lattice and their direct ancestors. By definition, for any
polyhedral complex, the left-degree of this graph is at most 2.

In the context of computing the centered Chebyshev ball, centered around a point x0, we further
equip each left-vertex/facet Fj in our graph with a value which we refer to as the ‘potential.’ For
now, the potential of vertex Fj can be thought of as the projection distance between x0 and the facet
Fj . We will denote the potential of vertex Fj as Φ(Fj). The boundary facets, T , correspond to a
subset of the left-vertices and recall that our goal is to return the left-vertex with minimal potential.
By the triangle inequality, any ray starting at x0 that intersects multiple facets in order Fi1 ,Fi2 , ...
will have that Φ(Fi1) ≤ Φ(Fi2) ≤ Further, one can represent any norm ball Bt(x0) as a subset
St of left and right vertices of the graph. A left-vertex Fj is in St iff Φ(Fj) ≤ t.
The local search along this graph can be thought of as follows. Any point x0 contained inside a
polyhedral complex must reside in at least one polytope Pi, and our goal is to find the facet with
minimum potential. The idea is similar to Djikstra’s algorithm, where we maintain a set of ‘frontier
facets’ in a priority queue, ordered by their potential Φ, and a set of right-vertices/polytopes which
have already been explored. At each iteration, we pop the frontier facet with minimal potential, and
examine its neighbors, which correspond to polytopes containing this facet. Since the left-degree
of the graph is 2, at most one of these neighboring polytopes has not yet been explored. If such a
polytope exists, for each of its neigbors/facets, we compute the potential and insert the facet into the
priority queue of ‘frontier facets’, and also add this new polytope to our set of explored polytopes.
At initialization, the set of seen polytopes is composed only of the polytope containing x0, and
termination occurs as soon as a boundary facet is popped from the priority queue. Pseudocode for
this procedure is outlined in Algorithm 1 and a proof of correctness is provided in Appendix C.

4

P1

P2

P4

Fa

Fb

Fd

F P

P3Fc

P1

P2

P4

Fa
Fb

Fd

P3

Fc

Figure 2: Example of bipartite graph defined over facets F and polytopes P of polyhedral complex
P . Note that each facet is shared by at most two polytopes.

: Algorithm 1: GeoCert
Input: point x0, potential Φ;
Initialization: ;
// Setup priority queue, seen-polytope set;
Q← [];C ← {P(x0)};
// Handle first polytope’s facets;
for Facet F ∈ N(P(x0)) do

Q.push((Φ(F),F));
end
// Loop until boundary is popped;
while Q 6= ∅ do
F ← Q.pop();
if F is boundary then

Return F ;
else

for P ∈ N(F) \ C do
for F ∈ N(P) do

Q.push((Φ(F),F);
end

end
end

end

b

b

b

Figure 3: Pseudocode for GeoCert (left) and a pictorial representation of the algorithm’s behavior
on a simple example (right). The facets colored belong to the priority queue, with red and black
denoting adversarial facets and non-adversarial facets respectively. Once the minimal facet in the
queue is adversarial, the algorithm stops.

This alternative phrasing of our problem aids us in two ways. First, we note that the potential of any
left-vertex Fj can be computed as needed. Indeed, letting t∗ be the minimum potential of all facets
contained in the boundary set, this search procedure only requires that the potential need only be
computed for the facets contained in St∗ , as opposed to the entire collection of facets. Second, Φ
need not refer to the euclidean projection distance, and alternative potential functions exist which
further reduce the number of potentials that need to be computed while preserving correctness. These
will be further discussed in Section 5 and Appendix C.

Iteratively Constructing Polyhedral Complices
Finally, we note an approach by which polyhedral complices may be formed that will become useful
when we discuss PLNN’s in the following section. We present the following three lemmas which

5

relate to iterative constructions of polyhedral complices. Informally, they state that given any polytope
or pair of polytopes which are PC, a slice with a hyperplane or a global intersection with a polytope
generates a set that is still PC.
Lemma 3.3. Given an arbitrary polytope P := {x | Ax ≤ b} and a hyperplaneH := {x | cTx =
d} that intersects the interior of P , the two polytopes formed by the intersection of P and the each of
closed halfpsaces defined byH are PC.
Lemma 3.4. Let P,Q be two PC polytopes and let HP , HQ be two hyperplanes that define two
closed halfspaces each, H+

P , H
−
P , H

+
Q , H

−
Q . If P ∩Q ∩HP = P ∩Q ∩HQ then the subset of the

four resulting polytopes {P ∩ H+
P ,P ∩ H−P ,Q ∩ H+

Q ,Q ∩ H−Q} with nonempty interior forms a
polyhedral complex.

And the following will be necessary when we handle the case where we wish to compute the pointwise
robustness for the image classification domain, where valid images are typically defined as vectors
contained in the hypercube [0, 1]n.
Lemma 3.5. Let P = {P1, . . .Pk} be a polyhedral complex and let D be any polytope. Then the
set {Pi ∩ D | Pi ∈P} also forms a polyhedral complex.

4 Piecewise Linear Neural Networks

Figure 4: Pictorial reference for proof of
Theorem 4.2. (Top Left) A single Relu
activation partitions the input space into
two PC polytopes (Top Right) as addi-
tional activations are added at the first
layer, the collection is still PC by Lemma
3.4. (Bottom Left) as the next layer of
activations are added, the partitioning is
linear within each region created previ-
ously and PC at the previous boundaries,
thus still PC. (Bottom Right) the parti-
tioning due to all subsequent layers pre-
serves PC-ness by induction.

We now demonstrate an application of the geometric re-
sults described above to certifying robustness of neural
nets. We only discuss networks with fully connected layers
and ReLU nonlinearities, but our results hold for networks
with convolutional and skip layers as well as max and
average pooling layers. Let f be an arbitrary L-layer feed
forward neural net with fully connected layers and ReLU
nonlinearities, where each layer f (i) : Rni−1 → Rni has
the form

f (i)(x) =

{
Wix+ bi, if i = 1
Wiσ(f (i−1)(x)) + bi, if i > 1

(3)

where σ refers to the element-wise ReLU operator. And
we denote the final layer output f (L)(x) as f(x). We
typically use the capital F (x) to refer to the maximum
index of f : F (x) := arg maxi fi(x). We define the
decision region of f at x0 as the set of points for which
the classifier returns the same label as it does for x0:
{x | F (x) = F (x0)}.
It is important to note is that f (i)(x) refers to the pre-ReLU
activations of the ith layer of f . Let m be the number
of neurons of f , that is m =

∑L−1
i=1 ni. We describe a

neuron configuration as a ternary vector,A ∈ {−1, 0, 1}m,
such that each coordinate of A corresponds to a particular
neuron in f . In particular, for neuron j,

Aj =


+1, if neuron j is ‘on’
−1, if neuron j is ‘off’
0, if neuron j is both ‘on’ and ‘off’

(4)

Where a neuron being ‘on’ corresponds to the pre-ReLU activation is at least zero, ‘off’ corresponds
to the pre-ReLU being at most zero, and if a neuron is both on and off its pre-ReLU activation is
identically zero. Further each neuron configuration corresponds to a set

PA = {x | f(x) has neuron activation consistent with A}

The following have been proved before, but we include them to introduce notational familiarity:

6

Lemma 4.1. For a given neuron configuration A, the following are true about PA,

(i) f (i)(x) is linear in x for all x ∈ PA.

(ii) PA is a polytope.

This lets us connect the polyhedral complex results from the previous section towards computing the
pointwise robustness of PLNNs. Letting the potential φ be the `p distance, we can apply Algorithm 1
towards this problem.
Theorem 4.2. The collection of PA for allA, such that PA has nonempty interior forms a polyhedral
complex. Further, the decision region of F at x0 also forms a polyhedral complex.

In fact, except for a set of measure zero over the parameter space, the facets of each such linear region
correspond to exactly one ReLU flipping configurations:
Corollary 4.3. If the network parameters are in general position and A,B are neuron configurations
such that dim(PA) = dim(PB) = n and their intersection is of dimension (n− 1), then A,B have
hamming distance 1 and their intersection corresponds to exactly one ReLU flipping signs.

5 Speedups

Figure 5: Piecewise Linear Regions of a
2D toy network. The dotted line repre-
sents the decision boundary.

While our results in section 3 hold for general polyhedral
complices, we can boost the performance of GeoCert by
leveraging additional structure of PLNNs. As the runtime
of GeoCert hinges upon the total number of iterations and
time per iteration, we discuss techniques to improve each.

Improving Iteration Speed Via Upper Bounds
At each iteration, GeoCert pops the minimal element

from the priority queue of ‘frontier facets’ and, using the
graph theoretic lens, considers the facets in its two-hop
neighborhood. Geometrically this corresponds to popping
the minimal-distance facet seen so far, considering the
polytope on the opposite side of that facet and computing
the distan1ce to each of its facets. In the worst case, the
number of facets of each linear region is the number of
ReLU’s in the PLNN. While computing the projection
requires a linear or quadratic program, as we will show, it
is usually not necessary to compute a convex program for

each every nonlinearity at every iteration.

If we can quickly guarantee that a potential facet is infeasible within the domain of interest then
we avoid computing the projection exactly. In the image classification domain, the domain of valid
images is usually the unit hypercube. If an upper bound on the pointwise robustness, U , is known,
then it suffices to restrict our domain to D′ := BU (x0) ∩ D. This aids us in two ways: (i) if the
hyperplane containing a facet does not intersect D′ then the facet also does not intersect D′; (ii) a
tighter restriction on the domain allows for tighter bounds on pre-ReLU activations. For point (i), we
observe that computing the feasibility of the intersection of a hyperplane and hyperbox is linear in
the dimension and hence many facets can very quickly be deemed infeasible. For point (ii), if we
can guarantee ReLU stability, by Corollary 4.3, then we can deem the facets corresponding to the
each stable ReLU as infeasible. ReLU stability additionally provides tighter upper bounds on the
Lipschitz constants of the network.

Any valid adversarial example provides an upper bound on the pointwise robustness. Any point on
any facet on the boundary of the decision region also provides an upper bound. In Appendix F, we
describe a novel tweak that can be used to generate adversarial examples tailored to be close to the
original point. Also, during the runtime of Geocert, any time a boundary facet is added to the priority
queue, we update the upper bound based on the projection magnitude to this facet.

Improving Number of Iterations Via Lipschitz Overestimation
When one uses distance as a potential function, if the true pointwise robustness is ρ, then GeoCert

7

must examine every polytope that intersects Bρ(x0). This is necessary in the case when no extra
information is known about the polyhedral complex of interest. However one can incorporate the
lipschitz-continuity of a PLNN into the potential function φ to reduce on the number of linear regions
examined. The main idea is that as the network has some smoothness properties, any facet for which
the classifier is very confident in its answer must be very far from the decision boundary.
Theorem 5.1. Letting F (x0) = i, and gj(x) = fi(x)−fj(x) and an upper bound Lj on the lipschitz
continuity of gj , using φlip(y) := ||x0 − y||+ minj 6=i

gj(y)
Lj

as a potential for GeoCert maintains its
correctness in computing the pointwise robustness.

The intuition behind this choice of potential is that it biases the set of seen polytopes to not expand
too much in directions for which the distance to the decision boundary is guaranteed to be large. This
effectively is able to reduce the number of polytopes examined, and hence the number of iterations
of GeoCert, while still maintaining complete verification. A critical bonus of this approach is that
it allows one to ’warm-start’ GeoCert with a nontrivial lower bound that will only increase until
becoming tight at termination. A more thorough discussion on upper-bounding the lipschitz constant
of each gj can be found in [25].

6 Experiments

Exactly Computing the Pointwise Robustness: Our first experiment compares the average point-
wise robustness bounds provided by two complete verification methods, GeoCert and MIP, as well as
an incomplete verifier, Fast-Lip. The average `p distance returned by each method and the average
required time (in seconds) to achieve this bound are provided in Table 1. Verification for `2 and `∞
robustness was conducted for 1000 random validation images for two networks trained on MNIST.
Networks are divided into binary and non-binary examples. Binary networks were trained to distin-
guish a subset of 1’s and 7’s from the full MNIST dataset. All networks were trained with `1 weight
regularization with λ set to 2 × 10−3. All networks are composed of fully connected layers with
ReLU activations. The layer-sizes for the two networks are as follows: i) [784, 10, 50, 10, 2] termed
70NetBin and ii) [784, 20, 20, 2] termed 40NetBin. Mixed integer programs and linear programs were
solved using Gurobi [9]. The code for reproducing experiments has been made publicly available†.

From Table 1, it is clear that Geocert and MIP return the exact robustness value while Fast-Lip
provides a lower bound. While the runtimes for MIP are faster than those for GeoCert, they are
within an order of magnitude. In these experiments, we record the timing when each method is left
to run to completion; however, in the experiment to follow we demonstrate that GeoCert provides a
non-trivial lower bound faster than other methods.

Table 1: (Left) Times (seconds) to compute exact pointwise robustness on binary MNIST networks
for both the `2 and `∞ settings over 1000 random examples. Boldface corresponds to the exact
pointwise robustness. (Right) Provable lower bounds for a binary MNIST network under a fixed 300s
time limit. Note that GeoCert initializes at the bound provided by Fast-Lip and continually improves.
Boldface here corresponds to the tightest lower bound found. Note that our algorithm outperforms all
previous methods for this task.

70NetBin 40NetBin

Method `p Dist. Time Dist. Time

Fast-Lip
`∞

0.092 0.012 0.116 0.009
GeoCert 0.175 1.453 0.190 4.924
MIP 0.175 0.771 0.190 0.797

Fast-Lip
`2

0.905 0.007 1.124 0.008
GeoCert 1.414 2.816 1.533 6.958
MIP 1.414 1.972 1.533 4.466

Method

Ex. Fast-Lip GeoCert MIP

1 1.782 2.251 2.0
2 1.319 1.356 1.0
3 1.501 1.620 1.0
4 1.975 2.499 2.0
5 1.871 2.402 2.0

Best Lower Bound Under a Time Limit: To demonstrate the ability of GeoCert to provide a
lower bound greater than those generated by incomplete verifiers and other complete verifiers under

†https://github.com/revbucket/geometric-certificates

8

https://github.com/revbucket/geometric-certificates

Figure 6: Original MNIST images (top) compared to their minimal distance adversarial examples as
found by GeoCert (middle) and the minimal distortion adversarial attacks found by Carlini-Wagner
`2 attack. The average `2 distortion found by GeoCert is 31.6% less that found by Carlini-Wagner.

a fixed time limit we run the following experiment. On the binary MNIST dataset, we train a
network with layer sizes [784, 20, 20, 20, 2] using Adam and a weight decay of 0.02 [12]. We
allow a time limit of 5 minutes per example, which is not sufficient for either GeoCert or MIP to
complete. As per the codebase associated with [20], for MIP we use a binary search procedure
of ε = [0.5, 1.0, 2.0, 4.0, . . .] to verify increasingly larger lower bounds. We also compare against
the lower bounds generated by Fast-Lip [25], noting that using the Lipschitz potential described in
Section 5 allows GeoCert to immediately initialize to the bound produced by Fast-Lip. We find that in
all examples considered, after 5 minutes, GeoCert is able to generate larger lower-bounds compared
to MIP. Table 1 demonstrates these results for 5 randomly chosen examples.

7 Conclusion

This paper presents a novel approach towards both bounding and exactly computing the pointwise
robustness of piecewise linear neural networks for all convex `p norms. Our technique differs
fundamentally from existing complete verifiers in that it leverages local geometric information to
continually tighten a provable lower bound. Our technique is built upon the notion of computing the
centered Chebyshev ball inside a polyhedral complex. We demonstrate that polyhedral complices
have efficient boundary decompositions and that each decision region of a piecewise linear neural
network forms such a polyhedral complex. We leverage the Lipschitz continuity of PLNN’s to
immediately output a nontrivial lower bound to the pointwise robustness and improve this lower
bound until it ultimately becomes tight.

We observe that mixed integer programming approaches are typically faster in computing the exact
pointwise robustness compared to our method. However, our method provides intermediate valid
lower bounds that are produced significantly faster. Hence, under a time constraint, our approach is
able to produce distance lower bounds that are typically tighter compared to incomplete verifiers and
faster compared to MIP solvers. An important direction for future work would be to optimize our
implementation so that we can scale our method to larger networks. This is a critical challenge for all
machine learning verification methods.

8 Acknowledgements

This research has been supported by NSF Grants 1618689, DMS 1723052, CCF 1763702, AF
1901292 and research gifts by Google, Western Digital and NVIDIA.

References
[1] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya Nori, and

Antonio Criminisi. Measuring neural net robustness with constraints. May 2016.

9

[2] N D Botkin and V L Turova-Botkina. An algorithm for finding the chebyshev center of a convex
polyhedron. Appl. Math. Optim., 29(2):211–222, March 1994.

[3] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
March 2004.

[4] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of artificial
neural networks. April 2017.

[5] Francesco Croce, Maksym Andriushchenko, and Matthias Hein. Provable robustness of relu
networks via maximization of linear regions. arXiv preprint arXiv:1810.07481, 2018.

[6] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Output range
analysis for deep feedforward neural networks. In NASA Formal Methods Symposium, pages
121–138. Springer, 2018.

[7] Ruediger Ehlers. Formal verification of Piece-Wise linear Feed-Forward neural networks. May
2017.

[8] Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear optimization.
Constraints, 23:296–309, 2018.

[9] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2019.

[10] Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier
against adversarial manipulation. May 2017.

[11] Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer. Reluplex: An
efficient SMT solver for verifying deep neural networks. February 2017.

[12] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[13] Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-forward
relu neural networks. arXiv preprint arXiv:1706.07351, 2017.

[14] Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation for
provably robust neural networks. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 3578–3586, Stockholmsmässan, Stockholm Sweden, 2018. PMLR.

[15] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial
examples. arXiv preprint arXiv:1801.09344, 2018.

[16] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial
examples. January 2018.

[17] Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A convex
relaxation barrier to tight robustness verification of neural networks. CoRR, abs/1902.08722,
2019.

[18] Sahil Singla and Soheil Feizi. Robustness certificates against adversarial examples for relu
networks. CoRR, abs/1902.01235, 2019.

[19] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. December 2013.

[20] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with
mixed integer programming. November 2017.

[21] Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-Margin training: Scalable
certification of perturbation invariance for deep neural networks. February 2018.

[22] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. In Advances in Neural Information Processing Systems, pages 3835–3844,
2018.

10

[23] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal
safety analysis of neural networks. CoRR, abs/1809.08098, 2018.

[24] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal security
analysis of neural networks using symbolic intervals. In 27th {USENIX} Security Symposium
({USENIX} Security 18), pages 1599–1614, 2018.

[25] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning,
Inderjit S Dhillon, and Luca Daniel. Towards fast computation of certified robustness for relu
networks. arXiv preprint arXiv:1804.09699, 2018.

[26] J Zico Kolter and Eric Wong. Provable defenses against adversarial examples via the convex
outer adversarial polytope. November 2017.

[27] Günter M Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics. Springer-Verlag New
York, 1 edition, 1995.

11

