
Dear reviewers, we would first like to thank you for the helpful comments and suggestions of improvements. Remarks1

concerning typos, bad notations and missing references will be fixed according to your suggestions if the manuscript is2

accepted. Please see our detailed answer to your major concerns below:3

103 104 105 106

Number of samples n in each distribution

10-2

10-1

100

101

102

103

S
e
co

n
d
s

Running time

GW POT (CPU)

GW entropic (GPU) eps=100

SGW (GPU) L=50

SGW (GPU) L=200

SGW numpy (CPU) L=50

SGW numpy (CPU) L=200

Figure 1: Runtimes comparison between SGW, GW,
entropic-GW between 2D random distributions with varying
number of points from 0 to 106 in log-log scale

Computational aspects: The implementation described4

in the paper corresponds to a naive one, that computes dis-5

tances matrices along the projections, and is not the most6

efficient. Pykeops was used to avoid memory overflows in7

the evaluation of the cost in Eq (3) which was computed8

in O(n2) (both space and time). In fact this implemen-9

tation was unnecessary since the final cost can actually10

be computed in O(n log(n)). Indeed, one can develop11

the sum (3) to compute it in O(n) operations: the term12

depending on σ (Eq (2)) can be computed in O(n) oper-13

ations using W (x, y, σ) as shown in the supplementary14

material and for the remaining constants
∑
i,j(xi − xj)

415

(idem for y) the binomial development gets rid of the16 ∑
i,j and only involves

∑
i terms that can be computed17

in O(n) operations. Overall, in 1D, GW can be com-18

puted as efficiently as Wasserstein. As a consequence,19

the complexity of SGW is exactly the same as for Sliced20

Wasserstein and Pykeops is not needed anymore. We believe this discussion can be added without changing the overall21

message of the paper by updating Fig 3 using a pure pytorch implementation as in Fig 1. With this implementation, one22

can compute SGW between 1M point distributions in 1s (vs 100s with a naive PyKeops implementation). Note also that23

entropic-GW is implemented on GPU as well. This way, it is clear that our method is responsible for the computational24

gain that is not a consequence of using PyKeops (#R1).25

Related to the remark of (#R1) we also added the runtimes for two different numbers of projections L = 50, 200. The26

paragraph "Computational aspects" of the paper describes the influence of L on the theoretical complexity. To the27

best of our knowledge, the effect of L on the quality of estimation of the expectation is a hard question that is still28

open for the Sliced Wasserstein itself. Runtimes are computed between 2D measures since the dimension does not29

have an impact on the complexities for computing GW and SGW (they only depend on L and n) (#R1). Moreover,30

the optimization over the Stiefel manifold does not depend on the number of points but only on the dimension d of31

the problem so that overall complexity is niter(Ln log(n) + d3), which is affordable for small d. On the spirals we32

observed that computing RISGW is one order of magnitude slower than the non-RI variant on CPU, which is still33

reasonable (# R1). We propose to add this discussion in the manuscript.34

The non Hilbertian case is a very good remark (#R3). One straightforward approach would be to consider an embedding35

of the distances using multi-dimensional scaling as a prepossessing step or to learn distance-preserving embeddings36

using Siamese networks. This would come with an additional cost but we believe that this direction is worth investigating37

and will add it to the discussion.38

About the choice of ∆: The map ∆ is one of the contributions of the paper. Here we propose a simple method (using39

a linear map in the Stiefel manifold) to align the spaces, even though one could consider other approaches (e.g a ∆40

parameterized by a neural network). We believe designing ∆ is application dependant and preferred to restrict ∆ to the41

Stiefel manifold in order to ensure rotation invariant guarantees so as to make the connection with an important property42

of GW. As such, we can use the ∆ formulation when p = q to recover this property (#R1). We thank (#R4) for its43

remark concerning the 4 others discrepancies. We originally did not want to add non obvious extensions of W, SW using44

the "∆ trick" and only focus our paper on Gromov-Wasserstein as our main result is Theo 3.1. We believe that using ∆45

with other discrepancies deserves a deeper study since it raises a lot of quantitative and theoretical questions (e.g closed46

forms for ∆) and we chose not to include such discussions in the scope of the paper. From a purely computational point47

of view, complexity of all methods are the same (cf remark above). Nevertheless we will add these discrepancies and48

run corresponding experiments with them in the supplementary as suggested by the reviewer.49

Theoretical aspects and proofs: (#R1) the problem (3) is equivalent to Eq (2) in 1D since the quadratic term is constant50

w.r.t. the permutation σ (as being of the form
∑
i,j cσ(i),σ(j) =

∑
i,j ci,j) so that the minimization only involves the51

cross products. We will clarify this point.52

Experiments: (# R1) The idea behind the simple spiral example was just to illustrate the different behaviors of GW,53

SGW and RISGW w.r.t rotations. Indeed, other rotation invariant methods could be applied here and would give similar54

results.55


