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Abstract

Low-rank matrix factorization is a problem of broad importance, owing to the
ubiquity of low-rank models in machine learning contexts. In spite of its non-
convexity, this problem has a well-behaved geometric landscape, permitting local
search algorithms such as gradient descent to converge to global minimizers. In this
paper, we study low-rank matrix factorization in the distributed setting, where local
variables at each node encode parts of the overall matrix factors, and consensus
is encouraged among certain such variables. We identify conditions under which
this new problem also has a well-behaved geometric landscape, and we propose
an extension of distributed gradient descent (DGD) to solve this problem. The
favorable landscape allows us to prove convergence to global optimality with exact
consensus, a stronger result than what is provided by off-the-shelf DGD theory.

1 Introduction

A promising line of recent literature has examined the nonconvex objective functions that arise
when certain matrix optimization problems are solved in factored form, that is, when a low-rank
optimization variable X is replaced by a product of two thin matrices UV and the optimization
proceeds jointly over U and 'V [6} 2} [10, (14} 123} 24127, 137,138} 141}, 142, |43]. In many cases, a study of
the geometric landscape of these objective functions reveals that—despite their nonconvexity—they
possess a certain favorable geometry. In particular, many of the resulting objective functions (7) satisfy
the strict saddle property [13|136], where every critical point is either a local minimum or a strict
saddle point, at which the Hessian matrix has at least one negative eigenvalue, and (iz) have no
spurious local minima (every local minimum corresponds to a global minimum).
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One such problem—which is both of fundamental importance and representative of structures
that arise in many other machine learning problems [[19]—is the low-rank matrix approximation
problem, where given a data matrix Y the objective is to minimize [UV™T — Y||%. As we explain
in Theorem@ building on recent analysis in [32] and [42]], this problem satisfies the strict saddle
property and has no spurious local minima.

In parallel with the recent focus on the favorable geometry of certain nonconvex landscapes, it has
been shown that a number of local search algorithms have the capability to avoid strict saddle points
and converge to a local minimizer for problems that satisfy the strict saddle property [21} 17, 33|
231, 26, 28]); see [} [11]] for an overview. As stated in [20] and as we summarize in Theorem [2.2]
gradient descent when started from a random initialization is one such algorithm. For problems
such as low-rank matrix approximation that have no spurious local minima, converging to a local
minimizer means converging to a global minimizer.

To date, the geometric and algorithmic research described above has largely focused on centralized
optimization, where all computations happen at one “central” node that has full access, for example,
to the data matrix Y.

In this work, we study the impact of distributing the factored optimization problem, such as would be
necessary if the data matrix Y in low-rank matrix approximation were partitioned into submatrices
Y =[Y: Yy .- Y], each of which was available at only one node in a network. By similarly
partitioning the matrix V, one can partition the objective function

J
JUVT —¥[3 = 3 [UVE - Y5 (1)

j=1

One can attempt to minimize the resulting objective, in which the matrix U appears in every term
of the summation, using techniques similar to classical distributed algorithms such as distributed
gradient descent (DGD) [30], distributed Riemannian gradient descent (DRGD) [22]], gossip-based
methods [18} 4], and primal-dual methods [5, 35,7, [15]. At a minimum, however, these algorithms
involve creating local copies U', U2, ..., U’ of the optimization variable U and iteratively sharing
updates of these variables with the aim of converging to a consensus where (exactly or approximately)
U! = U? = ... = U’. The introduction of additional variables (and possibly constraints) means
that these distributed algorithms are navigating a potentially different geometric landscape than their
centralized counterparts.

In this paper we study a straightforward extension of DGD for solving such problems. This extension,
which we term DGD+LOCAL, resembles classical DGD in that each node 5 has a local copy U7 of
the optimization variable U as described above. Additionally, however, each node has a local block
'V of the partitioned optimization variable V, and this block exists only locally at node j without any
consensus or sharing among other nodes. (In contrast, applying classical DGD to (1) would actually
require every node to maintain and update a copy of both entire matrices U and V.)

We present a geometric framework for analyzing the convergence of DGD+LOCAL in such problems.
Our framework relies on a straightforward conversion which reveals (for example in the low-rank
matrix approximation problem) that DGD+LOCAL as described above is equivalent to running
conventional gradient descent on the objective function

J J
> (I9VF =Y+ > wil U7 - U3 ), @
1=1

j=1

where w;; are weights inherited from the DGD+LOCAL iterations. This objective function (2) differs
from the original objective function (1)) in two respects: it contains more optimization variables, and it
includes a quadratic regularizer to encourage consensus. Although the geometry of (I) is understood
to be well-behaved, new questions arise about the geometry of (2): Does it contain new critical points
(local minima that are not global, saddle points that are not strict)? And on the consensus subspace,
where U! = U? = ... = U’, how do the critical points of (2) relate to the critical points of (T)?
We answer these questions and build on the algorithmic results for gradient descent to identify in
Theorem [3.2] sufficient conditions where DGD+LOCAL is guaranteed to converge to a point that
(1) is exactly on the consensus subspace, and (i) coincides with a global minimizer of problem ().
Under these conditions, the distributed low-rank matrix approximation problem is shown to enjoy the
same geometric and algorithmic guarantees as its well-behaved centralized counterpart.
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Figure 1: (Left) Exact optimality and consensus are possible for DGD+LOCAL on a distributed low-

rank matrix approximation problem. (Right) Such properties do not hold in general, as demonstrated

by running DGD on a least squares problem. Full details are provided in the supplementary material.

For the distributed low-rank matrix approximation problem, these guarantees are stronger than what
appear in the literature for classical DGD and more general problems. In particular, we show exact
convergence to the consensus subspace with a fixed DGD+LOCAL stepsize, which in more general
works is accomplished only with diminishing DGD stepsizes for convex [8,|16] and nonconvex [40]
problems or by otherwise modifying DGD as in the EXTRA algorithm [34]. Moreover, we show
convergence to a global minimizer of the original centralized nonconvex problem. Until recently,
existing DGD results either considered convex problems [8,[16] or showed convergence to stationary
points of nonconvex problems [40]. Very recently, it was also shown [12] that with an appropriately
small stepsize, DGD can converge to an arbitrarily small neighborhood of a second-order critical point
for general nonconvex problems with additional technical assumptions. Our work differs from [[12]
in our use of DGD+LOCAL (rather than DGD) and our focus on one specific problem where we can
establish stronger guarantees of exact global optimality and exact consensus without requiring an
arbitrarily small (or diminishing) stepsize.

To summarize the above discussion, in this paper we make the following contributions:

e For general problems and under certain conditions (see Theorem [2.5]and Theorem 2.6), following
the analysis in [21], we show that DGD+LOCAL converges to a second-order critical point of the
regularized objective function (7). In the case of distributed low-rank matrix approximation,
corresponds to (2).

e For general problems and under a certain symmetric gradient condition (see Proposition[2.3), we
show that every critical point of the distributed objective function (7)) lies exactly on the consensus
subspace, thus ensuring that DGD+LOCAL converges to an exact consensus point even with a fixed
stepsize. We further show (see Theorem [2.7) that along the consensus subspace, the distributed
objective function (7) has a certain geometric correspondence to its centralized counterpart (3)). In
particular, every critical point of (7) corresponds to a critical point of (3)), and every strict saddle
point of (3) corresponds to a strict saddle point of (7).

e We show (see Theorem [3.2) that distributed low-rank matrix approximation satisfies the symmetric
gradient condition. Combined with the fact that the centralized low-rank matrix approximation
problem satisfies the strict saddle property and has no spurious local minima (see Theorem[3.T), we
conclude that DGD+LOCAL with a fixed stepsize achieves exact consensus and global optimality
for distributed low-rank matrix approximation (see Theorem [3.2).

To demonstrate our conclusion for distributed low-rank matrix approximation, the left panel in
Figure/T|shows the convergence of DGD+LOCAL for a low-rank matrix factorization problem whose
setup is described in the supplementary material. Both the blue line (showing the objective value)
and the red line (showing the consensus error) converge to zero. In contrast, the right panel in
Figure[T]shows that DGD fails to achieve such optimality and consensus on a different, least squares
problem. We also include experiments on distributed matrix completion and matrix sensing in the
supplementary material.

Our main results on distributed low-rank matrix factorization are presented in Section[3] These results
build on several more general algorithmic and geometric results that we first establish in Section [2.
The results from Section 2 may have broader applicability, and the geometric and algorithmic
discussions in Section 2] may have independent interest from one another. All proofs can be found in
the supplementary material.



2 General Analysis of DGD+LOCAL

Consider a centralized minimization problem that can be written in the form

J
mlrilgnzef(x,y) = Zlf](xa y])7 (3)
J:
where y = [le e yﬂT. Here x is the common variable in all of the objective functions

{fj}jen and y; is the variable only corresponding to f;.

The standard DGD algorithm [30] is stated for problems of minimizing f(x) = Z}]:1 fj(x), and

for such problems it involves updates of the form x7 (k + 1) = 37, (@;x(k)) — uVx f;(x7 (k)),
where {w;;} are a set of symmetric nonnegative weights, and w;; is positive if and only if nodes
i and j are neighbors in the network or ¢+ = j. Throughout this paper, we will make the common
assumption [29] that

J
> ;= 1forall j € [J]. 4)
=1

A very natural extension of DGD to problems of the form (3)—which involve local copies of the
shared variable x and local partitions of the variable y—is to perform the updates

M&

X (k+1) =) (wx'(k)) — uVaxf;(x! (k), y;(k)),

®)

.
Il

—~

yilk+1) = y;(k) — uVy f; (< (k), y; (k).

Because we are interested in solving problems of the form (@), we refer to as DGD+LOCAL
throughout this paper. We note that DGD+LOCAL is not equivalent to algorithm would obtain by
applying classical DGD to reach consensus over the concatenated variables x and y as this would
require each node to maintain a local copy of the entire vector y. For the same reason, DGD+LOCAL
is not equivalent to the blocked variable problem described in [31]].

2.1 Relation to Gradient Descent

Note that we can rewrite the first equation in (5)) as

(k1) =39 (0) (s 00 (0,35 0) + 3 22200 ) = (1)),
i#]

where the assumption (4) is used. Thus, by defining {wj;; } such that

@y .
wﬁ:wijz{‘w’ 7 (©)
0, =7,
we see that DGD+LOCAL ({5) is equivalent to applying standard gradient descent (with stepsize 1) to
J J
minimize g(z) = Y (fj(xf, yi) > wyilxd x1||§), )
j=1 i=1
wherez = (x!,...,x7,y1,...,ys) and W = {w;; } isa J x J connectivity matrix with nonnegative

entries defined in (6) and zeros on the diagonal.

2.2 Algorithmic Analysis

We are interested in understanding the convergence of the gradient descent algorithm when it is
applied to minimizing ¢(z) in (7); as we have argued in Section [2.1] this is equivalent to running the
DGD+LOCAL algorithm (3 to minimize the objective function f(x,y) in (3).



2.2.1 Objective Function Properties and Convergence of Gradient Descent

In this section, we review and present convergence results for gradient descent, before more explicitly
discussing the convergence of DGD+LOCAL in Sectio Under certain conditions, we can
guarantee that gradient descent will converge to a second-order critical point of the objective function
g(z) in (7). The proof relies on certain properties of the functions f; comprising (3). We describe
these properties before discussing convergence results. The first property concerns the assumption
that each f; comprising (3) has Lipschitz gradient. In this case we can also argue that g in (7)) has
Lipschitz gradient.

Proposition 2.1. Let f(x,y) = Z'j]:l fi(x,¥;) be an objective function as in and let g(z)

be as in withz = (x',...,x7,y1,...,y). Suppose that each fj has Lipschitz gradient, i.e.,
V f; is Lipschitz continuous with constant L; > 0. Then Vg is Lipschitz continuous with constant

Ly,=L+ 27” where L := max; L;, w := Z;;j Wj;, and wj; and p are the DGD+LOCAL weights
and stepsize as in (3).

The second property concerns the following Lojasiewicz inequality.

Definition 2.1. [l/|] Assume that h : R™ — R is continuously differentiable. Then h is said to
satisfy the Lojasiewicz inequality, if for any critical point X of h(x), there exist 6 > 0, C1 > 0, and
6 € [0, 1) (which is often referred to as the KL exponent) such that

Ih(x) = A’ < CLIVAE)], ¥ x € B, 0).

This Lojasiewicz inequality (or a more general Kurdyka-t.ojasiewicz (KL) inequality for general
nonsmooth problems) characterizes the local geometric properties of the objective function around
its critical points and has proved useful for convergence analysis [1} 3]. The Lojasiewicz inequality
(or KL inequality) is very general and holds for most problems in engineering. For example,
every analytic function satisfies this Lojasiewicz inequality, but each function may have different
Lojasiewicz exponent € which determines the convergence rate; see [1 3] for the details on this.

A general result for convergence of gradient descent to first-order critical point for a function satisfying
the Lojasiewicz inequality is as follows}?

Theorem 2.1. [Il] Suppose infgn h > —o0 and h satisfies the Lojasiewicz inequality. Also assume
Vh is Lipschitz continuous with constant L > 0. Let {x(k)} be the sequence generated by gradient
descent x(k + 1) = x(k) — pVh(x(k)) with i < +. Then if the sequence {x(k)} is bounded, it
converges to a critical point of h.

The following result further characterizes the convergence behavior of gradient descent to a second-
order critical point.

Theorem 2.2. [2]]] Suppose h is a twice-continuously differentiable function and Vh is Lipschitz
continuous with constant L > 0. Let {x(k)} be the sequence generated by gradient descent
x(k + 1) = x(k) — uVh(x(k)) with n < 1. Suppose x(0) is chosen randomly from a probability
distribution supported on a set S having positive measure. Then the sequence {x(k)} almost surely
avoids strict saddles, where the Hessian has at least one negative eigenvalue.

Theorems|2.1 and[2.2 apply for functions / that globally satisfy the Lojasiewicz and Lipschitz gradient
conditions. In some problems, however, one or both of these properties may be satisfied only locally.
Nevertheless, under an assumption of bounded iterations—as is already made in Theorem [2.1{—it is
possible to extend the first- and second-order convergence results to such functions. For example, one
can extend Theorem [2.1|as follows by noting that the original derivation in [[L] used the Lojasiewicz
property only locally around limit points of the sequence {x(k)}.

Theorem 2.3. [ Suppose infr» h > —oo. For p > 0, let B, denote the open ball of radius p:
B, = {x: ||x|l2 < p}, and suppose h satisfies the Lojasiewicz inequality at all points x € B,,.
Also assume NV h is Lipschitz continuous with constant L > 0. Let {x(k)} be the sequence generated
by gradient descent x(k + 1) = x(k) — uVh(x(k)) with < +. Suppose {x(k)} C B, and all
limit points of {x(k)} are in B,. Then the sequence {x(k)} converges to a critical point of h.

’The result in [[1] is stated for the proximal method, but the result can be extended to gradient descent as long
1
as [ < T



The following result establishes second-order convergence for a function with a locally Lipschitz
gradient.

Theorem 2.4. Let p > 0, and consider an objective function h where:
1. infgn h > —o0,
2. h satisfies the Lojasiewicz inequality within B,
3. h is twice-continuously differentiable, and
4. |h(x)| < Lo, |[Vh(x)|| < L1, and ||V2h H2 < Lo forall x € By,

Suppose the gradient descent stepsize

1
H< 4+27r) : ®)

Ly + 4L1 + ¢
Suppose x(0) is chosen randomly from a probability distribution supported on a set S C B, with
S having positive measure, and suppose that under such random initialization, there is a positive
probability that the sequence {x(k)} remains bounded in B,, and all limit points of {x(k)} are in B,,.
Then conditioned on observing that {x(k)} C B, and all limit points of {x(k)} are in B, gradient
descent converges to a critical point of h, and the probability that this critical point is a strict saddle
point is zero.

2.2.2 Convergence Analysis of DGD+LOCAL

As described in the following theorem, under certain conditions, we can guarantee that the
DGD+LOCAL algorithm (5) (which is equivalent to gradient descent applied to minimizing g(z)
in (7)) will converge to a second-order critical point of the objective function g(z).

Theorem 2.5. Let f(x,y) = ijl fi(x,¥;) be an objective function as in (3) and let g(z) be
as in withz = (x,...,x7,y1,...,y). Suppose each f; satisfies infgn f; > —oc, is twice
continuously-differentiable, and has Lipschitz gradient, i.e., V f; is Lipschitz continuous with constant
L; > 0. Suppose g satisfies the Lojasiewicz inequality. Let L := max; Lj, and let wj; and (i be the
DGD+LOCAL weights and stepsize as in (). Assume w 1= max; » >, Wj; < 5. Let {z(k)} be the
sequence generated by the DGD+LOCAL algorlthm in (3) with

1—2w
L

and with random initialization from a probability distribution supported on a set S having positive
measure. Then if the sequence {z(k)} is bounded, it almost surely converges to a second-order
critical point of the objective function in ().

Remark 2.1. The requirement that the DGD+LOCAL stepsize p = O(f) also appears in the
convergence analysis of DGD in [39, 40].

Remark 2.2. The function g is guaranteed to satisfy the Lojasiewicz inequality [1} 3], for example, if
every f; is semi-algebraic, because this will imply that g is semi-algebraic, and every semi-algebraic
function satisfies the Lojasiewicz inequality.

Remark 2.3. The bounded sequence assumption is commonly used in analysis involving the L.o-
jasiewicz inequality [|L,3]]. If we further assume that the function is coercive, the sequence must be
bounded.

Remark 2.4. Asymptotic convergence is a consequence of the Lojasiewicz inequality [1} 3]. Empiri-
cally, however, DGD+LOCAL for distributed low-rank matrix approximation converges at a linear
rate; see Figure|[T]

Remark 2.5. In order to satisfy (9), it must hold that w < 5- In the case where the DGD+LOCAL

weight matrix W is symmetric and doubly stochastic (i.e., W has nonnegatlve entries and each of its
rows and columns sums to 1), this condition is equivalent to requiring that each diagonal element of

W is larger than 5. Given any symmetric and doubly stochastic matrix W, one can design a new

< 9

weight matrix (W + I)/2 that satisfies this requirement. This strategy is also mentioned at the end of
[39) Section 2.1].



We also have the following DGD+LOCAL convergence result when the functions f; have only a
locally Lipschitz gradient.

Theorem 2.6. Let f(x,y) = Z}]=1 fj(x,¥;) be an objective function as in (3) and let g(z) be as in
withz = (x',...,x7,y1,...,y7). Let p > 0 and suppose each f; satisfies

1. infgn fj > =00,
2. f; is twice-continuously differentiable, and

3. gj (Xan)| < LO,j’ vf] (Xa y])” < L17j’ and ’|v2fj(X7Yj)||2 < L27jf0r all (Xa YJ) €
2p-

Suppose also that g satisfies the Lojasiewicz inequality within B,. Let w;; and p be the DGD+LOCAL
weights and stepsize as in (). Assume w := max; Y, Wj; < 1. Let {z(k)} be the sequence
generated by the DGD+LOCAL algorithm in (5) with

1-2w

4Ly (4+27T)L0,j :
p + p?

< (10)

max; LQJ +

Suppose z(0) is chosen randomly from a probability distribution supported on a set S C B, with
S having positive measure, and suppose that under such random initialization, there is a positive
probability that the sequence {z(k)} remains bounded in B,, and all limit points of {z(k)} are in B,,.

Then conditioned on observing that {z(k)} C B, and all limit points of {z(k)} are in B,
DGD+LOCAL converges to a critical point of the objective function in (1), and the probability
that this critical point is a strict saddle point is zero.

2.3 Geometric Analysis

Section@establishes that, under certain conditions, DGD+LOCAL will converge to a second-order
critical point of the objective function g(z) in (7).

In this section, we are interested in studying the geometric landscape of the distributed objective
function in and comparing it to the geometric landscape of the original centralized objective
function in (3). In particular, we would like to understand how the critical points of g(z) in (7)) are
related to the critical points of f(x,y) in (3).

These problems differ in two important respects:

e The objective function in (7) involves more optimization variables than that in (3). Thus,
the optimization takes place in a higher-dimensional space and there is the potential for new
features to be introduced into the geometric landscape.

e The objective function in involves a quadratic regularization term that will promote
consensus among the variables x', ..., x”. This term is absent from (3). However, along
the consensus subspace where x! = - - = x”, this regularizer will be zero and the objective
functions will coincide.

Despite these differences, we characterize below some ways in which the geometric landscapes of
the two problems may be viewed as equivalent. These results may have independent interest from the
specific DGD+LOCAL convergence analysis in Section [2.2]

Our first result establishes that if the sub-objective functions f; satisfy certain properties, the formula-
tion (7)) does not introduce any new global minima outside of the consensus subspace.

Proposition 2.2. Let f(x,y) = ijl [i(x,y;) be as in (3). Suppose the topology defined by W is
connected. Also suppose there exist x* (which is independent of j) and'y7,j € [J] such that
(x*,y}) € arg min f;(x,y;), Vj € [J]. (11)
XY

Then g(z) defined in (7)) satisfies min, g(z) = miny y f(x,y), and g(z) achieves its global minimum
only for z withx' = - - = x”.



We note that the assumption in Proposition[2.2 is fairly strong, and while there are problems where it
can hold, there are also many problems where it will not hold.

Proposition@establishes that, in certain cases, there will exist no global minimizers of the distributed
objective function g(z) that fall outside of the consensus subspace. (Moreover, and also importantly,
there will exist a global minimizer on the consensus subspace.) Also relevant is the question of
whether there may exist any other types of critical points (such as local minima or saddle points)
outside of the consensus subspace. Under certain conditions, the following proposition ensures that
the answer is no.

Proposition 2.3. Let f(x,y) be as in (3) and g(z) be as in (T) withz = (x',....x7,y1,...,y7).
Suppose the matrix W is connected and symmetric. Also suppose the gradient of f; satisfies the
following symmetric property:

(Vafi(x,¥5), %) = (Vy, [i(x%,55),¥;) (12)
forall j € [J]. Then, any critical point of g must satisfy x' = --- = x”.
Finally, we can also make a statement about the behavior of critical points that do fall on the consensus
subspace.

Theorem 2.7. Let Cy denote the set of critical points of (3): C; := {x,y : Vf(x,y) =0}, and
let C4 denote the set of critical points of (I): C, := {z : Vg(z) = O}. Then, for any z =

(x',...,x7)y) € Cywithx! = --- = x7 = x, we have (x,y) € Cy. Furthermore, if (x,y) is a

strict saddle of f, thenz = (X, ...,X,y) is also a strict saddle of g.

3 Analysis of Distributed Matrix Factorization

We now consider the prototypical low-rank matrix approximation in factored form, where given a
data matrix Y € R™*™, we seek to solve
minimize  |[UVT - Y|%. (13)
UGRIL X 7‘7V€R’V?’L Xr
Here U € R™*" and V € R™*" are tall matrices, and r is chosen in advance to allow for a suitable

approximation of Y. In some of our results below, we will assume that the data matrix Y has rank at
most 7.

One can solve problem (13) using local search algorithms such as gradient descent. Such algorithms
do not require expensive SVDs, and the storage complexity for U and V scales with (n + m)r,
which is smaller than nm as for Y. Unfortunately, problem is nonconvex in the optimization
variables (U, V). Thus, the question arises of whether local search algorithms such as gradient
descent actually converge to a global minimizer of (13). Using geometric analysis of the critical
points of problem (13)), however, it is possible to prove convergence to a global minimizer.

In Section[IT] of the supplementary material, building on analysis in [32]], we prove the following
result about the favorable geometry of the nonconvex problem (13)).

Theorem 3.1. For any data matrix Y, every critical point (i.e., every point where the gradient is
zero) of problem (13)) is either a global minimum or a strict saddle point, where the Hessian has at
least one negative eigenvalue.

Such favorable geometry has been used in the literature to show that local search algorithms (partic-
ularly gradient descent with random initialization [21]]) will converge to a global minimum of the
objective function.

3.1 Distributed Problem Formulation

We are interested in generalizing the matrix approximation problem from centralized to distributed
scenarios. To be specific, suppose the columns of the data matrix Y are distributed among J
nodes/sensors. Without loss of generality, partition the columns of Y as

Y=[Y, Yy -~ Y

)



where for j € {1,2,...,J}, matrix Y; (which is stored at node j) has size n x m;, and where
J . ..
m =} i, m;. Partitioning V similarly as

v=[vl ... VI, (14)
where V; has size m; x r, we obtain the following optimization problem
J
pipimigs 2 IOVF =Yl 1

which is exactly equivalent to (13). Problem (13)), in turn, can be written in the form of problem
by taking
x = vee(U), y; = vee(V,). and f,(x.y,) = [UVF Y, | (16)

Consequently, we can use the analysis from Section [2]to study the performance of DGD+LOCAL
when applied to problem (13)).
For convenience, we note that in this context the DGD+LOCAL iterations take the form

J
U/ (k+1) =Y (0;;U"(k)) = 2u(U7 (k) V] (k) = Y;)V;(k),

i=1

Vi(k+1) = V;(k) = 2u(U’ (k) V] (k) = Y;) U (k), (17)
and the corresponding gradient descent objective function (7)) takes the form
minizmizeg(z) = Z (HUJV;r -Y;|%+ ZwﬁHU] — U’||%> , (18)
j=1 i=1
where U, ..., U’ € R™ " are local copies of the optimization variable U; Vi,...,V are a

partition of V as in (14)); and the weights {wj; } are determined by {w;;} and 1 as in (6).

Problems and (as special cases of problems (3) and (7), respectively) satisfy many of the
assumptions required for the geometric and algorithmic analysis in Section [2] We use these facts in
proving our main result for the convergence of DGD+LOCAL on the matrix factorization problem.

Theorem 3.2. Suppose rank(Y) < r. Suppose DGD+LOCAL is used to solve problem (13),
with weights {w;; } and stepsize
1-2
H< 2 = (8+4m) 5 (19)
max; (276 + 64m)p? + 34|Y,||r + THYJ”F

for some p > 0 and where w := max; Z#j Wy < % Suppose the J x J connectivity matrix
W = {wj;} (with wj; defined in (6)) is connected and symmetric. Let {z(k)} be the sequence
generated by the DGD+LOCAL algorithm. Suppose z(0) is chosen randomly from a probability
distribution supported on a set S C B, with S having positive measure, and suppose that under such
random initialization, there is a positive probability that the sequence {z(k)} remains bounded in
B, and all limit points of {z(k)} are in B,,.

Then conditioned on observing that {z(k)} C B, and all limit points of {z(k)} are in B,
DGD+LOCAL almost surely converges to a solution z* = (UY,... , U* Vi, ... , V%) with the
following properties:

e Consensus: U* = ... = U/* = U™
e Global optimality: (U*, V*) is a global minimizer of (13), where V* denotes the concate-
nation of Vi, ..., V% as in (14).

Such consensus and global optimality for the distributed low-rank matrix approximation problem are
demonstrated by our experiment in the top panel of Figure
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