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Abstract

We theoretically study the landscape of the training error for neural networks
in overparameterized cases. We consider three basic methods for embedding a
network into a wider one with more hidden units, and discuss whether a minimum
point of the narrower network gives a minimum or saddle point of the wider one.
Our results show that the networks with smooth and ReLU activation have different
partially flat landscapes around the embedded point. We also relate these results to
a difference of their generalization abilities in overparameterized realization.

1 Introduction

Deep neural networks (DNNs) have been applied to many problems with remarkable successes. On
the theoretical understanding of DNNs, however, many problems are still unsolved. Among others,
local minima are important issues on learning of DNNs; existence of many local minima is naturally
expected by its strong nonlinearity, while people also observe that, with a large network and the
stochastic gradient descent, training of DNNs may avoid this issue [8, 9]. For a better understanding
of learning, it is essential to clarify the landscape of the training error.

This paper focuses on the error landscape in overparameterized situations, where the number of units
is surplus to realize a function. This naturally occurs when a large network architecture is employed,
and has been recently discussed in connection to optimization and generalization of neural networks
([14, 2, 1] to list a few). To formulate overparameterization rigorously, this paper introduces three
basic methods, unit replication, inactive units, and inactive propagation, for embedding a network to
a network of more units in some layer. We investigate especially the landscape of the training error
around the embedded point, when we embed a minimizer of the error for a smaller model.

A relevant topic to this paper is flat minima [6, 7], which attract much attention in literature. Such
flatness of minima is often observed empirically, and is connected to generalization performance [3, 8].
There are also some works on how to define flatness appropriately and its relations to generalization
[15, 17]. Different from these works, this paper shows some embeddings cause semi-flat minima,
at which a lower dimensional affine subset in the parameter space gives a constant value of error
(see Sec. A). We will also discuss difference between smooth activation and Rectified Linear Unit
(ReLU); at a semi-flat minimum obtained by embedding a network of zero training error, the ReLU
networks have more flat directions. Using PAC-Bayes arguments [11], we relate this to the difference
of generalization bounds between ReLU and smooth networks in overparameterized situations.
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This paper extends [4], in which the three embedding methods are discussed and some conditions on
minimum points are shown. However, the paper is limited to three-layer networks of smooth activation
with one-dimensional output, and addition of one hidden unit is discussed. The current paper covers
a much more general class of networks including ReLU activation and arbitrary number of layers,
and discusses the difference based on the activation functions as well as a link to generalization.

The main contributions of this paper are summarized as follows.

• Three methods of embedding are introduced for the general J-layer networks as basic construction
of overparameterized realization of a function (Sec. 2).

• For smooth activation, the unit replication method embeds a minimum to a saddle point under
some assumptions (Theorem 5).

• It is shown theoretically that, for ReLU activation, a minimum is always embedded as a minimum
by the method of inactive units. The surplus parameters correspond to a flat subset of the training
error (Theorem 9). The unit replication gives only saddles under mild conditions (Theorem 10).

• When a network attains zero training error, the embedding by inactive units gives semi-flat minima
in both activation models. The ReLU networks give flatter minima in the overparameterized
realization, which suggests better generalization through the PAC-Bayes bounds (Sec. 5.2).

All the proofs of the technical results are given in Supplements.

2 Neural network and its embedding to a wider model

We discuss J layer, fully connected neural networks that have an activation function ϕ(z;w), where
z is the input to a unit and w is a parameter vector. The output of the i-th unit Uqi in the q-th
layer is recursively defined by zqi = ϕ(zq−1;wq

i ), where wq
i is the weight between Uqi and the

(q − 1)-th layer. The activation function ϕ(z;w) is any nonlinear function, which often takes the
form ϕ(wT

wgtz − wbias) with w = (wwgt, wbias); typical examples are the sigmoidal function
ϕ(z;w) = tanh(wT

wgtz − wbias) and ReLU ϕ(z;w) = max{wT
wgtz − wbias, 0}. This paper

assumes that there is w(0) such that ϕ(x;w(0)) = 0 for any x. Focusing the q-th layer, with size of
the other layers fixed, the set of networks having H units in the q-th layer is denoted by NH . With a
parameter θ(H) = (W0,w1, . . . ,wH ,v1, . . . ,vH , V0), the function f (H)

θ(H) of NH is defined by

f
(H)

θ(H)(x) := f (H)(x;θ(H)) = ψ
(∑H

j=1vjϕ(x;wj ,W0);V0
)
, (1)

where ϕ(x;wj ,W0) is the output of Uqi with a summarized parameter W0 in the previous layers, and
ψ(zq+1;V0) is all the parts after zq+1 with parameter V0. Note that vj is a connection weight from
the unit Uqj to the units in the (q + 1)-th layer (we omit the bias term for simplicity). The number of
units in the (q − 1)-th and (q + 1)-th layers are denoted by D and M , respectively.

Embedding of a network refers to a map associating a narrower network in NH0
(H0 < H) with a

network of a specific parameter in a wider model NH to realize the same function, keeping other
layers unchanged. For clarity, we use (ζi,ui) instead of (vj ,wj) for the parameter θ(H0) of NH0

;

f
(H0)

θ(H0)(x) := f (H0)(x;θ(H0)) = ψ
(∑H0

i=1ζiϕ(x;ui,W0);V0
)
. (2)

We consider minima and stationary points of the empirical risk (or training error)

LH(θ(H)) :=
∑n
ν=1`(yν ,f

(H)(xν ;θ(H))), (3)

where `(y,f) is a loss function to measure the discrepancy between a teacher y and network output
f , and (x1,y1), . . . , (xn,yn) are given training data. Typical examples of `(y,f) include the square
error ‖y − f‖2/2 and logistic loss −y log f − (1− y) log(1− f) for y ∈ {0, 1} and f ∈ (0, 1). In
the sequel, we assume the second order differentiability of `(y,f) with respect to f for each y.

2.1 Three embedding methods of a network

To fomulate overparameterization, we introduce three basic methods for embedding f (H0)

θ(H0) into NH
so that it realizes exactly the same function as f (H0)

θ(H0) . See Table 1 and Figure 1 for the definitions.

(I) Unit replication: We fix a unit, say the H0-th unit UqH0
, in NH0

, and replicate it. Simply, θ(H)

has H − H0 + 1 copies of uH0
, and divides the weight ζH0

by vH0
, . . . ,vH , keeping the other
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(I) Unit replication (II) Inactive units (III) Inactive propagation

Figure 1: Embedding of a narrower network to a wider one.

Unit replication Πrepl(θ
(H0)) Inactive units Πiu(θ(H0)) Inactive propagation Πip(θ

(H0))
wi = ui (1 ≤ i ≤ H0 − 1) wi = ui (1 ≤ i ≤ H0) wi = ui (1 ≤ i ≤ H0)
vi = ζi (1 ≤ i ≤ H0 − 1) vi = ζi (1 ≤ i ≤ H0) vi = ζi (1 ≤ i ≤ H0)
wH0 = · · · = wH = uH0 wH0+1 = · · · = wH = w(o) wH0+1, . . . ,wH : arbitrary
vH0 + · · ·+ vH = ζH0 vH0+1, . . . ,vH : arbitrary vH0+1 = · · · = vH = 0

Table 1: Three methods of embedding

parts unchanged. A choice of ui (1 ≤ i ≤ H0) to replicate is arbitrary, and a different choice
defines a different network. We use uH0

for simplicity. The parameters vH0
, . . . ,vH consist of an

(H −H0)×M dimensional affine subspace, denoted by Πrepl(θ
(H0)), in the parameters for NH .

(II) Inactive units: This embedding uses the special weight w(0) to make the surplus units inactive.
The set of parameters is denoted by Πiu(θ(H0)), which is of (H −H0)×M dimension.

(III) Inactive propagation: This embedding cuts off the weights to the (q + 1)-th layer for the
surplus part. The weights wj of the surplus units are arbitrary. The set of parameters is denoted by
Πip(θ

(H0)), which is of (H −H0)×D dimension.

All the above embeddings give the same function as the narrower network.

Proposition 1. For any θ(H) ∈ Πrepl(θ
(H0))∪Πiu(θ(H0))∪Πip(θ

(H0)), we have f (H)

θ(H) = f
(H0)

θ(H0) .

It is important to note that a network is not uniquely embedded in a wider model, in contrast to fixed
bases models such as the polynomial model. This unidentifiability has been clarified for three-layer
networks [10, 16]; in fact, for three layer networks of tanh activation, [16] shows that the three
methods essentially cover all possible embedding. For three-layer networks of 1-dimensional output
and smooth activation, [4] shows that this unidentifiable embedding causes minima or saddle points.
The current paper extends this result to general networks with ReLU as well as smooth activation.

3 Embedding of smooth networks

This section assumes the second order differentiability of ϕ(x;w) on w. The case of ReLU will be

discussed in Sec. 4. Let θ(H0)
∗ be a stationary point of LH0 , i.e., ∂LH0

(θ
(H0)
∗ )

∂θ(H0) = 0. We are interested
in whether the embedding in Sec. 2 also gives a stationary point of LH . More importantly, we wish
to know if a minimum of LH0 is embedded to a minimum of LH . A network can be embedded by
any combination of the three methods, but we consider their effects separately for simplicity. The
definition of minimum, saddle point, and related notions are given by Sec. A.

3.1 Stationary properties of embedding

To discuss the stationarity for the case (I) unit replication, we need to restrict Πrepl(θ
(H0)) to a subset.

For θ(H0), define θ(H)
λ for every λ = (λH0

, . . . , λH) ∈ RH−H0+1 with
∑H
j=H0

λj = 1 by

wi = ui, vi = ζi (1 ≤ i ≤ H0 − 1),

wH0 = · · · = wH = uH0 , vj = λjζH0 (H0 ≤ j ≤ H). (4)

Obviously, θ(H)
λ ∈ Πrepl(θ

(H0)) so that f (H)(x;θ
(H)
λ ) = f (H0)(x;θ(H0)). The next theorem tells

that a stationary point of NH0
is embedded to an (H −H0)-dimensional stationary subset of NH .

Theorem 2. Let θ(H0)
∗ be a stationary point of LH0 . Then, for any λ = (λH0 , . . . , λH) with∑H

j=H0
λj = 1, the point θ(H)

λ defined by Eq. (4) is a stationary point of LH .
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The basic idea for the proof is to separate the subset of parameters (vH0 ,wH0 , . . . ,vH ,wH) into
a copy of (ζH0 ,uH0) and the remaining ones, the latter of which do not contribute to change the
function f (H)

θ(H) at θ(H)
λ . We will see this reparameterization in Sec. 3.2 in detail.

It is easy to see that the inactive units or propagations does not generally embed a stationary point to
a stationary one (see also Theorems 2 and 4 in [4]). The details will be given in Sec. C.

3.2 Embedding of a minimum point in the case of smooth networks

We next consider the embedding θ(H)
λ of a mininum point θ(H0)

∗ of LH0
. In the sequel, for readability,

we discuss three-layer models (J = 3) and linear output units. Note however that, for general J , the
derivatives and Hessian of LH for the other parameters are exactly the same as those of LH0

for the
corresponding parameters. We omit the full description here. The two models are simply given by

NH : f (H)(x;θ(H)) =
∑H
j=1vjϕ(x;wj) and NH0

: f (H0)(x;θ(H0)) =
∑H0

i=1ζiϕ(x;ui).
(5)

To simplify the Hessian for unit replication, we introduce a new parameterization of NH . Let
λ ∈ RH−H0+1 be fixed such that λH0 + · · ·+λH = 1 and λj 6= 0. For such λ, take an (H −H0)×
(H −H0 + 1) matrix A = (αcj) (H0 + 1 ≤ c ≤ H,H0 ≤ j ≤ H) that satisfies the two conditions:

(A1)
(
1TH−H0+1

A

)
is invertible, where 1d = (1, . . . , 1)T ∈ Rd,

(A2)
∑H
j=H0

αcjλj = 0 for any H0 + 1 ≤ c ≤ H .

To find suchA, takeA = (aH0+1, . . . ,aH)T so that aTc λ = 0. Then, if
∑H
c=H0+1 scac = 1H−H0+1

for some scalars sc, taking the inner product with λ causes a contradiction.

Given such λ and A = (αcj), define a bijective linear transform from (vH0 , . . . ,vH ;wH0 , . . . ,wH)
to (a, ξH0+1, . . . , ξH ; b,ηH0+1, . . . ,ηH) by

wj = b+
∑H
c=H0+1αcjηc and vj = λja+

∑H
c=H0+1λjαcjξc (H0 ≤ j ≤ H). (6)

The parameter b serves as the direction that makes all the hidden units behave equally, and (ηj)
define the remaining H − 1 directions that differentiate them. The parameter b thus essentially plays
the role of uH0

forNH0
. Also, a works as ζH0

when allwj are equal. The next lemma confirms this
role of (a, b) and shows that the directions ηc and ξc do not change the function f (H) at θ(H0)

λ .

Lemma 3. Let θ(H0) be any parameter ofNH0
, and θ(H)

λ be its embedding defined by Eq. (4). Then,
∂f(H)(x;θ(H))

∂b

∣∣∣
θ(H)=θ

(H)
λ

= ∂f(H0)(x;θ(H0))
∂uH0

, ∂f(H)(x;θ(H))
∂ηc

∣∣∣
θ(H)=θ

(H)
λ

= 0,

∂f(H)(x;θ(H))
∂a

∣∣∣
θ(H)=θ

(H)
λ

= ∂f(H0)(x;θ(H0))
∂ζH0

, ∂f(H)(x;θ(H))
∂ξc

∣∣∣
θ(H)=θ

(H)
λ

= 0. (7)

From Lemma 3, the Hessian takes a simple form:

Lemma 4. Let λ and A be as above. Suppose θ(H0)
∗ is a stationary point of NH0

and θ(H)
λ

is its embedding defined by Eq. (4). Then, the Hessian matrix of LH with respect to ω =

(a, b, ξH0+1, . . . , ξH ,ηH0+1, . . . ,ηH) at θ(H) = θ
(H)
λ is given by

∂2LH(θ
(H)
λ )

∂ω∂ω
=



a b ξd ηd

a
∂2LH0

(θ
(H0)
∗ )

∂ζH0
∂ζH0

∂2LH0
(θ

(H0)
∗ )

∂ζH0
∂uH0

O O

b
∂2LH0

(θ
(H0)
∗ )

∂uH0
∂ζH0

∂2LH0
(θ

(H0)
∗ )

∂uH0
∂uH0

O O

ξc O O O F̃
ηc O O F̃T G̃

. (8)

The lower-right block G̃ := (
∂2LH(θ

(H)
λ )

∂ηc∂ηd
)cd, which is a symmetric matrix of (H − H0) ×

D dimension, is given by
(
AΛAT

)
⊗ G with Λ = Diag(λH0

, . . . , λH) and G :=∑n
ν=1

∂`(yν ,f
(H0)(xν ;θ

(H0)
∗ ))

∂z ζH0∗
∂2ϕ(xν ;uH0∗)

∂uH0
∂uH0

; and F̃ := (
∂2LH(θ

(H)
λ )

∂ξc∂ηd
)cd, which is of size (H −

H0)×M dimension, is given by
(
AΛAT

)
⊗F with F :=

∑n
ν=1

∂`(yν ,f
(H0)(xν ;θ

(H0)
∗ ))

∂z

∂ϕ(xν ;uH0∗)

∂uH0
.
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Lemma 4 shows that, with the reparametrization, the Hessian at the embedded stationary point θ(H)
λ

contains the Hessian of LH0
with a, b, and that the cross blocks between (a, b) and (ξc,ηd) are zero.

Note that the ξ-ξ block is zero, which is important when we prove Theorem 5.
Theorem 5. Consider a three layer network given by Eq. (5). Suppose that the the output dimension
M is greater than 1 and θ(H0)

∗ is a minimum of LH0
. Let the matrices G, F and the parameter θ(H)

λ
be used in the same meaning as in Lemma 4 (unit replication). Then, if either of the conditions
(i) G is positive or negative definite, and F 6= O,
(ii) G has positive and negative eigenvalues,
holds, then for any λ with

∑H
j=H0

λj = 1 and λj 6= 0, θ(H)
λ is a saddle point of LH .

Theorem 5 is easily proved from Lemma 4. From the form of the lower-right four blocks of Eq. (8), it
has positive and negative eigenvalues if G̃ is positive (or negative) definite and F̃ 6= O. See Sec. D.3
in Supplements for a complete proof. The assumption M ≥ 2 is necessary for the condition (i) to
happen. In fact, [4] discussed the case of M = 1, in which F = O is derived. The paper also gave a
sufficient condition that the embedded point θ(H)

λ is a local minimum when G is positive (or negative)
definite. See Sec. E for more details on the special case of M = 1.

Suppose that θ(H0)
∗ attains zero training error. Then, θ(H)

λ can never be a saddle point but a global
minimum. Therefore, the situation (ii) can never happen. In that case, if G is invertible, it must be
positive definite and F = O. We will discuss this case further in Sec. 5.1.

4 Semi-flat minima by embedding of ReLU networks

This section discusses networks with ReLU. Its special shape causes different results. Let φ(t) be
the ReLU function: φ(t) = max{t, 0}, which is used very often in DNNs to prevent vanishing
gradients [12, 5]. The activation is given by ϕ(x;w) = φ(wT x̃) withwT x̃ := wT

wgtx− wbias. It
is important to note that the ReLU function satisfies positive homogeneity; i.e., φ(αt) = αφ(t) for
any α ≥ 0. This causes special properties on ϕ, that is, (a) ϕ(x; rw) = rϕ(x;w) for any r ≥ 0, (b)
∂ϕ(x;w)
∂w

∣∣∣
w=rw∗

= ∂ϕ(x;w)
∂w

∣∣∣
w=w∗

if r > 0,wT x̃ 6= 0, and (c) ∂
2ϕ(x;w)
∂w∂w = 0 if wT x̃ 6= 0.

From the positive homogeneity, effective parameterization needs some normalization of vj or wj .
However, this paper uses the redundant parameterization. In our theoretical arguments, no problem is
caused by the redundancy, while it gives additional flat directions in the parameter space.

4.1 Embeddings of ReLU networks

Reflecting the above special properties, we introduce modified versions for embeddings of θ(H0)
∗ .

(I)R Unit replication: Fix UqH0
, and take γ = (γH0

, . . . , γH) ∈ RH−H0+1 and β = (βH0
, . . . , βH)

such that βj > 0 (H0 ≤ ∀j ≤ H) and
∑H
j=H0

γjβj = 1. Define θ(H)
γ,β by

wi = ui, vi = ζi (1 ≤ i ≤ H0 − 1),

wj = βjuH0
, vj = γjζH0

(H0 ≤ j ≤ H). (9)

(II)R Inactive units: Define a parameter θ̂(H) by
wi = ui, vi = ζi (1 ≤ i ≤ H0), vj : arbitrary (H0 + 1 ≤ j ≤ H)

wj such that wT
j x̃ν < 0 (∀ν,H0 + 1 ≤ j ≤ H). (10)

Note that the definition (II)R is different from the smooth activation case. The last condition is easily
satisfied if wbias is large. Note also that ϕ(xν ;wj) = 0 for each ν, but ϕ(x;wj) 6≡ 0 in general.
Since a small change of wj (H0 + 1 ≤ j ≤ H) does not alter ϕ(xν ;wj) = 0, the function LH is
constant locally on vj and wj (H0 + 1 ≤ j ≤ H) at θ̂(H). This is clear difference from the smooth
case, where changing wj from w(0) may cause a different function.

(III)R Inactive propagation: The inactive propagation is exactly the same as the smooth activation
case. The embedded point is denoted by θ̃(H).

The following proposition is obvious from the definitions.
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Proposition 6. For the unit replication and inactive propagation, we have f (H)

θ
(H)
γ,β

= f
(H)

θ̃(H)
= f

(H0)

θ
(H0)
∗

.

We see that there are some other flat directions in addition to the general cases. In the embedding by
inactive units, if the condition wT

j x̃ν ≤ 0 is maintained, LH has the same value. Assume ‖xν‖ ≤ 1
without loss of generality, and fix K > 1 as a constant. Define ŵj,wgt = 0 and ŵj,bias = 2K for
H0 + 1 ≤ j ≤ H . From wT

j x̃ν ≤ ‖wj,wgt‖ − wj,bias ≤ 0 for wj ∈ BK := {wj | ‖wj,wgt‖ ≤
K and K ≤ wj,bias ≤ 3K} and any vj (H0 + 1 ≤ j ≤ H), we have the following result, showing
that an (H −H0)× (M +D) dimensional affine subset at θ̂(H) gives the same value at xν .

Proposition 7. Assume ‖xν‖ ≤ 1 (∀ν). If (vi,wi) = (ζi∗,ui∗) (1 ≤ i ≤ H0) and (vj ,wj) ∈
RM ×BK (H0 + 1 ≤ j ≤ H), we have for any ν = 1, . . . , n

f (H)(xν ;θ(H)) = f (H0)(xν ;θ
(H0)
∗ ).

Next, for the unit replication of ReLU networks, the piecewise linearity of ReLU causes additional
flat directions. To see this, for a fixed (γ,β) with

∑
j γjβj = 1, we introduce a parametriza-

tion in a similar manner to the smooth case. Let A = (αcj) be an (H − H0) × (H − H0 + 1)

matrix such that
∑H
j=H0

αcjγjβj = 0 (∀c) and
(
1TH−H0+1

A

)
is invertible. Fix such A and define

(a, ξH0+1, . . . , ξH ; b,ηH0+1, . . . ,ηH) by Eq. (6). The next proposition shows that a small change of
(ηj)

H
j=H0+1 does not alter the value LH(θ(H)) = LH0

(θ
(H0)
∗ ). LetBηδ (θ(H)) denote the intersection

of the ball of radius δ > 0 at θ(H) and the affine subspace spanned by ηH0+1, . . . ,ηH at θ(H).

Proposition 8. Let {xν}nν=1 be any data set, θ(H0)
∗ be any parameter of the ReLU network NH0

,
and θ(H)

γ,β be defined by Eq. (9). Assume that uTH0∗xν 6= 0 for all ν. Then, there is δ > 0 such that

f (H)(xν ;θ(H)) = f (H0)(xν ;θ
(H0)
∗ ) (∀θ(H) ∈ Bηδ (θ

(H)
γ,β ), ∀ν = 1, . . . , n).

See Sec. F.1 for the proof. The situation uTH0∗xν 6= 0 may easily occur in practice (Fig. 2(a)).

4.2 Embedding a local minimum of ReLU networks

We first consider the embedding of a minimum by inactive units. Let θ̂(H) be an embedding of θ(H0)

by Eq. (10). From Proposition 7, LH(θ(H)) does not depend on (vj ,wj)
H
j=H0+1 around θ̂(H) but

takes the same value as LH0
(θ(H0)) with θ(H0) = (vi,wi)

H0
i=1. We have thus the following theorem.

Theorem 9. Assume that θ(H0)
∗ is a minimum of LH0

. Then, the embedded point θ̂(H) defined by
Eq. (10) (inactive units) is a minimum of LH .

Theorem 9 and Proposition 7 imply that there is an (H −H0)× (M +D) dimensional affine subset
that gives local minima, and in those directions LH is flat.

Next, we consider the embedding by unit replication, which needs further restriction on γ and β. Let
θ(H0) be a parameter of NH0

, and γ = (γj)
H
j=H0

satisfy
∑H
j=H0

γj > 0. Define θ(H)
γ by replacing

wj = βjuj in Eq. (9) withwj = uH0/
∑H
k=H0

γk (H0 ≤ j ≤ H). If we assume uTH0∗xν 6= 0 (∀ν),
the function LH is differentiable on ηc, ξc, and for the same reason as Theorem 5, the derivatives are
zero. By restricting the function on those directions around θ(H)

γ , from the fact ∂
2ϕ(xν ;uH0

)

∂uH0
∂uH0

= 0, we

can see that the Hessian has the form
(
O F̃
F̃T O

)
, which includes a positive and negative eigenvalue

unless F = O. This derives the following theorem. (See Sec. F.2 for a complete proof.)

Theorem 10. Suppose that θ(H0)
∗ is a minimum point of LH0 . Assume that uTH0∗xν 6= 0 for any

ν = 1, . . . , n, and that F 6= O where F is given by Lemma 4. Then, for any γ ∈ RH−H0+1 such
that

∑H
j=H0

γj > 0, the embedded parameter θ(H)
γ is a saddle point of LH .
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5 Discussions

5.1 Minimum of zero error

In using a very large network with more parameters than the data size, the training error may reach
zero. Assume `(y, z) ≥ 0 and that a narrower model attains LH0

(θ
(H0)
∗ ) = 0 without redundant

units, i.e., any deletion of a unit will increase the training error. We investigate overparameterized
realization of such a global minimum by embedding in a wider networkNH . Note that by any methods
the embedded parameter is a minimum. This causes special local properties on the embedded point.

For simplicity, we assume three-layer networks and ‖xν‖ ≤ 1 (∀ν). First, consider the unit replication
for the smooth activation. As discussed in the last part of Sec. 3.2, the Hessian takes the form

Smooth: ∇2LH(θ
(H)
λ ) =

θ(H0) ∇2LH0(θ
(H0)
∗ ) O O

ηc O O O
ξc O O G̃

, (11)

where G̃ is non-negative definite. It is not difficult to see (Sec. G.2.2) that, in the case of inactive
units, the lower-right four blocks take the form

(
O O
O S

)
. The case of inactive propagation is similar.

For ReLU activation, assume θ(H0)
∗ is a differentiable point of LH0

for simplicity. From Proposition
7, the Hessian at the embedding θ̂(H) by inactive units is given by

ReLU: ∇2LH(θ̂(H)) =

[ θ(H0) (vj ,wj)

∇2LH0
(θ

(H0)
∗ ) O

O O

]
. (12)

Similarly to the smooth case, the Hessian for the unit replication θ(H)
γ takes the same form as Eq. (12).

5.2 Generalization error bounds of embedded networks

Based on the results in Sec. 5.1, here we compare the embedding between ReLU and smooth
activation. The results suggest that the ReLU networks can have an advantage in generalization error
when zero training error is realized by some type of overparameterized models.

Suppose that the smooth model NH0,s
and ReLU mdoel NH0,r

attain zero training error without
redundant units. They are embedded by the method of inactive units into NHs and NHr , respectively,
so that Hs −H0,s = Hr −H0,r(=: E) (the same number of surplus units). The dimensionality of
the parameters of NH0,s and NH0,r are denoted by d0sm and d0rl, respectively.

The major difference of the local properties in Eqs. (11) and (12) is the existence of matrix S or G̃ in
the smooth case. The ReLU network has a flat error surface LH in both the directions of wj and vj .
In this sense, the embedded minimum is flatter in the ReLU network. We relate this difference of
semi-flatness to the generalization ability of the networks through the PAC-Bayes bounds, which has
been already used for discussing deep learning [13]. Our motivation here is to consider the difference
of the activation functions. We give a summary here and defer the details in Sec. G, Supplements.

Let D be a probability distribution of (x,y) and LH(θ(H)) := ED[`(y,f(x;θ(H)))] be the gener-
alization error (or risk). Training data (x1,y1), . . . , (xn,yn) are i.i.d. sample with distribution D.
Then, with a trained parameter θ̂, the PAC-Bayes bound tells

LH(θ̂) /
1

n
LH(θ̂) + 2

√
2(KL(Q||P ) + ln 2δ

n )

n− 1
, (13)

where P is a prior distribution which does not depend on the training data, and Q is any distribution
such that it distributes on parameters that do not change the value of LH so much from LH(θ̂).

We focus on the embedding by inactive units here. See Sec. G.2.3, Supplements, for the other
cases. The essential factor of the PAC-Bayes bound is the KL-divergence KL(Q||P ), which is to
be small. We use different choices of P and Q for the smooth and ReLU networks (see Sec. G for
details). For the smooth networks, Psm is a non-informative normal distribution N(0, σ2Idsm) with
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Figure 2: (a) Data and fitting by N5 with ReLU. (b) Ratio of generalization errors of NH and NH0
.

σ � 1, and Qsm is N(θ̂
(H)
sm,0, τ

2H−1sm)×N(θ̂
(H)
sm,1, σ

2Id1)×N(θ̂
(H)
sm,2, τ

2S−1) with τ � 1, where
the decomposition corresponds to the components θ(H0), (vj)

H
j=H0+1, and (wj)

H
j=H0+1. Hsm :=

∇2LH0
(θ

(H0)
∗,sm) is the Hessian. For ReLU, based on Proposition 7, Prl is given by N(0, σ2Id0rl)×

N(0, σ2Id1) × UnifBEK , while Qrl is N(θ̂
(H)
rl,0 , τ

2H−1rl ) × N(θ̂
(H)
rl,1 , σ

2Id1) × UnifBEK , where d1 =

E ×M is dim(vj)
H
j=H0+1. For these choices, the major difference of the bounds is the term

d1 log
(
σ2/τ2)

in the KL divergence for the smooth model. We can argue that, in realizing perfect fitting to
training data with an overparameterized network, the ReLU network achieves a better upper bound of
generalization than the smooth network, when the numbers of surplus units are the same.

Numerical experiments. We made experiments on the generalization errors of networks with ReLU
and tanh in overparameterization. The input and output dimension is 1. Training data of size 10
are given by N1 (one hidden unit) for the respective models with additive noise ε ∼ N(0, 10−2) in
the output. We first trained three-layer networks with each activation to achieve zero training error
(< 10−29 in squared errors) with minimum number of hidden units (H0 = 5 in both models). See
Figure 2(a) for an example of fitting by the ReLU network. We used the method of inactive units for
embedding to NH , and perturb the whole parameters with N(0, ρ2), where ρ is the 0.01× ‖θ(H0)

∗ ‖.
The code is available in Supplements. Figure 2(b) shows the ratio of the generalization errors (average
and standard error for 1000 trials) ofNH overNH0

as increasing H . We can see that, as more surplus
units are added, the generalization errors increase for the tanh networks, while the ReLU networks
do not show such increase. This accords with the theoretical considerations in Sec. 5.2: adding
surplus units in tanh activation makes sharp directions, which degrade the generalization.

5.3 Additional remarks

Regularization. In training of a large network, one often regularizes parameters based on the norm
such as `2 or `1. Consider, for example, the inactive method of embedding for tanh or ReLU by
setting vj = 0 andwj = 0 (H0 + 1 ≤ j ≤ H). Then the norm of the embedded parameter is smaller
than that of unit replication. This implies that if norm regularization is applied during training, the
embedding by inactive units and propagation is to be promoted in overparameterized realization.

Abundance of semi-flat minima in ReLU networks. Theorems 9 and 10 discuss three layer models
for simplicity, but they can be easily extended to networks of any number of layers. Given a minimum
of LH0

, it can be embedded to a wider network by making inactive units in any layers. Thus, in
a very large (deep and wide) network with overparameterization, there are many affine subsets of
parameters to realize the same function, which consist of semi-flat minima of the training error.

6 Conclusions

For a better theoretical understanding of the error landscape, this paper has discussed three methods
for embedding a network to a wider model, and studied overparameterized realization of a function
and its local properties. From the difference of the properties between smooth and ReLU networks, our
results suggest that ReLU may have an advantage in realizing zero errors with better generalization.
The current analysis reveals some nontrivial geometry of the error landscape, and its implications to
dynamics of learning will be within important future works.
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