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Abstract

We study two problems in high-dimensional robust statistics: robust mean esti-
mation and outlier detection. In robust mean estimation the goal is to estimate
the mean µ of a distribution on Rd given n independent samples, an ε-fraction
of which have been corrupted by a malicious adversary. In outlier detection the
goal is to assign an outlier score to each element of a data set such that elements
more likely to be outliers are assigned higher scores. Our algorithms for both
problems are based on a new outlier scoring method we call QUE-scoring based
on quantum entropy regularization. For robust mean estimation, this yields the
first algorithm with optimal error rates and nearly-linear running time Õ(nd) in all
parameters, improving on the previous fastest running time Õ(min(nd/ε6, nd2)).
For outlier detection, we evaluate the performance of QUE-scoring via extensive
experiments on synthetic and real data, and demonstrate that it often performs
better than previously proposed algorithms. Code for these experiments is available
at https://github.com/twistedcubic/que-outlier-detection.

1 Introduction

We study outlier-robust statistics in high dimensions, focusing on the question: can theoretically
sound outlier robust algorithms have practical running times for large, high-dimensional data sets?
We address two related problems: robust mean estimation, which is primarily theoretical, and an
applied counterpart, outlier detection.

Robust mean estimation Our main theoretical contribution is the first nearly-linear time algorithm
for robust mean estimation with nearly-optimal error. Here the goal is to estimate the mean µ ∈ Rd
of a d-dimensional distribution D given ε-corrupted samples X1, . . . , Xn – that is, i.i.d. samples, an
unknown ε-fraction of which have been maliciously corrupted. Under (for instance) the assumption
that the covariance of D is bounded by Id, it has been long known to be possible in exponential time
to estimate µ by µ̂ having ‖µ− µ̂‖2 ≤ O(

√
ε). In particular, this rate of error is independent of d.

Polynomial-time algorithms provably achieving such d-independent error became known only re-
cently, starting with the works [8, 15]. Until our work, the running time of algorithms with provably
d-independent error remained suboptimal by polynomial factors in d or ε: the fastest running time
achieved before this work was Õ(min(nd2, nd/ε6)) [6, 8, 15, 9]. (Here Õ(·) notation hides logarith-
mic factors in n and d). While these running times represent a dramatic improvement over previous
exponential-time algorithms, there are still many interesting regimes where the additional runtime
overheads these algorithms incur render them impractically slow. We give the first algorithm for
robust mean estimation with running time Õ(nd) which achieves error ‖µ− µ̂‖2 ≤ O(

√
ε). Note

that this running time is nearly-linear in the input size nd. Similar to prior works, our algorithm
has information-theoretically optimal sample complexity and nearly-optimal error rates in both the
bounded-covariance and sub-Gaussian regimes.
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Outlier detection Our main applied contribution is a new algorithm for high-dimensional outlier
detection, which we assess via experiments on both synthetic and real data 1. Our goal is to take
a dataset X1, . . . , Xn ∈ Rd and assign to each Xi an outlier score τi ≥ 0, so that higher scores τi
are assigned to points Xi more likely to be outliers. Of course, what constitutes an outlier varies
across applications, so no single algorithm for outlier detection is likely to be the best in all domains.
We show that our method performs well in settings where individual outliers are difficult to pick out
on their own (by, say, their `2 norms or their distances to nearby points), but still collectively bias
empirical statistics such as the mean and covariance.

We compare our method to baselines based on PCA and Euclidean distances, as well as more
sophisticated algorithms from existing literature based on nearest-neighbor distances. Our algorithm
has nearly-linear running time in theory, and simple implementations in practice incur minimal
overhead beyond standard spectral methods, allowing us to run on 1024-dimensional data with no
special optimizations and 8192-dimensional data with a fast approximate implementation. It can
therefore be used in practice to complement existing approaches to outlier detection in exploratory
data analysis.

1.1 What is an outlier and why are they hard to find?

For us, an outlier is an element of a data set which was generated according to a different process than
the majority of the data. For instance, we may imagine that our samples X1, . . . , Xn were sampled
i.i.d. from a distribution (1 − ε)D + εN over Rd, where D is the distribution of inliers, N is the
distribution of outliers, and ε > 0 is a small number – that is, we imagine that a constant fraction of
our data may be outliers.

For this discussion, we also informally imagine that N is sufficiently distinct from D that the set of
outliers could be approximately identified by brute-force search over subsets of (1− ε)n samples, if
given unlimited computational resources. Otherwise, outlier detection is not a meaningful problem,
and robust mean estimation is easy (because the empirical mean will be a good estimator). Under
these circumstances, what makes identifying outliers and estimating the mean in their presence
difficult? Chiefly:

Outliers may not be identifiable in isolation. On its own, a typical outlier Xi ∼ N may look much
like a typical inlier Xj ∼ D. For instance, it could be ‖Xi‖2 ≈ ‖Xj‖2, and Xi, Xj may have similar
distance to the nearest few neighboring samples, especially in high dimensions where samples are far
apart.

Outliers still introduce bias, collectively Even if individual outliers look innocuous, the collective
effect a modified ε-fraction of samples Xi can still substantially change the empirical distribution of
X1, . . . , Xn. As a result, even simple statistical tasks like estimating the mean or covariance of D
require sophisticated estimators: naively pruning individual outliers and then employing standard
empirical estimators typically leads to far-suboptimal error rates. For example, an ε-fraction of
X1, . . . , Xn which are all slightly biased in a single direction may shift the empirical mean of
X1, . . . , Xn, but this bias will be difficult to detect by looking at small numbers of samples at once.
This also demonstrates that successful outlier detection can require global geometric information
about a high-dimensional dataset, such as whether or not a direction exists in which many (say, εn)
samples are unusually biased.

Outliers may be inhomogeneous. Outliers need not exhibit unusual bias in only one direction, or all
have the same norm, or lie in a single cluster. Rather, if a dataset exhibits several forms of corruption,
there may be as many different-looking kinds of outliers. In the theoretical robust mean estimation
setting, the adversary producing ε-corrupted samples may corrupt εn/10 samples by biasing them in
some direction, another εn/10 samples by unusually enlarging their norms, and so forth.

Since robust mean estimation involves a malicious adversary, all of the above phenomena must be
addressed by our robust mean estimation algorithm. In the empirical section of this paper, we focus
on designing an outlier detection method suited to situations where at least one of them occurs – in
other cases, existing methods (such as those based on Euclidean norms or local neighborhoods of
individual samples [5]) may be more appropriate.

1Code is available at https://github.com/twistedcubic/que-outlier-detection.
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1.2 QUE: Quantum Entropy Scoring

Recent innovations in robust mean estimation [15, 8] rely on the following crucial observation about
ε-corrupted samples X1, . . . , Xn from a distribution D with covariance Σ � Id. Namely: any subset
S ⊆ {X1, . . . , Xn} of samples which shift the empirical mean by distance more than

√
ε in some

direction v also introduce an eigenvalue of magnitude greater than 1 to the empirical covariance.

In robust mean estimation, this leads to (amongst others) the filter algorithm of [8, 9], one of the first
to achieve dimension-independent error rates. Roughly speaking, the algorithm iterates the following
until the empirical covariance Σ has small spectral norm: (1) compute the top eigenvector v of the
empirical covariance of Σ, then (2) throw out samples Xi whose projections |〈Xi − µ, v〉| � 1 is
unusually large, where µ is the empirical mean of the corrupted dataset. For outlier detection this
suggests a natural scoring rule – let the outlier score τi of sample Xi be proportional to |〈Xi − µ, v〉|.
The main drawback of these algorithms is that they do not adequately account for inhomogeneity of
outliers. For the filter, this leads to a worst-case running time of Õ(nd2), because the filter operation
(which can be implemented in Õ(nd) time) may have to be repeated as many as d times if the
adversary introduces outliers lying in d orthogonal directions. The rule τi = |〈Xi − µ, v〉| may miss
outliers causing a large eigenvalue of Σ, but in a direction orthogonal to the top eigenvector v.

In the opposite extreme, if outliers are maximally inhomogeneous – no group of them is unusually
biased in some shared direction v – then the only way they can bias the empirical mean is for the
individual `2 norms ‖Xi − µ‖2 to be larger than typical. This suggests a different scoring rule:
τi = ‖Xi − µ‖2. This approach, however, breaks down in the situation we started with, that groups
of outliers are biased in a shared direction but they do not have larger norms than good samples.

Our main conceptual contribution is an approach to utilize information about outliers beyond
what is available in the top eigenvector of the empirical covariance Σ and in individual `2 norms.
Appropriately adapted to their respective settings, this leads to our algorithms for both robust mean
estimation and outlier detection.

Our first observation is that any eigenvalue/eigenvector λ, v – not just the top ones – of the empirical
covariance with λ� 1 must be due to outliers. We therefore consider the intermediate goal of finding
a distribution over directions v ∈ Rd containing information about as many outlier directions as
possible. We formalize this as the following entropy-regularized convex program over d× d positive
semidefinite matrices:

max
U∈Rd×d

α · 〈U,Σ〉+ S(U) such that U � 0, tr(U) = 1 , (1)

where α ≥ 0 is some constant and 〈A,B〉 = tr(AB>) denotes the trace inner product of matrices.
Here, S(U) = −〈U, logU〉 is the quantum entropy (also known as the von Neumann entropy) of
the matrix U . If U =

∑d
i=1 µiviv

>
i is the eigendecomposition of U , since it has tr(U) = 1 we

may interpret it as a distribution over orthonormal vectors v1, . . . , vd with weights µ1, . . . , µd and
hence with entropy S(U). Under this interpetation, 〈U,Σ〉 = Evi∼µ〈vi,Σvi〉. As α varies, (1)
trades off optimizing for a distribution supported on many distinct directions for a distribution
supported on eigenvectors of Σ with large eigenvalues. The optimizer of (1) takes the form U =
exp(α · Σ)/tr exp(α · Σ) where exp(·) is the matrix exponential function.

Definition 1.1. Let U = exp(α · Σ)/tr exp(α · Σ) be the optimizer of (1), for some data set
X = X1, . . . , Xn ∈ Rd where Σ is the covariance of X . The quantum entropy (QUE) scores with
parameter α are given by τi = (Xi − µ)>U(Xi − µ), where µ is the mean of X .

Intuitively, the QUE scores will penalize any point which is causing a large eigenvalue in any
direction, which should allow us to find more outliers than the naive spectral scores presented above.
QUE scores also interpolate between two more naive scoring rules: when α = 0 we have U = Id /d
and so τi = 1

d‖Xi − µ‖22 is the `2 norm (up to a scaling), while when α →∞ we have U → vv>

where v is the top eigenvector of Σ, recovering naive spectral scoring. In both experiments and theory
we find that choosing α strictly between 0 and∞ outperforms either of the extreme choices.

QUE scores are also appealing from a computational perspective: we show that a list of approximate
QUE scores τ ′i = (1± 0.01)τi can be computed from X1, . . . , Xn in nearly-linear time, by appro-
priate use of Johnson-Lindenstrauss sketching and efficient computation of the matrix exponential by
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series expansion. This is crucial to both the nearly-linear running time of our algorithm for robust
mean estimation and to the scalability of our outlier detection method.

In Section 1.4 we describe refinements of QUE scoring which fit it into the matrix multiplicative
weights framework [3], leading to our nearly-linear time algorithms for robust mean estimation.
We give two very similar algorithms, one for when the distribution of inliers is only assumed to
have bounded covariance, and one when the inliers are assumed to be subgaussian. The resulting
algorithms are conceptually similar to the following modification of the filter mentioned above: until
‖Σ‖2 ≤ O(1), compute QUE scores τi, throw out data points Xi with τi � 1, and repeat. (To obtain
provable guarantees, our final algorithms are somewhat more complex: in some iterations we use
QUE scores based on certain reweightings of the data learned in previous iterations.)

In Section 1.5 we describe experiments validating the QUE scoring rule on both synthetic and real
data sets. We show that it performs especially well by comparison to local-neighborhood methods
and to scoring based on only the top eigenvector in data sets where the inliers are close to isotropic
(or can be made so by applying data whitening procedures) and in which there are heterogeneous
outliers.

1.3 Related work

Robust mean estimation: The study of robust statistics and in particular robust mean estimation
began with major works by Anscombe, Huber, Tukey and others in the 1960s [2, 25, 12, 26]. The
literature on polynomial-time algorithms for robust statistics has exploded in recent years, following
works by Diakonikolas et al and Lai, Rao and Vempala giving the first polynomial-time algorithms for
robust mean estimation with dimension-independent (or nearly dimension-indepedent) error [8, 15].
A full survey is beyond our scope here – see e.g. the recent theses [17, 24] for a thorough account.
Particularly relevant to our work is the recent work of Cheng, Diakonikolas, and Ge who design an
algorithm for robust mean estimatin with running time Õ(nd/ε6) – the first to achieve nearly linear
time for constant ε – by appeal to nearly linear time solvers for packing and covering semidefinite
programs [6]. Our algorithms carry two advantages over this prior work: first, our algorithm runs
in nearly linear time for any choice of ε = ε(n, d), and second, because we avoid the 1/ε6 scaling
and appeal to semidefinite programming, our theoretical ideas lead to a practical method for outlier
detection. The techniques of Diakonikolas et al. were later extended to robust covariance estimation
[7]; it remains an interesting direction to extend our techniques to covariance estimation.

Concurrent work: After this manuscript was initially submitted, we became aware of the concur-
rent work [16], which also obtains a nearly-linear time algorithm for robust mean estimation of
distributions with bounded covariance. The algorithm of [16] also obtains subgaussian confidence
intervals (see e.g. [19]), which the algorithm in this work does not. By contrast, the algorithms in
our work also obtain improved rates of error with respect to ε when the underlying distribution is
sub-Gaussian, and our method is sufficiently practical that we are able to implement parts of it to
run our experiments on outlier detection. (The method of [16] relies on nearly-linear time solvers
for packing/covering semidefinite programs, which are not yet practical.) Finally, implicit in the
work [16] is a reduction from arbitrary ε to the case ε = 1/100; we describe this reduction and some
consequences in supplementary material.

Outlier detection Detection of outliers goes back nearly to the beginning of statistics itself [11].
Even restricting to the high dimensional case it has a literature too broad to survey here. Much recent
work has focused on so-called local outlier factor-based methods, which assign outlier scores based
on the local density of other samples near each Xi – see e.g. [13, 14] and further references in [5].
We find that QUE scoring compares favorably to such local methods in high-dimensional datasets
like we describe in Section 1.1 – see Sections 1.5 and supplementary material for details.

1.4 Robust mean estimation: results and algorithm overview

We turn to our algorithm for robust mean estimation, deferring details to supplementary material.

Definition 1.2 (ε-corrupted samples). Let D be a distribution on Rd. We say that X1, . . . , Xn are an
ε-corrupted set of samples from D if they are first drawn i.i.d. from D, then modified by an adversary
who may adaptively inspect all the samples, remove εn of them, and replace them with arbitrary
vectors in Rd.
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Note that ε-corruption is a stronger outlier model than the (1−ε)D+εN mixture model we described
in Section 1; our algorithms also work in this milder mixture model. Our main theoretical result is:
Theorem 1.1. For every n, d ∈ N and ε > 0 there are algorithms QUESCOREFILTER ,S.G.-
QUESCOREFILTER with running time Õ(nd), such that for every distribution D on Rd with mean
µ and covariance Σ, given n ε-corrupted samples from D, QUESCOREFILTER produces µ̂ such
that ‖µ̂ − µ‖2 ≤ O(

√
ε) + Õ(

√
d/n) if Σ � Id, and S.G.-QUESCOREFILTER produces µ̂ such

that ‖µ̂− µ‖2 ≤ O(ε
√

log(1/ε) +
√
d/n) if D is sub-Gaussian with Σ = Id, all with probability

at least 0.99.

For the bounded covariance case, the O(
√
ε) term information-theoretically optimal up to constant

factors. The other term, Õ(
√
d/n), is information-theoretically optimal up to the logarithmic

factors in the Õ(·) even without corruptions. For the sub-Gaussian case, the O(ε
√

log 1/ε) term is
believed to be necessary for computationally efficient algorithms (see e.g the statistical-query lower
bound [10]), although that term can be made O(ε) by using computationally-intractable estimators
such as Tukey median, and the latter is information-theoretically optimal [26]. The

√
d/n term is

information-theoretically optimal even without corruptions.

In this section we discuss our algorithm for the bounded-covariance case Σ � Id in the setting that
the adversary may not remove samples, leaving technical details and the modifications necessary to
handle removed samples and sub-Gaussian D to supplementary material.

Definition 1.3 (Simplified robust mean estimation). Let S = {X1, . . . , Xn} ⊆ Rd be a dataset with
the property that S partitions into S = Sg∪Sb with |Sb| ≤ εn and Ei∼Sg

(Xi−µg)(Xi−µg)> � Id,
where µg = Ei∼Sg Xi. Given S, the goal is to find a vector µ̂ with ‖µg − µ̂‖2 ≤ O(

√
ε).

Like prior algorithms for robust mean estimation, ours maintains a weight vector w1, . . . , wn ≥ 0
with

∑
wi ≤ 1, initialized to wi = 1/n. The algorithm iteratively decreases the weight of points

suspected to be outliers that are causing ‖µ(w) − µg‖2 to be large.2 A key insight of recent work
on robust mean estimation is that it suffices to find weights w which place almost as much mass
on Sg as does the uniform weighting and whose empirical covariance is small. This is formalized
in the following lemma. For a weight vector w, let |w| =

∑
wi, µ(w) = 1

|w|
∑
wiXi, and

M(w) = 1
|w|
∑
wi(Xi − µ(w))(Xi − µ(w))>. Let ‖M‖2 be the spectral norm of a matrix M .

Lemma 1.2 (Implicit in prior work). Let S = {X1, . . . , Xn} be as in Definition 1.3. Suppose
that w is a weight vector such that ‖M(w)‖2 ≤ O(1) and w is mostly good, by which we mean
| 1n1Sg −wg| ≤ | 1n1Sb

−wb|, where 1Sg , 1Sb
are the indicators of Sg, Sb and wg, wb are w restricted

to Sg, Sb respectively. (Intuitively, w is mostly good if it results by removing from the uniform
weighting 1S/n more weight from Sb than from Sg .) Then ‖µ(w)− µg‖2 ≤ O(

√
ε).

Lemma 1.2 captures the following geometric intuition: if the bad points Sb receive enough weight in
w to cause ‖µ(w)−µg‖2 �

√
ε, then anO(ε)-fraction of the mass ofw is onXi which are unusually

correlated with the vector µ(w)− µg, which leads to a large maximum eigenvalue in M(w). Prior
works employ a variety of methods to find a mostly good weight vector w with ‖M(w)‖2 ≤ O(1).
Perhaps the simplest is the filter of [8], which iterates: While ‖M(w)‖2 � 1, compute its top
eigenvector v and naive spectral scores τi = 〈Xi−µ(w), v〉2. Throw out Xi with large τi and repeat.

The filter ensures that the weight vector it maintains is mostly good because (in an averaged sense)
τi can be large only for Xi which are corrupted. This is because the (weighted) sum of all scores∑
wiτi = 〈M(w), vv>〉 � 1, while the contribution to this sum from Sg has

∑
i∈Sg

wiτi ≈
〈 1n
∑
i∈Sg

(Xi − µg)(Xi − µg)>, vv>〉 ≤ 1. (Here we ignore some details about centering Xi at µg
rather than µ(w).) Thus, the τi from Sb must make up almost all of

∑
wiτi. Simple approaches to

removing or downweighting Xi with large τi then remove strictly more weight from Sb than from Sg .

However, filtering based on naive spectral scores alone faces a barrier to achieving nearly-linear
running-time. If the corruptions Sb are split among many orthogonal directions, the naive spectral

2Some prior algorithms, e.g. the filter of [8] instead iteratively throw out points suspected to be outliers.
However, since those algorithms are (necessarily) randomized, they can also be viewed as weighting points,
where the weight of Xi is the probability it has not been thrown out. The algorithm we present here can also be
implemented by throwing out points in a randomized fashion – we discuss further in the appendix.
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filter will have to find those directions one at a time. Thus, it may require Ω(d) iterations (leading to
Ω(nd2) running time) to arrive at w with ‖M(w)‖2 ≤ O(1).

Our main idea is that by replacing naive spectral scores with slightly modified QUE scores, each
iteration of the filter can take into account projections of each sample onto many large eigenvectors
of M(w). We show that our modified QUE scores τi maintain the property that

∑
i∈Sb

wiτi �∑
i∈Sg

wiτi, and so downweighting according to τi removes more mass from Sb than Sg . However,
filtering with QUE scores makes faster progress than with naive spectral scores: roughly speaking,
we show that only O(log d)2 rounds of filtering according to QUE scores are required to find a
mostly-good weight vector w with ‖M(w)‖2 ≤ O(1).

The core of our algorithm is a subroutine, DECREASESPECTRALNORM, to take a mostly good weight
vector w with ‖M(w)‖2 � 1 and in O(log d) rounds of QUE filtering produce another mostly good
w′ with ‖M(w′)‖2 ≤ 3

4‖M(w)‖2. Repeating this subroutine O(log d) times and then outputting the
resulting µ(w) yields our main algorithm. An outline of this subroutine is presented as Algorithm 1.
We first establish a rigorous sense in which downweighting according to outlier scores τi makes
progress: it decreases the weighted average of the scores while removing more weight from bad
points than good.

Lemma 1.3 (Progress in one round of downweighting, informal). There is a downweighting algorithm
which takes a density matrix U and a mostly good weight vector w and produces a mostly good
weight vector w′ by downweighting points with large score τi = 〈Xi − µ(w), U(Xi − µ(w)〉 such
that

∑
w′iτi ≤ 1

3

∑
wiτi so long as

∑
wiτi � 1. Furthermore, M(w′) �M(w).

Let us give a geometric interpretation to Lemma 1.3: it establishes that if
∑
wiτi = 〈U,M(w)〉 � 1

then the quadratic form of M(w′) decreases in the directions defined by U , since

〈M(w′), U〉 ≈
∑

w′iτi ≤
1

3

∑
wiτi =

1

3
〈M(w), U〉 . (2)

This guarantee becomes more meaningful as the entropy S(U) increases, because it suggests the
quadratic form of M(w) has decreased in more directions. To make this formal, we appeal to the
matrix multiplicative weights framework. DECREASESPECTRALNORM applies downweighting
iteratively using a sequence of entropy-maximizing density matrices U1, . . . , UT chosen according
to the matrix multiplicactive weights update rule, leading to a series of mostly good weight vectors
w1, . . . , wT such that ‖M(wT )‖2 ≤ 3

4‖M(w0)‖2. We choose

Ut = exp

(
1

‖M(w)‖2

t−1∑
k=0

M(wk)

)/
tr exp

(
1

‖M(w)‖2

t−1∑
k=0

M(wk)

)
, (3)

where w0 = w is the input weight vector, U0 = Id, and wt results from applying the downweighting
of Lemma 1.3 to wt−1 using Ut (if 〈M(wt−1), Ut〉 � 1). The following lemma is a special case of
the standard (local norm) regret bound for matrix multiplicative weights.

Lemma 1.4 (Special case of Theorem 3.1, [1]). For any w0, . . . , wT , if α ≤ 1/‖M(wt)‖2 for all
t ≤ T , then∥∥∥∥∥

T−1∑
t=0

M(wt)

∥∥∥∥∥
2

≤
T−1∑
t=0

〈Ut,M(wt)〉+ α

T−1∑
t=0

〈Ut,M(wt)〉 · ‖M(wt)‖2 +
log d

α
. (4)

Now we sketch the analysis of DECREASESPECTRALNORM.

Claim 1.5 (Informal). If w = w0 is mostly good, with ‖M(w0)‖2 ≥ 100, then DECREASESPEC-
TRALNORM produces mostly good wT with ‖M(wT )‖2 ≤ 3

4‖M(w)‖2.

Proof sketch. Since M(wt) �M(wt+1) by Lemma 1.3, we have ‖M(wt)‖2 ≤ ‖M(w0)‖2 for all t,
and hence α = 1/‖M(w0)‖2 ≤ 1/‖M(wt)‖2 for all t, so w0, . . . , wT and U0, . . . , UT−1 satisfy the
hypotheses of Lemma 1.4. By our choice of α and M(wT ) �M(wt) for all t, (4) implies

T · ‖M(wT )‖2 ≤

∥∥∥∥∥
T−1∑
t=0

M(wt)

∥∥∥∥∥
2

≤ 2

T−1∑
t=0

〈Ut,M(wt)〉+ ‖M(w0)‖2 · log d .
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If 〈Ut,M(wt−1)〉 ≥ ‖M(w0)‖2/3 � 1, then DECREASESPECTRALNORM performs down-
weighting, and by Lemma 1.3 and (2) (which we establish rigorously in supplemental mate-
rial), 〈M(wt), Ut〉 ≤ 1

3 〈M(wt−1), Ut〉 ≤ 1
3‖M(w0)‖. Otherwise, by hypothesis 〈M(wt), Ut〉 =

〈M(wt−1), Ut〉 ≤ ‖M(w0)‖2/3. Using this bound and dividing by T , we obtain ‖M(wT )‖2 ≤
( 2
3 + log d

T )‖M(w0)‖2. Choosing T ≥ 20 log d completes the proof sketch.

Running time: Our overall algorithm only requires log(nd)O(1) iterations of DECREASESPECTRAL-
NORM, and the latter only requires O(log(d)) iterations of downweighting, so we just have to
implement downweighting in nearly-linear time. We show in supplemental material that this can be
done by avoiding representing any of the matrices Ut explicitly in memory: instead, we maintain only
low-rank sketches of them. This leads to some approximation error in computing the QUE scores,
but we show that approximations to the QUE scores suffice for all arguments above.

For remaining technical details and full proofs, see Sections 5-9 of supplemental materials.

Algorithm 1 DECREASESPECTRALNORM

1: Input: X1, . . . , Xn as in Definition 1.3, mostly good weight vector w0.
2: For iteration t = 0, . . . , O(log d), if ‖M(wt)‖2 ≤ 3

4‖M(w0)‖2, output wt and halt. Otherwise,
let Ut as in (4). If 〈Ut,M(wt−1)〉 ≤ 1

3‖M(w0)‖2, let wt+1 = wt. Else let wt+1 be the output
of downweighting from Lemma 1.3 with Ut.

3: Output wT .

1.5 Outlier detection: algorithm and experimental results

In this section, we empirically evaluate outlier detection using QUE scoring. QUE scoring can detect
(some kinds of) spectral outliers. We call X ∈ Rd a spectral outlier with respect to a dataset S if
the list of squared projections (〈X, v1〉2, . . . , 〈X, vd〉2) is atypical by comparison to most Y ∈ S,
where X = X − EY∼S Y and v1, . . . , vd are the eigenvectors of the covariance matrix of S. The
QUE scoring approach to aggregate the list (〈X, v1〉2, . . . , 〈X, vd〉2) into one number carries (at
least) two distinct advantages: first, the QUE scores of a dataset can be computed approximately in
nearly-linear time, and second, the QUE scores weigh 〈X, vi〉2 more heavily for larger λi, while
still incorporating more information than 〈X, v1〉2 (which is the naive spectral approach). There
may be many other useful ways to go beyond the naive spectral approach to combine the projections
(〈X, v1〉2, . . . , 〈X, vd〉2) into a single outlier score – indeed, by varying α QUE scoring already
provides a tuneable range of methods.

Experimental setup: We must work with data containing well-defined and known inliers and outliers
so that we can compare our results to ground-truth. We generate such data sets in three distinct ways,
leading to three main experiments. (In supplemental material we also study some outlier-detection
data sets appearing in prior work [5].)

Synthetic: We create synthetic data sets in 128 dimensions and 103 − 104 samples with an ε-
fraction of inhomogeneous outliers in k directions by sampling from a mixture of k + 1 Gaus-
sians (1 − ε)N (0, Id) +

∑k
i=1 εi[

1
2N (C

√
k/ε · ei, σ2 Id) + 1

2N (−C
√
k/ε · ei, σ2 Id)], where

e1, . . . , ek are standard basis vectors, with C ≈ 1 and σ � 1. The outliers are the samples from
N (±C

√
k/εei, σ

2 Id). By varying ε, k and the distribution ε1, . . . , εk of outlier weights, we de-
mostrate in this simplified model how max-entropy outlier scoring improves on baseline algorithms
in the presence of inhomogeneous outliers. We choose the scaling

√
k/ε · ei because then standard

calculations predict that if εi ≈ ε/k the outliers from N (±C
√
k/εei, σ

2 Id) will contribute an
eigenvalue greater than 1 to the overall empirical covariance.

Mixed – word embeddings: We create a data set consisting of word embeddings drawn from several
sources. Inliers are the 100-dimensional GloVe embeddings ([21]) of the words in a random ≈ 103

word long section of a novel (we use Sherlock Holmes) and outliers are embeddings of the first
paragraphs of k featured Wikipedia articles from May 2019 [27].

Perturbed – images: We create a data set consisting of CIFAR10 images some of which have
artificially-introduced dead pixels. Inliers are ≈ 4500 random CIFAR images X ∈ {1, . . . , 256}1024
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(restricted to the red color channel). Outliers are ≈ 500 random CIFAR images, partitioned into
groups S1, . . . , Sk, such that for each group i a random coordinate pi ∈ {1, . . . , 1024} and a random
value ci ∈ {1, . . . , 256} is chosen and for each X ∈ Si we set Xpi = ci.

Metric: All the methods we evaluate produce a vector of scores τ1, . . . , τn ∈ R. We use the standard
ROCAUC metric to compare these scores to a ground-truth partition S = Sg ∪ Sb into inlier and
outlier sets. ROCAUC(τ1, . . . , τn, Sb, Sg) = Pri∼Sb,j∼Sg (τi ≥ τj) is simply the probability that a
randomly chosen outlier is scored higher than a random inlier.

Baselines: We compare QUE scoring to the following other scoring rules. `2: τi = ‖Xi − µ‖ is the
distance of Xi to the empirical mean; top eigenvector naive spectral: τi = 〈Xi − µ, v〉2 where v is
the top eigenvector of the empirical covariance; k-nearest neighbors (k-NN) [22, 5] and local outlier
factor (LOF) [4, 5] methods: τi is a function of the distances to its k nearest neighbors; isolation forest
and elliptic envelope: standard outlier detection methods as implemented in scikit-learn [23, 18, 20].

Whitening: Scoring methods based on the projection of data points Xi onto large eigenvectors
of the empirical covariance work best when those eigenvectors correspond to directions in which
many outliers lie. In particular, if Σg, the covariance of Sg, itself has large eigenvalues then such
spectral methods perform poorly. We assume access to a whitening transformationW ∈ Rd×d, which
captures a small amount of prior knowledge about the distribution of inliers Sg . For best performance
W should approximate W ∗ = (Σg)

−1/2 since W ∗Xi form an isotropic set of vectors. Of course, to
compute W ∗ exactly would require knowing which points are inliers, but we find that relatively naive
approximations suffice. In particular, if a clean dataset Y1, . . . , Ym whose distribution is similar to
the distribution of inliers is available, its empirical covariance can be used to find a good whitening
transformation W . In our synthetic data we use W = Id. In our word embeddings experiment, we
obtain W using the empirical covariance of the embedding of another random section of Sherlock
Holmes. In our CIFAR-10 experiment, we obtain W from the empirical covariance of a fresh sample
of ≈ 5000 randomly chosen images from CIFAR-10.

Algorithm 2 QUE-Scoring for Outlier Detection

1: Input: dataset X1, . . . , Xn ∈ Rd, optional whitening transformation W ∈ Rd×d, scalar α > 0.
2: Let X ′i = WXi be whitened data, µ = 1

n

∑n
i=1X

′
i and Σ = 1

n

∑d
i=1(X ′i − µ)(X ′i − µ)>.

3: For i ≤ n, let τi = (X ′i
>

exp(αΣ/‖Σ‖2)X ′i)/Tr exp(αΣ/‖Σ‖2). Return τ1, . . . , τn.
Note on α: in both synthetic and real data we find that α = 4 is a good rule-of-thumb choice,
consistently resulting in improved scores over baseline methods.

High-dimensional scaling: Implementing Algorithm 2 by explicitly forming the matrix Σ and
performing a singular value decomposition (SVD) to compute exp(αΣ) is feasible on relatively low-
dimensional data (d ≈ 100). See supplementary material for discussion and results of a nearly-linear
time implementation.
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(a) synthetic (b) whitened CIFAR-10 (c) whitened word embeddings

(d) synthetic (e) whitened CIFAR-10 (f) whitened word embeddings

(g) synthetic (h) whitened CIFAR-10 (i) whitened word embeddings

Figure 1: (a-f): We plot the difference between ROCAUC performance of QUE and naive spectral
(a-c), `2 scoring (d-f) on all three data sets, as α varies. Error bars represent one empirical standard
deviation in 20 trials. Note that in all three cases the mean improvement in ROCAUC score given by
QUE is at least one standard deviation above 0 for a wide range of α. Observe also that in synthetic
data (which most closely parallels theory) the optimal α decreases with increasing number of outlier
directions, in accord with the need to find a higher-entropy solution to (1). (g-i) We plot ROCAUC
scores of QUE (with α = 4) and a variety of other methods as the number of outlier directions
increases. Error bars represent one standard deviation over 3− 4 trials. Number of trials is small due
to large running time requirements of Scikit-learn methods IsolationForest and EllipticEnvelope. The
methods "lof" and "knn" are based on nearest-neighbor distances [5]. All except spectral methods
perform poorly on synthetic data; as k increases the performance gap between QUE and naive
spectral scoring grows. In all plots ε = 0.2. Experiments were generated on a quad-core 2.6Ghz
machine with 16GB RAM and an NVIDIA P100 GPU.
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