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Abstract

SLOPE is a relatively new convex optimization procedure for high-dimensional
linear regression via the sorted `1 penalty: the larger the rank of the fitted coefficient,
the larger the penalty. This non-separable penalty renders many existing techniques
invalid or inconclusive in analyzing the SLOPE solution. In this paper, we develop
an asymptotically exact characterization of the SLOPE solution under Gaussian
random designs through solving the SLOPE problem using approximate message
passing (AMP). This algorithmic approach allows us to approximate the SLOPE
solution via the much more amenable AMP iterates. Explicitly, we characterize
the asymptotic dynamics of the AMP iterates relying on a recently developed state
evolution analysis for non-separable penalties, thereby overcoming the difficulty
caused by the sorted `1 penalty. Moreover, we prove that the AMP iterates converge
to the SLOPE solution in an asymptotic sense, and numerical simulations show
that the convergence is surprisingly fast. Our proof rests on a novel technique that
specifically leverages the SLOPE problem. In contrast to prior literature, our work
not only yields an asymptotically sharp analysis but also offers an algorithmic,
flexible, and constructive approach to understanding the SLOPE problem.

1 Introduction

Consider observing linear measurements y ∈ Rn that are modeled by the equation

y = Xβ +w, (1.1)

whereX ∈ Rn×p is a known measurement matrix, β ∈ Rp is an unknown signal, andw ∈ Rn is the
measurement noise. Among numerous methods that seek to recover the signal β from the observed
data, especially in the setting where β is sparse and p is larger than n, SLOPE has recently emerged
as a useful procedure that allows for estimation and model selection [9]. This method reconstructs
the signal by solving the minimization problem

β̂ := arg min
b

1

2
‖y −Xb‖2 +

p∑
i=1

λi|b|(i), (1.2)

where ‖ · ‖ denotes the `2 norm, λ1 ≥ · · · ≥ λp ≥ 0 (with at least one strict inequality) is a
sequence of thresholds, and |b|(1) ≥ · · · ≥ |b|(p) are the order statistics of the fitted coefficients
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Figure 1: Optimization errors, ||βt − β̂||2/p, and (sym-
metric) set difference of supp(βt) and supp(β̂).

Optimization errors

Set Diff 10−2 10−3 10−4 10−5 10−6

ISTA 60 4048 7326 8569 9007 9161
FISTA 47 275 374 412 593 604
AMP 30 6 13 22 32 40

Table 1: First iteration t for which there is zero
set difference or optimization error ||βt − β̂||2/p
falls below a threshold.

Setting of Figure 1 and Table 1: Design X
is 500 × 1000 and has i.i.d. N (0, 1/500) en-
tries. True signal β is elementwise i.i.d. Gaussian-
Bernoulli: N (0, 1) with probability 0.1 and 0 oth-
erwise. Noise variance σ2

w = 0. A careful calibra-
tion between the thresholds θt in AMP and λ is
SLOPE is used. Details in Section 2.

in absolute value. The regularizer
∑
λi|b|(i) is a sorted `1-norm (denoted as Jλ(b) henceforth),

which is non-separable due to the sorting operation involved in its calculation. Notably, SLOPE
has two attractive features that are not simultaneously present in other methods for linear regression
including the LASSO [34] and knockoffs [1]. Explicitly, on the estimation side, SLOPE achieves
minimax estimation properties under certain random designs without requiring any knowledge of the
sparsity degree of β [32, 7]. On the testing side, SLOPE controls the false discovery rate in the case
of independent predictors [9, 12]. For completeness, we remark that [10, 35, 20] proposed similar
non-separable regularizers to encourage grouping of correlated predictors.

This work is concerned with the algorithmic aspects of SLOPE through the lens of approximate
message passing (AMP) [2, 17, 22, 24, 27]. AMP is a class of computationally efficient and easy-
to-implement algorithms for a broad range of statistical estimation problems, including compressed
sensing and the LASSO [3]. When applied to SLOPE, AMP takes the following form: at initial
iteration t = 0, assign β0 = 0, z0 = y, and for t ≥ 0,

βt+1 = proxJθt (X
>zt + βt), (1.3a)

zt+1 = y −Xβt+1 +
zt

n

[
∇ proxJθt (X

>zt + βt)
]
. (1.3b)

The non-increasing sequence θt is proportional to λ and will be given explicitly in Section 2. Here,
proxJθ is the proximal operator of the sorted `1 norm, that is,

proxJθ (x) := argmin
b

1

2
‖x− b‖2 + Jθ(b),

and∇ proxJθ denotes the divergence of the proximal operator (see an equivalent but more explicit
form of this algorithm in Section 2 and other preliminaries on SLOPE and the prox operator defined
above in Appendix A). Compared to the proximal gradient descent (ISTA) [15, 16, 26], AMP has an
extra correction term in its residual step that adjusts the iteration in a non-trivial way and seeks to
provide improved convergence performance [17, 11].

The empirical performance of AMP in solving SLOPE is illustrated in Figure 1 and Table 1, which
suggest the superiority of AMP over ISTA and FISTA [6]—perhaps the two most popular proximal
gradient descent methods—in terms of speed of convergence. However, the vast AMP literature thus
far remains silent on whether AMP provably solves SLOPE and, if so, whether one can leverage
AMP to get insights into the statistical properties of SLOPE. This vacuum in the literature is due to
the non-separability of the SLOPE regularizer, making it a major challenge to apply AMP to SLOPE
directly. In stark contrast, AMP theory has been rigorously applied to the LASSO [3], showing
both good empirical performance and nice theoretical properties of solving the LASSO using AMP.
Moreover, AMP in this setting allows for asymptotically exact statistical characterization of its output,
which converges to the LASSO solution, thereby providing a powerful tool in fine-grained analyses
of the LASSO [4, 33, 25].

In this work, we prove that the AMP algorithm (1.3) solves the SLOPE problem in an asymptotically
exact sense under independent Gaussian random designs. Our proof uses the recently extended
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AMP theory for non-separable denoisers [8] and applies this tool to derive the state evolution that
describes the asymptotically exact behaviors of the AMP iterates βt in (1.3). The next step, which is
the core of our proof, is to relate the AMP estimates to the SLOPE solution. This presents several
challenges that cannot be resolved only within the AMP framework. In particular, unlike the LASSO,
the number of nonzeros in the SLOPE solution can exceed the number of observations. This fact
imposes substantially more difficulties on showing that the distance between the SLOPE solution
and the AMP iterates goes to zero than in the LASSO case due to the possible non-strong convexity
of the SLOPE problem, even restricted to the solution support. To overcome these challenges, we
develop novel techniques that are tailored to the characteristics of the SLOPE solution. For example,
our proof relies on the crucial property of SLOPE that the unique nonzero components of its solution
never outnumber the observation units.

As a byproduct, our analysis gives rise to an exact asymptotic characterization of the SLOPE solution
under independent Gaussian random designs through leveraging the statistical aspect of the AMP
theory. In slightly more detail, the probability distribution of the SLOPE solution is completely
specified by a few parameters that are the solution to a certain fixed-point equation in an asymptotic
sense. This provides a powerful tool for fine-grained statistical analysis of SLOPE as it was for the
LASSO problem. We note that a recent paper [21]—which takes an entirely different path—gives
an asymptotic characterization of the SLOPE solution that matches our asymptotic analysis that is
deduced from our AMP theory for SLOPE. However, our AMP-based approach is more algorithmic
in nature and offers a more concrete connection between the finite-sample behaviors of the SLOPE
problem and its asymptotic distribution via the computationally efficient AMP algorithm.

2 Algorithmic Development

In this section we develop an AMP algorithm for finding the SLOPE estimator in (1.2). Recall the
AMP algorithm we study is (1.3). Specifically, it is through the threshold values θt that one can ensure
the AMP estimates converge to the SLOPE estimator with parameter λ. In this section we present
how one should calibrate the thresholds of the AMP iterations in (1.3) in order for the algorithm to
solve SLOPE cost in (1.2). Then in Section 3, we prove rigorously that the AMP algorithm solves the
SLOPE optimization asymptotically and we leverage theoretical guarantees for the AMP algorithm to
exactly characterize the mean square error of the SLOPE estimator in the large system limit. This is
done by applying recent theoretical results for AMP algorithms that use a non-separable non-linearity
[8], like the one in (1.3).

We first note that the analysis we pursue in this work makes the following assumptions about the
linear model (1.1) and parameter vector in (A.1):

(A1) The measurement matrix X has independent and identically-distributed (i.i.d.) Gaussian
entries that have mean 0 and variance 1/n.

(A2) The signal β has elements that are i.i.d. B, with E(B2 max{0, logB}) <∞.

(A3) The noise w is elementwise i.i.d. W , with σ2
w := E(W 2) <∞.

(A4) The vector λ(p) = (λ1, . . . , λp) is elementwise i.i.d. Λ, with E(Λ2) <∞.

(A5) The ratio n/p approaches a constant δ ∈ (0,∞) in the large system limit, as n, p→∞.

Remark: (A4) can be relaxed as λ1, . . . , λp having an empirical distribution that converges weakly
to probability measure Λ on R with E(Λ2) <∞ and ‖λ(p)‖2/p→ E(Λ2). A similar relaxation can
be made for assumptions (A2) and (A3).

2.1 SLOPE Preliminaries

For a vector v ∈ Rp, the divergence of the proximal operator, ∇ proxf (v), is given by the following:

∇ proxf (v) :=

p∑
i=1

∂

∂vi
[proxf (v)]i =

( ∂

∂v1
,
∂

∂v2
, . . . ,

∂

∂vp

)
· proxf (v), (2.1)
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where as given in [32], proof of Fact 3.4,

∂[proxJλ(v)]i

∂vj
=

{ sign([proxJλ (v)]i)·sign([proxJλ (v)]j)
#{1 ≤ k ≤ p : |[proxJλ (v)]k| = |[proxJλ (v)]j |}

, if |[proxJλ(v)]j | = |[proxJλ(v)]i|,
0, otherwise.

(2.2)

Hence the divergence is simplified to

∇ proxJλ(v) = ‖ proxJλ(v)‖∗0, (2.3)

where ‖ · ‖∗0 counts the unique non-zero magnitudes in a vector, e.g. ‖(0, 1,−2, 0, 2)‖∗0 = 2. This
explicit form of divergence not only waives the need to use approximation in calculation but also
speed up the recursion, since it only depends on the proximal operator as a whole instead of on
θt−1,X, zt−1,βt−1. Therefore, we have
Lemma 2.1. In AMP, (1.3b) is equivalent to

zt+1 = y −Xβt+1 +
zt

δp
‖βt+1‖∗0.

Other preliminary ideas and background on SLOPE and the prox operator are found in Appendix A.

2.2 AMP Background

An attractive feature of AMP is that its statistical properties can be exactly characterized at each
iteration t, at least asymptotically, via a one-dimensional recursion known as state evolution [2, 8].
Specifically, it can be shown that the pseudo-data, meaning the inputX>zt + βt for the estimate of
the unknown signal in (1.3a), is asymptotically equal in distribution to the true signal plus independent,
Gaussian noise, i.e. β + τtZ, where the noise variance τt is defined by the state evolution. For
this reason, the function used to update the estimate in (1.3a), in our case, the proximal operator,
proxJθt (·), is usually referred to as a ‘denoiser’ in the AMP literature.

This statistical characterization of the pseudo-data was first rigorously shown to be true in the case of
‘separable’ denoisers by Bayati and Montanari [2], and an analysis of the rate of this convergence was
given in [31]. A ‘separable’ denoiser is one that applies the same (possibly non-linear) function to each
element of its input. Recent work, which we make use of in this paper, proves that asymptotically the
pseudo-data has distribution β+ τtZ when non-separable ‘denoisers’ are used in the AMP algorithm.

The dynamics of the AMP iterations are tracked by a recursive sequence referred to as the state
evolution, defined below. For B elementwise i.i.d. B independent of Z ∼ N (0, Ip), let τ20 =
σ2
w + E[B2]/δ and for t ≥ 0,

τ2t+1 = σ2
w + lim

p

1

δp
E‖proxJθt (B + τtZ)−B‖2. (2.4)

Below we make rigorous the way that the recursion in (2.4) relates to the AMP iteration (1.3a)-(1.3b).

We note that throughout, we let N (µ, σ2) denote the Gaussian density with mean µ and variance σ2

and we use Ip to indicate a p× p identity matrix.

2.3 Analysis of the AMP State Evolution

As mentioned previously, it is through the sequence of thresholds θt that one is able to relate the AMP
algorithm to the SLOPE estimator in (1.2) for certain λ. Specifically, we will choose θt = ατt(p)
for every iteration t where the vector α is fixed via a calibration made explicit below and τ2t (p) is
defined using an approximation to the state evolution in (2.4) given in (2.5) below. We can interpret
this to mean that within the AMP algorithm, α plays the role of the regularizer λ.

The calibration is motivated by a careful analysis of the following approximation (when p is large) to
the state evolution iteration in (2.4). Namely,

τ2t+1(p) = σ2
w +

1

δp
E‖proxJατt(p)(β + τt(p)Z)− β‖2, (2.5)
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where the difference between (2.5) and the state evolution (2.4) is via the large system limit in p.
When we refer to the recursion in (2.5) we will always specify the p dependence explicitly as τt(p).

Before we introduce this calibration, however, we give the following result which motivates why the
AMP iteration should relate at all to the SLOPE estimator.
Lemma 2.2. Any stationary point β̂ (with corresponding ẑ) in the AMP algorithm (1.3a)-(1.3b) with
θ∗ = ατ∗ is a minimizer of the SLOPE cost function in (1.2) with

λ = θ∗

(
1− 1

δp

(
∇ proxJθ∗ (β̂ +X>ẑ)

))
= θ∗

(
1− 1

n

∥∥∥proxJθ∗ (β̂ +X>ẑ)
∥∥∥∗
0

)
.

Proof of Lemma 2.2. By stationarity,

β̂ = proxθ∗(β̂ +X>ẑ) and ẑ = y −Xβ̂ +
ẑ

δp
(∇ proxθ∗(β̂ +X>ẑ)). (2.6)

Denote by ω := 1
δp (∇ proxθ∗(β̂ +X>ẑ)). Then, from (2.6), ẑ = y−Xβ̂

1−ω , and by (2.6) along with

Fact A.1,X>ẑ ∈ ∂Jθ∗(β̂). Clearly,X>ẑ = X>(y−Xβ̂)
1−ω ∈ Jθ∗(β̂),which tells usX>(y−Xβ̂) ∈

Jθ∗(1−ω)(β̂) which is exactly the stationary condition of SLOPE with λ = (1−ω)θ∗ as desired.

Results about the recursion (2.5) are summarized in the following theorem and the theorem’s proof is
given in Appendix C. We first introduce some useful notations: letAmin(δ) be the set of solutions to

δ = f(α),where f(α) :=
1

p

p∑
i=1

E
{(

1−
∣∣[proxJα(Z)]i

∣∣∑
j∈Ii

αj

)
/[D(proxJα(Z))]i

}
(2.7)

Here � represents elementwise multiplication of vectors and for a vector v ∈ Rp, D is defined
elementwise as [D(v)]i = #{j : |vj | = |vi|} if vi 6= 0 and∞ otherwise. For u ∈ Rm, the notation
〈u〉 :=

∑m
i=1 ui/m and we say a vector u is larger than v if ∀i, ui > vi. The expectation in (2.7) is

taken with respect to Z, a p-length vector of i.i.d. standard Gaussians.
Theorem 1. For any α strictly larger than at least one element in the setAmin(δ), the recursion in
(2.5) has a unique fixed point and denoting this fixed point by τ2∗ (p). Then τt(p) → τ∗(p) for any
initial condition and monotonically. Moreover, defining a function F : R× Rp → R as

F(τ2(p),ατ(p)) := σ2 +
1

δp
E‖proxJατ(p)(B + τ(p)Z)−B‖2, (2.8)

whereB is elementwise i.i.d. B independent of Z ∼ N (0, Ip), so that τ2t+1(p) = F(τ2t (p),ατt(p)),
then | ∂F

∂τ2(p) (τ
2(p),ατ(p))|< 1 at τ(p) = τ∗(p). Moreover, for f(α) defined in (2.7), we show that

f(α) = δ limτ(p)→∞ dF/dτ2(p).
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Figure 2: Amin (black curve)
when p = 2 and δ = 0.6.

Notice that Theorem 1 gives necessary conditions on the calibra-
tion vector α under which recursion in (2.5), and equivalently, the
calibration given below are well-defined.

2.4 Threshold Calibration

Motivated by Lemma 2.2 and Lemma B.1, we define a calibration
from the regularization parameter λ, to the corresponding threshold
α used to define the AMP algorithm. Such calibration is asymptot-
ically exact when p =∞.

In practice, we will be given finite-length λ and then we want to
design the AMP iteration to solve the corresponding SLOPE cost.
We do this by choosing α as the vector that solves λ = λ(α) where

λ(α) := ατ∗(p)
(

1− 1

n
E ‖ proxJατ∗(p)(B + τ∗(p)Z)‖∗0

)
,

(2.9)
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where B is elementwise i.i.d. B independent of Z ∼ N (0, Ip) and τ∗(p) is the limiting value
defined in Theorem 1. We note the fact that the calibration in (2.9) sets α as a vector in the same
direction as λ, but that is scaled by a constant value (for each p), where the constant value is given by
τ∗(p)(1− E ‖ proxJατ∗(p)(B + τ∗(p)Z)‖∗0)/n.

We claim that the calibration (2.9) and its inverse λ 7→ α(λ) are well-defined. In [3, Proposition 1.4
(first introduced in [18]) and Corollary 1.7] this is proved rigorously for the LASSO calibration and
we claim that this proof can be adapted to the present case without many difficulties, though we don’t
pursue this in the current document.
Proposition 2.3. The function α 7→ λ(α) defined in (2.9) is continuous on {α : f(α) < δ} for
f(·) defined in (2.7) with λ(Amin) = −∞ and limα→∞ λ(α) = ∞ (where the limit is taken
elementwise). Therefore the inverse function λ 7→ α(λ) exists and is continuous non-decreasing for
any λ > 0.

This proposition motivates Algorithm 1 which uses bisection method to find the unique α for each λ.
It suffices to find two guesses of α parallel to λ that, when mapped via (2.9), sandwich the true λ.
The proof of this proposition can be found in [13, Appendix A.2].

Algorithm 1 Calibration from λ→ α

1. Initialize α1 = αmin such that αmin` ∈ Amin, where ` := λ/λ1; Initialize α2 = 2α1

while L(α2) < 0 where L : R→ R;α 7→ sign(λ(α`)− λ) do
2. Set α1 = α2, α2 = 2α2

end while
3. return BISECTION (L(α), α1, α2)

Remark: sign(λ(·)− λ) ∈ R is well-defined since λ(·) ‖ λ implies all entries share the same sign.
The function “BISECTION(L, a, b)” finds the root of L in [a, b] via the bisection method.

As noted previously, the calibration in (2.9) is exact when p→∞, so we study the mapping between
α and λ in this limit. Recall from (A4), that the sequence of vectors {λ(p)}p≥0 are drawn i.i.d.
from distribution Λ. It follows that the sequence {α(p)}p≥0 defined for each p by the finite-sample
calibration (2.9) are i.i.d. from a distribution A, where A satisfies E(A2) <∞, and is defined via

Λ = Aτ∗

(
1− lim

p

1

δp
E || proxJA(p)τ∗

(B + τ∗Z)||∗0
)
, (2.10)

whereA(p) ∈ Rp are order statistics of p i.i.d. draws from A given by (2.10) and τ∗ is defined as the
large t limit of (2.4). We note that the calibrations presented in this section are well-defined:
Fact 2.4. The limits in (2.4) and (2.10) exist.

This fact is proven in Appendix E. One idea used in the proof is that the prox operator is asymptotically
separable, a result shown by [21, Proposition 1]. Specifically, for sequences of input, {v(p)}, and
thresholds, {λ(p)}, both having empirical distributions that weakly converge to a distributions V and
Λ, respectively, then there exists a limiting scalar function h(·) := h(v(p);V,Λ) (determined by V
and Λ) of the proximal operator proxJλ(v(p)). Further details are shown in Appendix E, Lemma E.1.
Using h(·) := h(·;B + τ∗Z,Aτ∗), this argument implies that (2.4) can be represented as

τ2∗ := σ2 + E(h(B + τ∗Z)−B)2/δ,

and if we denote m as the Lebesgue measure, then the limit in (2.10) can be represented as

P
(
B + τ∗Z ∈

{
x
∣∣∣ h(x) 6= 0 and m{z | |h(z)| = |h(x)|} = 0

})
.

In other words, the limit in (2.10) is the Lebesgue measure of the domain of the quantile function of
h for which the quantile of h assumes unique values (i.e., is not flat).

3 Asymptotic Characterization of SLOPE

3.1 AMP Recovers the SLOPE Estimate

Here we show that the AMP algorithm converges in `2 to the SLOPE estimator, implying that the
AMP iterates can be used as a surrogate for the global optimum of the SLOPE cost function. The
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schema of the proof is similar to [3, Lemma 3.1], however, major differences lie in the fact that the
proximal operator used in the AMP updates (1.3a)-(1.3b) is non-separable. We sketch the proof here,
and a forthcoming article will be devoted to giving a complete and detailed argument.

Theorem 2. Under assumptions (A1) - (A5), for the output of the AMP algorithm in (1.3a) and the
SLOPE estimate (1.2),

plim
p→∞

1

p
‖β̂ − βt‖2 = ct, where lim

t→∞
ct = 0. (3.1)

Proof. The proof requires dealing carefully with the fact that the SLOPE cost function given in (1.2)
is not necessarily strongly convex, meaning that we could encounter the undesirable situation where
C(β̂) is close to C(β) but β̂ is not close to β, meaning the statistical recovery of β would be poor.

In the LASSO case, one works around this challenge by showing that the (LASSO) cost function
does have nice properties when considering just the elements of the non-zero support of βt at any
(large) iteration t. In the LASSO case, the non-zero support of β has size no larger than n < p.

In the SLOPE problem, however, it is possible that the support set has size exceeding n, and therefore
the LASSO analysis is not immediately applicable. Our proof develops novel techniques that are
tailored to the characteristics of the SLOPE solution. Specifically, when considering the SLOPE
problem, one can show nice properties (similar to those in the LASSO case) by considering a support-
like set, that being the unique non-zeros in the estimate βt at any (large) iteration t. In other words, if
we define an equivalence relation x ∼ y when |x| = |y|, then entries of AMP estimate at any iteration
t are partitioned into equivalence classes. Then we observe from (2.9), and the non-negativity of λ,
that the number of equivalence classes is no larger than n. We see an analogy between SLOPE’s
equivalence class (or ‘maximal atom’ as described in Appendix A) and LASSO’s support set. This
approach allows us to deal with the lack of a strongly convex cost.

Theorem 2 ensures that the AMP algorithm solves the SLOPE problem in an asymptotic sense. To
better appreciate the convergence guarantee, it calls for elaboration on (3.1). First, it implies that
‖β̂ − βt‖2/p converges in probability to a constant, say ct. Next, (3.1) says that ct → 0 as t→∞.

3.2 Exact Asymptotic Characterization of the SLOPE Estimate

A consequence of Theorem B.1, is that the SLOPE estimator β̂ inherits performance guarantees
provided by the AMP state evolution, in the sense of Theorem 3 below. Theorem 3 provides as
asymptotic characterization of pseudo-Lipschitz loss between β̂ and the truth β.

Definition 3.1. Uniformly pseudo-Lipschitz functions [8]: For k ∈ N>0, a function φ : Rd → R
is pseudo-Lipschitz of order k if there exists a constant L, such that for a, b ∈ Rd,

‖φ(a)− φ(b)‖ ≤ L
(

1 + (‖a‖/
√
d)k−1 + (‖b‖/

√
d)k−1

)(
‖a− b‖/

√
d
)
. (3.2)

A sequence (in p) of pseudo-Lipschitz functions {φp}p∈N>0
is uniformly pseudo-Lipschitz of order k if,

denoting by Lp the pseudo-Lipschitz constant of φp, Lp <∞ for each p and lim supp→∞ Lp <∞.

Theorem 3. Under assumptions (A1) - (A5), for any uniformly pseudo-Lipschitz sequence of func-
tions ψp : Rp × Rp → R and for Z ∼ N (0, Ip),

plim
p

ψp(β̂,β) = lim
t

plim
p

E
Z

[ψp(proxJα(p)τt
(β + τtZ),β)],

where τt is defined in (2.4) and the expectation is taken with respect to Z.

Theorem 3 tells us that under uniformly pseudo-Lipschitz loss, in the large system limit, distri-
butionally the SLOPE optimizer acts as a ‘denoised’ version of the truth corrupted by additive
Gaussian noise where the denoising function is given by the proximal operator, i.e. within uniformly
pseudo-Lipschitz loss β̂ can be replaced with proxJα(p)τt

(β + τtZ) for large p, t.

We note that the result [21, Theorem 1] follows by Theorem 3 and their separability result [21,
Proposition 1]. To see this, in Theorem 3 consider a special case where ψp(x,y) = 1

p

∑
ψ(xi, yi)
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for function ψ : R× R → R that is pseudo-Lipschitz of order k = 2. Then it is easy to show that
ψp(·, ·) is uniformly pseudo-Lipschitz of order k = 2. The result of Theorem 3 then says that

plim
p

1

p

p∑
i=1

ψ(β̂i, βi) = lim
t

plim
p

1

p

p∑
i=1

E
Z

[ψ([proxJα(p)τt
(β + τtZ)]i, βi)].

Then by [21, Proposition 1], restated in Lemma E.1, which says that the proximal operator becomes
asymptotically separable as p → ∞, the result of [21, Theorem 1] follows by the Law of Large
Numbers and Theorem 1. Namely, for some limiting scalar function ht,

lim
t

plim
p

1

p

p∑
i=1

E
Z

[ψ([proxJα(p)τt
(β + τtZ)]i, βi)]

(a)
= lim

t
plim
p

1

p

p∑
i=1

E
Z

[ψ(ht([β + τtZ]i), βi)]

= lim
t

E
Z,B

[ψ(ht(B + τtZ), B)] = E
Z,B

[ψ(ht(B + τ∗Z), B)].

We note in step (a) above, we apply Lemma E.1, using that α(p)τt has an empirical distribution that
converges weakly to Aτt for A defined by (2.10). The rigorous argument for justifying step (a) by
Lemma E.1 requires a bit more technical detail. We give such a rigorous argument, for a similar
but different limiting operation, in Appendix D for proving limiting properties of the prox operator
(namely, property (P2) stated in Appendix B).

We highlight that our Theorem 3 allows the consideration of a non-asymptotic case in t. While
Theorem 1 motivates an algorithmic way to find a value τt(p) which approximates τ∗(p) well,
Theorem 3 guarantees the accuracy of such approximation for use in practice. One particular use
of Theorem 3 is to design the optimal sequence λ that achieves the minimum τ∗ and equivalently
minimum error [21], though a concrete algorithm for doing so is still under investigation.

We prove Theorem 3 in Appendix B. We show that Theorem 3 follows from Theorem 2 and Lemma
B.1, which demonstrates that the state evolution given in (2.4) characterizes the performance of the
SLOPE AMP (1.3) via pseudo-Lipschitz loss functions. Finally we show how we use Theorem 3 to
study the asymptotic mean-square error between the SLOPE estimator and the truth.

Corollary 3.2. Under assumptions (A1)− (A5), plimp‖β̂ − β‖2/p = δ(τ2∗ − σ2
w).

Proof. Applying Theorem 3 to the pseudo-Lipschitz loss function ψ1 : Rp × Rp → R, defined as
ψ1(x,y) = ||x−y||2/p, we find plimp

1
p‖β̂−β‖

2 = limt plimp
1
p EZ [‖proxJατt (β+τtZ)−β‖2].

The desired result follows since limt plimp
1
p EZ [‖proxJατt (β + τtZ) − β‖2] = δ(τ2∗ − σ2

w). To
see this, note that limt δ(τ

2
t+1 − σ2

w) = δ(τ2∗ − σ2
w) and

plim
p

1

p
E
Z

[‖proxJατt (β+ τtZ)−β‖2] = lim
p

1

p
E
Z,B

[‖proxJατt (B+ τtZ)−B‖2] = δ(τ2t+1−σ2
w),

forB elementwise i.i.d. B independent of Z ∼ N (0, Ip). A rigorous argument for the above follows
similarly to that used to prove property (P2) stated in Appendix B and proved in Appendix D.

4 Discussion and Future Work

This work develops and analyzes the dynamics of an approximate message passing (AMP) algorithm
with the purpose of solving the SLOPE convex optimization procedure for high-dimensional linear
regression. By employing recent theoretical analysis of AMP when the non-linearities used in the
algorithm are non-separable [8], as is the case for the SLOPE problem, we provide a rigorous proof
that the proposed AMP algorithm finds the SLOPE solution asymptotically. Moreover empirical
evidence suggests that the AMP estimate is already very close to the SLOPE solution even in few
iterations. By leveraging our analysis showing that AMP provably solves SLOPE, we provide an
exact asymptotic characterization of the `2 risk of the SLOPE estimator from the underlying truth and
insight into other statistical properties of the SLOPE estimator. Though this asymptotic analysis of
the SLOPE solution has been demonstrated in other recent work [21] using a different proof strategy,
we have a clear, rigorous statement of where it applies. That is, the analysis in [21] applies if the state
evolution has a unique fixed point, whereas our Theorem 1 states precise conditions under which
this is true. Moreover, we believe that our algorithmic approach offers a more concrete connection
between the finite-sample behavior of the SLOPE estimator and its asymptotic distribution.

We now briefly discuss some potential improvements and directions for future research.
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Figure 3: Performance of AMP vari-
ants in different settings with Bernoulli-
Gaussian prior, dimension = 1000, and
sample size = 300.

i.i.d. Gaussian measurement matrix assumption. A lim-
itation of vanilla AMP is that the theory assumes an i.i.d.
Gaussian measurement matrix, and moreover, the AMP al-
gorithm can become unstable when the measurement matrix
is far from i.i.d., creating the need for heuristic techniques to
provide convergence in applications where the measurement
matrix is generated by nature (i.e., a real-world experiment
or observational study). While, in general, AMP theory pro-
vides performance guarantees only for i.i.d. sub-Gaussian
data [2, 5], in practice, favorable performance of AMP seems
to be more universal. For example, in Fig. 3a, we illustrate
the performance of AMP for i.i.d. zero mean, 1/n variance
design matrices that are not Gaussian (one i.i.d. ±1 Bernoulli
(top) and one i.i.d. shifted exponential (bottom)). In particular,
we note that the exponential prior is not sub-Gaussian, so the
performance here is not supported by theory. In both cases,
AMP converges very fast, thus demonstrating its robustness
to distributional assumptions.

On the theoretical side, recent work proposes a variant
of AMP, called vector-AMP or VAMP [28], which is a
computationally-efficient algorithm that provably works for
a wide range of design matrices, namely, those that are right
rotationally-invariant. For example, [23] studies VAMP for
a similar setting as SLOPE. However, the type of nonsep-
arability considered in this work requires the penalty to be
separable on subsets of an affine transformation of its in-
put. As such, the setting does not directly apply to SLOPE.
To address this, we have built a hybrid, ‘SLOPE VAMP’,
based on code generously shared by the authors of the refer-
enced work [23], which performs very well in the (non-) i.i.d.
(non-) Gaussian regime (see Fig. 3a and 3b). Motivated by
these promising empirical results, we feel that theoretically
understanding SLOPE dynamics with VAMP is an exciting
direction for future work.
Known signal prior assumption. There is a possibility that,
by using EM- or SURE-based AMP strategies, one can re-
move the known signal prior assumption. Developing such
strategies alongside our SLOPE VAMP would provide a quite
general framework for recovery of the SLOPE estimator.
Comparison to ‘Bayes-AMP’. In general, the (statistical)
motivation for using methods like LASSO or SLOPE is to
perform variable selection, and in addition, for SLOPE, to
control the false discovery rate. Both methods are therefore
biased and, consequently, ‘Bayes-AMP’ strategies that are
designed to be optimal in terms of MSE will outperform if performance is based on MSE. In par-
ticular, [14] proves that ‘Bayes-AMP’ always has smaller MSE than that of methods employing
convex regularization for a wide class of convex penalties and Gaussian design. Nevertheless, Fig. 3c
suggests that SLOPE AMP has MSE that is not too much worse than MMSE AMP.
Sampling regime. The asymptotical regime studied here, n/p → δ ∈ (0,∞), requires that the
number of columns of the measurement matrix p grow at the same rate as the number of rows n. It is
of practical interest to extend the results to high-dimensional settings where p grows faster than n.
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