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Abstract

Estimating machine learning performance “in the wild” is both an important and
unsolved problem. In this paper, we seek to examine, understand, and predict the
pointwise competence of classification models. Our contributions are twofold:
First, we establish a statistically rigorous definition of competence that general-
izes the common notion of classifier confidence; second, we present the ALICE
(Accurate Layerwise Interpretable Competence Estimation) Score, a pointwise
competence estimator for any classifier. By considering distributional, data, and
model uncertainty, ALICE empirically shows accurate competence estimation in
common failure situations such as class-imbalanced datasets, out-of-distribution
datasets, and poorly trained models.
Our contributions allow us to accurately predict the competence of any classification
model given any input and error function. We compare our score with state-of-
the-art confidence estimators such as model confidence and Trust Score, and show
significant improvements in competence prediction over these methods on datasets
such as DIGITS, CIFAR10, and CIFAR100.

1 Introduction

Machine learning algorithms have achieved tremendous success in areas such as classification [12],
object detection [24], and segmentation [1]. However, as these algorithms become more prevalent
in society it is essential to understand their limitations. In particular, a supervised machine learning
model’s performance on a reserved test point is characterized by the difference between that point’s
label and the model’s prediction on that point. A model is considered performant on that point if
this difference is sufficiently small; unfortunately, this difference is impossible to compute once the
model is deployed since the point’s true label is unknown.

This problem is exacerbated when we consider the difference between real world data and the curated
datasets that the models are evaluated on — often these datasets are significantly different, and it is
not clear whether performance on a held aside test set is indicative of real-world performance. It is
essential to have a predictive measure of performance that does not require ground truth in order to
determine whether or not a machine learning algorithm’s prediction should be trusted "in the wild"
— a measure of model competence. However, competence is currently not defined in any rigorous
manner and is often restricted to the more specific idea of model confidence.

In this paper, we define competence to be a generalized form of predictive uncertainty, and so we must
account for all of its’ generating facets. Predictive uncertainty arises from three factors: distributional,
data, and model uncertainty. Distributional uncertainty [4] arises from mismatched training and
test distributions (i.e. dataset shift [23]). Data uncertainty [4] is inherent in the complex nature
of the data (e.g. input noise, class overlap, etc.). Finally, model uncertainty measures error in the
approximation of the true model used to generate the data (e.g. overfitting, underfitting, etc.) [4] —
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this generally reduces as the amount of data increases. Accurate predictive uncertainty estimation (and
thus accurate competence estimation) requires consideration of all three of these factors. Previous
attempts to explicitly model these three factors require out-of-distribution data, or are not scalable to
high dimensional datasets or deep networks [4] [18]; there are currently very few methods that do
so in a way that requires no additional data, scales to high dimensional data and large models, and
applies to any classification model, regardless of architecture, dataset, or performance.

We focus on mitigating these issues in the space of classifiers. In Section 2 we present several
definitions, including a robust, generalizable definition of model competence that encompasses the
common notion of model confidence. In Section 3 we examine the related work in the areas of
predictive uncertainty estimation and interpretable machine learning. In Section 4 we show a general
metric for evaluating competence estimators. In Section 5 we develop the "ALICE Score," an accurate
layerwise interpretable competence estimator. In Section 6 we empirically evaluate the ALICE Score
in situations involving different types of predictive uncertainty and on various models and datasets.
We conclude in Section 7 with implications and ideas for future work.

2 Definitions

Definition 1. (Error Function) Let C be the finite "label space" of possible labels of the true model
f used to generate data, and let Y be the associated unit simplex of class probabilities, which we
call the "distributional space". Let Ŷ ⊆ Y be the space of possible outputs of a classifier f̂ that
approximates f . We will denote the classes in C predicted by these models (usually through an
argmax) as f̂c and fc. An error function E is a function E : Y × Ŷ → R≥0 ∪ {+∞}, with the
property that E(y, ŷ) =∞ when y ∈ Ŷ ∩ Y . This property intuitively means that the output of the
error function is infinite if the true class is outside of the classifier’s prediction space. Given a point
x, we denote E(f(x), f̂(x)) the error of f̂ on x. Common examples of error functions are mean
squared error, cross-entropy error, and 0-1 error (the indicator that the classes predicted by f̂ and f
are different). Note that an error function is distinct from a loss function since it is neither required to
be differentiable nor continuous.
Definition 2. (Confidence) The commonly accepted definition of classifier confidence [19] [2] [18]
[3] is the probability that the model’s predicted class on an input x is the true class of x. Explicitly,
this is p(fc(x) = f̂c(x)|x, f̂). This is also the inverse of the predictive uncertainty [3] of a classifier,
which is the probability that the model’s prediction is incorrect [18].

While confidence is sufficient in many cases, we would like to have a more general and flexible
definition that can be tuned towards a specific user’s goals. For example, some users may be
interested in top-k error, cross-entropy or mean squared error instead of 0-1 error. We can model this
by rewriting the confidence definition with respect to an error function E :

p(fc(x) = f̂c(x)|x, f̂) = p(E(f(x), f̂(x)) = 0|x, f̂)

where E is the 0-1 error. We can now extend E beyond E0−1 to fit an end-user’s goals. We can make
this definition even more general by borrowing ideas from the Probable Approximately Correct (PAC)
Learning framework [30] and allowing users to specify an error tolerance δ. For example, some users
may allow for their prediction error to be below a specific δ for their model to be considered competent.
One could imagine that for highly precise problems with low threshold for error, δ would be quite
low, while less stringent use-cases could allow for larger δ’s. The relaxation of the prediction error
leads to the generalized notion of δ-competence, which we define as p(E(f(x), f̂(x)) < δ|x, f̂).
Confidence can be recovered by setting E = E0-1 and δ ∈ (0, 1).

Allowing both δ and E to vary gives fine control to an end-user about the details of a model’s
performance with respect to a specific error function.
Definition 3. (δ-ε Competence) The true δ-competence of a model at a given point is the binary
variable E(f(x), f̂(x)) < δ|x, f, f̂) where E is an error function (Definition 1). Note that E becomes
a random variable when f is unknown since E is a deterministic function of the uncertain variable
f(x) — this notion of randomness is slightly distinct from treating f̂ as a random variable due to finite
data. Given that f is unknown, we must estimate the δ-competence, which can now be written as
p(E(f(x), f̂(x)) < δ|x, f̂). Putting a risk threshold ε on the value of the δ-competence leads us to the

2



following notion: A model is δ-ε competent with respect to E at x if p(E(f(x), f̂(x)) < δ|x, f̂) > ε,
or it is likely to be approximately correct.

This definition of competence allows a user to set a correctness threshold (δ) on how close the
prediction and the true output need to be in order to be considered approximately correct, as well as
set a risk threshold (ε) on the probability that this prediction is approximately correct with respect to
any error function. These thresholds and error functions allow for a flexible definition of competence
that can be adjusted depending on the application. This also follows the definition of trust in [14]
as "the attitude that an agent will help achieve an individual’s goals in a situation characterized by
uncertainty and vulnerability."

Since we neither have access to labels nor have enough information to efficiently compute the true
probability distribution p(E(f(x), f̂(x)) < δ|x, f̂) we seek to estimate this probability. We make
this clear with the following definition:

Definition 4. (Competence Estimator) A competence estimator of a model f̂ with respect to
the error function E is a function gf̂ : X × R → [0, 1], where X is the space of inputs, that is a

statistical point estimator of the true variable E(f(x), f̂(x)) < δ|x, f̂ , f . In particular, gf̂ (x, δ) =

p̂(E(f(x), f̂(x)) < δ|x, f̂).

In the future we omit conditioning on f̂ in our notation with the note that all subsequent probabilities
are conditioned on f̂ .

3 Related Work

Competence estimation is closely tied with the well-studied areas of predictive uncertainty and
confidence estimation, which can further be divided into Bayesian approaches such as [9] [7] [17], or
non-Bayesian approaches including [5], [22], [13]. Bayesian methods attempt to determine some
distribution about each of the weights in a network and predict a distribution of outputs using this
distribution of weights. Computing the uncertainty of a prediction then becomes computing statistics
about the estimated output distribution. These estimates tend to perform well, but tend not to be
scalable to high dimensional datasets or larger networks. The non-bayesian methods traditionally fall
under ensemble approaches [13], training on out-of-distribution data [18] [22] [29], or dropout [5].
This field tends to only work on a certain subset of classifiers (such as models with dropout for [5])
or require modifications to the models in order to compute uncertainty [19]. Many of these methods
are based off of the unmodified model confidence [5], and thus could be supplementary to our new
competence score. To the best of our knowledge there are no existing Bayesian or non-Bayesian
methods that consider competence with respect to error functions other than 0-1 error nor methods
that have tunable tolerance parameters.

Another related area of research is interpretable machine learning. Methods such as prototype
networks [28] or LIME [25] are very useful in explaining why a classifier is making a prediction, and
we expect these methods to augment our work. However, competence prediction does not attempt to
explain the predictions of a classifier in any way—we simply seek to determine whether or not the
classifier is competent on a point, without worrying about why or how the model made that decision.
In this sense we are more closely aligned with calibration [6], which adjusts prediction scores to
match class conditional probabilities which are interpretable scores [29] [31] and works such as [26]
are orthogonal to ours. While our goal is not to compute class probabilites, our method similarly
provides an interpretable probability score that the model is competent.

The closest estimators to our own are [2] and [8]. [2] learns a meta model that ensembles transfer
classifiers’ predictions to predict whether or not the overall network has a correct classification.
Conversely, [8] computes the ratio of the distance to the predicted class and the second highest
predicted class as a Trust Score. While [2] takes into account data uncertainty with transfer classifiers,
it does not explicitly take into account distributional or model uncertainty. Oppositely, [8] considers
neither model nor data uncertainty explicitly, though it does model distributional uncertainty similarly
to [13], [15], and [16]. Further, both merely rank examples according to uncertainty measures that
are not human-interpretable. They also focus on confidence rather than competence, which does not
allow them to generalize to either more nuanced error functions or varying margins of error.
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To the best of our knowledge, the ALICE Score is the first competence estimator that is scalable to
large models and datasets and is generalizable to all classifiers, error functions, and performance
levels. Our method takes into account all three aspects of predictive uncertainty in order to accurately
predict competence on all of the models and datasets that it has encountered, regardless of the stage
of training. Further, it does not require any out-of-distribution data to train on and can easily be
interpreted as a probability of model competence. It also provides tunable parameters of δ, ε, and E
allowing for a more flexible version of competence that can fit a variety of users’ needs.

4 Evaluating Competence Estimators

4.1 Binary δ − ε Competence Classification

We consider the task of pointwise binary competence classification. Given f(x) and f̂(x), we can
directly calculate E(f(x), f̂(x)) and thus the model’s true δ competence on x. Given a competence
estimator, we can then predict if the model is δ competent on x, thus creating a binary classification
task parametrized by ε. This allows us to use standard binary classification metrics such as Average
Precision (AP) across all recall values to evaluate the competence estimator.

We note that the true model competence is nondecreasing as δ increases since we are strictly increasing
the support. In particular, we have that the model is truly incompetent with respect to E on all points
when δ = 0, and the model is truly competent with respect to E on all points as δ →∞ as long as E
is bounded above. This makes it difficult to pick a single δ that is representative of the performance
of the competence estimator on a range of δ’s. To mitigate this issue we report mean AP over a range
of δ’s, as this averages the estimator’s precision across these error tolerances.

Note that this metric only evaluates how well each estimator orders the test points based on com-
petence, and does not consider the actual value of the score. We test this since some competence
estimators (e.g. TrustScore) only seek to rank points based on competence and do not care what
the magnitude of the final score is. As a technical detail, this means that we cannot parametrize the
computation of Average Precision by ε (since some estimators don’t output scores in the range [0, 1]),
and must instead parametrize each estimator’s AP computation separately by thresholding on that
estimator’s output.

5 The ALICE Score: δ − ε competence estimation

We would like to determine whether or not the model is competent on a point without knowledge of
ground truth, as in a test-set scenario where the user does not have access to the labels of a data point.
Formally, given a δ and an input x, we want to estimate p(E(f(x), f̂(x)) < δ|x).

We write p(E(f(x), f̂(x)) < δ|x) as p(E < δ|x), where E is the random variable that denotes the
value of the E function given a point x and its label f(x). We begin by marginalizing over the possible
label values f(x) = cj ∈ Y (where cj is the one-hot label for class j):

p(E < δ|x) =
∑
cj∈Y

p(E < δ|cj , x)p(cj |x) (1)

=
∑

cj∈Ŷ∩Y

p(E < δ|cj , x)p(cj |x) +
∑

cj∈Ŷ∩Y

p(E < δ|cj , x)p(cj |x) (2)

=
∑
cj∈Ŷ

p(E < δ|cj , x)p(cj |x) (3)

Note that the E(cj , f̂(x)) was defined to be∞ when cj ∈ Ŷ ∩ Y (Definition 1), thus the rightmost
summation in Equation 2 is 0 for all δ. Furthermore, since Ŷ ⊆ Y (Definition 1) we have Ŷ ∩ Y = Ŷ
which gives the final equality. To explicitly capture distributional uncertainty, we now marginalize
over the variable D, which we define as the event that x is in-distribution:
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p(E < δ|x) =
∑
cj∈Ŷ

p(E < δ|cj , x)p(cj |x)

=
∑
cj∈Ŷ

p(E < δ|cj , x,D)p(cj |x,D)p(D|x) +
∑
cj∈Ŷ

p(E < δ|cj , x,D)p(cj |x,D)p(D|x)

(4)

Consider the rightmost summation in Equation 4. This represents the probability that the model is
competent on the point x assuming that x is out-of-distribution. However, this term is intractable to
approximate due to distributional uncertainty. Given only in-distribution training data, we assume that
we cannot know whether the model will be competent on out-of-distribution test points. To mitigate
this concern we lower bound the estimation by setting this term to 0 — this introduces the inductive
bias that the model is not competent on points that are out-of-distribution. This simplification yields:

p(E < δ|x) ≥ p(D|x)
∑
cj∈Ŷ

p(E < δ|cj , x)p(cj |x,D) (5)

This allows our estimate to err on the side of caution as we would rather predict that the model is
incompetent even if it is truly competent compared to the opposite situation. We approximate each of
the terms in Equation 5 in turn.

5.1 Approximating p(D|x)

This term computes the probability that a point x is in-distribution. We follow a method derived
from the state-of-the-art anomaly detector [16] to compute this term: For each class j we fit a
class-conditional Gaussian Gj to the set {x ∈ Xtrain : f̂(x) = cj} where Xtrain is the training
data. Given a test point x we then compute the Mahalanobis distance dj between x and Gj . In
order to turn this distance into a probability, we consider the empirical distribution βj of possible
in-distribution distances by computing the distance of each training point to the Gaussian Gj , and
then computing the survival function. We take the maximum value of the survival function across all
j. This intuitively models the probability that the point is in-distribution with respect to any class.
Explicitly, we have p(D|x) = maxj 1− CDFβj

(dj). Note that this term measures distribution shift,
which closely aligns with distributional uncertainty.

5.2 Approximating p(E < δ|x, cj)

This term computes the probability that the error at the point x is less than δ given that the one-hot
label is cj . We directly compute E(cj , f̂(x)), then simply check whether or not this error is less than
δ. Note that this value is always 1 or 0 since it is the indicator 1[E(cj , f̂(x)) < δ], and that this term
estimates the difference between the predictions of f and f̂ , which aligns with model uncertainty.

5.3 Approximating p(cj |x,D)

This term computes the probability that a point x is of class j, given that it is in-distribution. To
estimate this class probability, we fit a transfer classifier at the given layer and use its class-probability
output, p̂(cj |x,D). Since the test points are assumed to be in-distribution, we can trust the output
of the classifier as long as it is calibrated — that is, for all x with p(cj |x) = p, p of them belong
to class j. [21] examines the calibration of various classifiers, and shows that Logistic Regression
(LR) Classifiers are well calibrated. Random Forests and Bagged Decision Trees are also calibrated
[21], however, we find that the choice of calibrated classifier has little effect on the accuracy of our
competence estimator. Note that — with a perfectly calibrated classifier — this term estimates the
uncertainty inherent in the data (e.g. a red/blue classifier will always be uncertain on purple inputs
due to class overlap), which closely aligns with data uncertainty.
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5.4 The ALICE Score

Putting all of these approximations together yields the ALICE Score:

p(E(f(x), f̂(x)) < δ|x) ' max
j

(1− CDFβj
(dj))

∑
cj∈Ŷ

1[E(f̂(x), cj) < δ]p̂(cj |x,D) (6)

Note that the ALICE Score can be written at layer l of a neural network by treating x as the activation
of layer l in a network and using those activations for the transfer classifiers and the class conditional
Gaussians.

We do not claim that the individual components of the ALICE Score are optimal nor that our estimator
is optimal — we merely wish to demonstrate that the ALICE framework of expressing competence
estimation according to Equation 6 is empirically effective.

6 Experiments and Results

6.1 Experimental Setup

We conduct a variety of experiments to empirically evaluate ALICE as a competence estimator
for classification tasks. We vary the model, training times, dataset, and error function to show the
robustness of the ALICE Score to different variables. We compute metrics for competence prediction
by simply using the score as a ranking and thresholding by recall values to compare with other scores
that are neither ε-aware nor calibrated, as discussed in Section 4. The mean Average Precision is
computed across 100 δ’s linearly spaced between the minimum and maximum of the E output (e.g.
for cross-entropy we space δ’s between the minimum and the maximum cross-entropy error on a
validation set). For all experiments, we compute ALICE scores on the penultimate layer, as we
empirically found this layer to provide the best results — we believe this is due to the penultimate
layer having the most well-formed representations before the final predictions. We compare our
method only with Trust Score and model confidence (usually the softmax score) since they apply to
all models and do not require extraneous data. Further experimental details are provided in Appendix
A.

6.2 Predictive Uncertainty Experiments

Since competence is a generalized form of confidence, and confidence amalgamates all forms of
predictive uncertainty, competence estimators must account for these factors as well. We empirically
show that ALICE can accurately predict competence when encountering all three types of predictive
uncertainty — note that we do not claim that the ALICE framework perfectly disentangles these three
facets, merely that each term is essential to account for all forms of predictive uncertainty.

We first examine model uncertainty by performing an ablation study on both overfit and underfit
classical models on DIGITS and VGG16 [27] on CIFAR100 [11]. Details about these models are
in Appendix A. As expected, ALICE strongly outperforms the other metrics in areas of over and
underfitting and weakly outperforms in regions where the network is trained well (Table 1). Further,
we highlight a specific form of model uncertainty in Figure 1 by performing the same ablation study
on the common situation of class-imbalanced datasets. We remove 95% of the training data for the
final 5 classes of CIFAR10 so that the model is poorly matched to these low-count classes, thus
introducing model uncertainty. Figure 1 shows the mean Average Precision (mAP) of competence
prediction on the unmodified CIFAR10 test set after fully training VGG16 on the class-imbalanced
CIFAR10 dataset. While all of the metrics perform similarly on the classes of high count, neither
softmax (orange) nor trust score (green) were able to accurately predict competence on the low count
classes. ALICE (blue), on the other hand, correctly identifies competence on all classes because
ALICE considers model uncertainty. We additionally show that omitting the term p(E < δ|x, cj)
removes this capability, thus empirically showing that this term is necessary to perform accurate
competence estimation under situations of model uncertainty.

While Figure 1 and Table 1 show ALICE’s performance under situations of high model uncertainty,
we show ALICE’s performance under situations of distributional uncertainty in Table 2. First we
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(a) mAP of competence scores (E = cross-entropy) (b) mAP of competence scores (E = 0-1 error)

Figure 1: Competence Scores on Class Imbalanced CIFAR10

Table 1: mAP for Competence Prediction Under Model Uncertainty (E = cross-entropy). VGG16 is tested on
CIFAR100 while the other models are on DIGITS. (U) is underfit, (W) is well trained, and (O) is overfit. Ablated
ALICE refers to ALICE without the p(E < δ|x, cj) terms. Hyperparameters for these trials are in Appendix A.

Model Accuracy Softmax TrustScore Ablated ALICE ALICE

MLP (U) .121 ± .048 .0486 ± .015 .505 ± .27 .0538 ± .031 .999 ± .0015
MLP (W) .898 ±.022 .989 ±.005 .929 ±.044 .958 ±.042 .998 ±.001
MLP (O) .097 ±.015 .532 ±.062 .768 ±.064 .576 ±.033 .996 ±.003
RF (U) .563 ± .078 .824 ± .16 .504 ± .33 .290 ± .322 .999 ± .0011
RF (W) .930 ±.019 .998 ±.002 .898 ±.025 .923 ±.016 .999 ±.000

SVM (U) .630 ±.018 .995 ±.003 .626 ±.046 .496 ±.069 1.00 ±.000
SVM (W) .984 ±.009 1.00 ±.000 .931 ±.048 .963 ±.038 1.00 ±.000
SVM (O) .258 ± .023 .200 ± .16 .215 ± .12 .252 ± .16 .981 ± .028

VGG16 (U) .0878 ± .0076 .899 ± .014 .292 ± .049 .0369 ± .0041 .913 ± .012
VGG16 (W) .498 ± .012 .975 ± .013 .604 ± .104 .0863 ± .0071 .978 ± .0082
VGG16 (O) .282 ± .15 .659 ± .024 .665 ± .0080 .257 ± .018 .738 ± .019

define a distributional competence error function:

ED(f(x), f̂(x)) =

{
0 f(x) ∈ Ŷ
1 f(x) /∈ Ŷ

This function is simply an indicator as to whether or not the true label of a point is in the predicted
label space. We fully train ResNet32 on the unmodified CIFAR10 training set. We then compute
competence scores with respect to ED on a test set with varying proportions of SVHN [20] (out-of-
distribution) and CIFAR10 (in-distribution) data. In this case Y = YCIFAR ∪ YSVHN but Ŷ = YCIFAR,
thus ED is 1 on SVHN points and 0 on CIFAR points. Table 2 shows that both softmax and
ALICE without the p(D|x) term perform poorly on distributional competence. In contrast, both
the full ALICE score and Trust Score are able to estimate distributional competence in all levels of
distributional uncertainty — this is expected since ALICE contains methods derived from a state-
of-the-art anomaly detector [16] and Trust Score considers distance to the training data. Note that
this construction of the distributional competence function is a clear example of how the general
notion of competence can vary tremendously depending on the task at hand, and ALICE is capable of
predicting accurate competence estimation for any of these notions of competence.

Table 2: mAP for Competence Prediction Under Distributional Uncertainty (E = ED).

CIFAR/SVHN Proportion Softmax TrustScore Ablated ALICE ALICE

10/90 .458 ±0.056 .518 ±0.039 .100 ±0.000 .868 ±0.014
30/70 .693 ±0.034 .721 ±0.026 .300 ±0.000 .946 ±0.007
50/50 .816 ±0.020 .833 ±0.015 .500 ±0.000 .970 ±0.003
70/30 .901 ±0.010 .910 ±0.008 .700 ±0.000 .985 ±0.002
90/10 .970 ±0.003 .972 ±0.002 .900 ±0.000 .997 ±0.001
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Figure 2: Competence Visualization on CIFAR10 (δ = .001, E = cross-entropy). Points are projected to two
dimensions with Neighborhood Component Analysis. From left to right, figures are colored by the class label,
ALICE Score, Ablated ALICE Score, and inverse error (so darker colors imply competence).

We examine ALICE’s capturing of data uncertainty by observing competence predictions in areas
of class overlap in Figure 2. Here we trained VGG16 on CIFAR10 [10] and visualized competence
scores with respect to cross-entropy. Note that the competence scores are very low in areas of class
overlap, and that these regions also match with areas of high error. Additional experiments with
varying models, error functions, and levels of uncertainty are provided in Appendix B.

6.3 Calibration Experiments

While the previous experiments show the ability of ALICE to rank points according to competence,
we now show the interpretability of the ALICE score through calibration curves. Note that we are
not attempting to interpet or explain why the model has made the decision that it has, we simply aim
to show that the ALICE score matches its semantic meaning: for all points with ALICE score of
p, we expect p of them to be truly competent. To show this, we train ResNet32 on CIFAR100 and
compute ALICE scores at various stages of training and for different error functions (we use δ =
0.2 when computing competence for Exent. We bin the ALICE scores into tenths ([0.0 - 0.1), [0.1
- 0.2), ..., [0.9, 1.0)) and plot the true proportion of competent points for each bin as a histogram.
Note that a perfect competence estimation with infinite data would result in these histograms roughly
resembling a y = x curve. We visualize the difference between our competence estimator and perfect
competence estimation by showing these residuals as well as the number of points in each bin in
Figure 3. Note that ALICE is relatively well-calibrated at all stages of training and for all error
functions tested — this result shows that one can interpret the ALICE score as an automatically
calibrated probability that the model is competent on a particular point. This shows that not only does
the ALICE Score rank points accurately according to their competence but it also rightfully assigns
the correct probability values for various error functions and at all stages of training.
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Figure 3: ALICE score calibration of ResNet32 trained on CIFAR10, with various error functions and stages of
training. The captions show the error functions and number of epochs trained.

7 Conclusions and Future Work

In this work we present a new, flexible definition of competence. Our definition naturally generalizes
the notion of confidence by allowing a variety of error functions as well as risk and correctness
thresholds in order to construct a definition that is tunable to an end-user’s needs. We also develop
the ALICE Score, an accurate layerwise interpretable competence estimator for classifiers. The
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ALICE Score is not only applicable to any classifier but also outperforms the state-of-the-art in
competence prediction. Further, we show that the ALICE Score is robust to out-of-distribution data,
class imbalance and poorly trained models due to our considerations of all three facets of predictive
uncertainty.

The implications of an accurate competence estimator are far reaching. For instance, future work
could include using the ALICE Score to inform an Active Learning acquisition function by labeling
points that a model is least competent on. One could also examine a network more closely by
performing feature visualization or finding prototypes in areas of low competence, as this would
elucidate which features are correlated with incompetence. This is particularly useful since the
ALICE Score can be computed layerwise in order to find both low and high level features that the
model is not competent on. Competence estimators could also be used as test and evaluation metrics
when a model is deployed to detect both distributional shift and classification failure.

Future work will focus on extending the ALICE Score to supervised tasks other than classification
such as object detection, segmentation, and regression. Additionally, because many of the components
of the ALICE Score are state-of-the-art for detecting adversarial examples, we expect that the ALICE
Score would also be able to detect adversarial samples and assign them low competence, though we
have not tested this explicitly. Further research will also include better approximations of the terms in
the ALICE Score to improve competence estimation. Finally, we plan to explore different methods to
ensemble the layerwise ALICE Scores into an overall ALICE Score for the model and determine
whether or not that improves performance compared to the layerwise ALICE Scores.
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