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Abstract

We consider online learning in episodic loop-free Markov decision processes
(MDPs), where the loss function can change arbitrarily between episodes. The
transition function is fixed but unknown to the learner, and the learner only observes
bandit feedback (not the entire loss function). For this problem we develop no-
regret algorithms that perform asymptotically as well as the best stationary policy
in hindsight. Assuming that all states are reachable with probability 5 > 0
under any policy, we give a regret bound of O(L| X |\/]A|T/3), where T is the
number of episodes, X is the state space, A is the action space, and L is the
length of each episode. When this assumption is removed we give a regret bound
of O(L*?|X||A|"/*T"/*), that holds for an arbitrary transition function. To our
knowledge these are the first algorithms that in our setting handle both bandit
feedback and an unknown transition function.

1 Introduction

Reinforcement learning is the study of problems involving sequential decision making in an unknown
stochastic environment, and Markov decision process [1] is the most common model used in this
field. In this model both the losses and dynamics of the environment are assumed to be stationary
over time. However, in real world applications, the losses might change over time, even throughout
the learning process.

To address this issue the adversarial MDP model [2]] was proposed. In this model the loss function
can change arbitrarily, while still assuming a fixed stochastic transition function. Since the absolute
total expected loss of the learner becomes meaningless, the learner’s performance is measured by the
regret - comparing to the best stationary policy in hindsight.

The adversarial MDP model is actually a combination of the original MDP model with online learning
[3]], which considers decision making against an adversary but in a stateless environment. Online
learning problems are usually divided into two types of feedback. The first is full information
feedback, in which the learner observes the entire loss function after it made its decision. The second
is the more challenging bandit feedback, in which the learner only observes the losses related to the
actions it chose.

In this paper we propose the first algorithms for the adversarial MDP model with bandit feedback
and an unknown transition function. Our algorithms are based on the recently proposed UC-O-REPS
algorithm [4]], that assumes unknown transition function but full information feedback. Our first
algorithm, "Bounded Bandit UC-O-REPS", assumes that any state is reachable under any policy with
probability 3 > 0 and achieves a regret bound of O(L| X |\/]A|T/#3). Our second algorithm, "Shifted

Bandit UC-O-REPS", removes this assumption and achieves a regret bound of O(L”?| X || A|"/*T"/*).
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The algorithms are fairly simple, and the main challenge is the analysis of the regret and computational
complexity.

1.1 Related Work

The works of [3] and [6] assume an unknown fixed MDP, and achieve a O(L|X|/]A|T) regret

compared to the optimal policy. A recent work by [7] achieves O(+/L|X||A|T) regret for large
enough 7" (which is optimal [3]), and some more recent papers achieve similar optimal results [8} 9].
We remark that the lower bound of Q(+/L|X||A|T) by [5]] also holds in our setting but might not be
tight.

The work of [2], which presented the adversarial MDP model, assumes full knowledge of the transition
function and full information feedback about the losses. They propose an algorithm, MDP-E, which

uses an experts algorithm in each state and achieves O(72/T In | A|) regret, where 7 is a bound on
the mixing time of the MDP. Another early work in this setting, by [10], achieves an O(T%*) regret.

In the bandit setting, but still assuming full knowledge of the transition function, the work of [[11]
achieves an O(L?./|A|T/B) regret, where 3 is defined similarly to our definition. Later [12]
eliminate the dependence on 3 but achieve only O(TQ/ %) regret. A later work, by [13]], proposed the
O-REPS algorithm which guarantees an O(+/L| X || A|T) regret.

The setting where the transition function is unknown is much more challenging and only two
algorithms were previously presented for it, both assume full information feedback. The FPOP

algorithm [14] achieves O(L|X||A|V/T) regret, and the recent UC-O-REPS algorithm [4] achieves
O(L|X|/|A|T) regret.

The rest of the paper is organized as follows. Section |2| presents the formal model and problem.
Section 3] presents the concept of occupancy measures, which is the foundation of the UC-O-REPS

algorithm presented in Section[d] Section 5] presents our algorithms, and sections [6|and [7] prove their
regret bounds.

2 The Model

The Online Stochastic Shortest Path problem (OSSP) considers an episodic loop-free adversarial
MDP which is defined by a tuple M = (X, A, P, {¢,}{_,), where X and A are the finite state and
action spaces, and P : X x A x X — [0,1] is the transition function such that P(z'|z,a) is the
probability to move to state " after performing action ¢ in state x.

We assume that the state space can be decomposed into L non-intersecting layers X, ..., Xy, such
that the first and the last layers are singletons, i.e., Xo = {zo} and X = {x }. Furthermore, the
loop-free assumption means that transitions are only possible between consecutive layers.

Let {ét}le be a sequence of loss functions describing the losses at each episode, i.e., ; : X x A —
[0,1]. We do not make any statistical assumption on the loss functions, i.e., they can be chosen
arbitrarily.

The interaction between the learner and the environment is described in Algorithm [I] It proceeds
in episodes, where in each episode the learner starts in state o and moves forward across the
consecutive layers until it reaches state x. The learner’s task is to select an action at each state it
visits. Alternatively, we can say that its task at each episode is to choose a stationary (stochastic)
policy ,which is a mapping 7 : X x A — [0, 1], where 7(a|x) gives the probability that action a is
selected in state .

In episode ¢, the learner traverses a trajectory U = (x((f), a(()t), x(lt), a(lt), . ,mgll, a(Ltll, m(Lt)

using the policy 7 it chose for this episode. That is, action a,(f) is chosen using (- |:c,(f)) and state

x,(fJ)rl is drawn from distribution P(- |a:,(:), ag)). At the end of the episode the learner observes bandit

L1
feedback, i.e., it observes £;(U(")) = {& (;v,(:), ag)) }k . and not the entire loss function /;.



Algorithm 1 Learner-Environment Interaction

Parameters: MDP M = (X, A, P, {¢,}],)
fort = 1to T do
learner starts in state a:ét) = g
fork=0to L —1do
learner chooses action a,(:) €A

environment draws new state 5”531 ~ P(- |x,(f), a,(f))
()

learner observes state x, 11

learner observes suffered losses ft(a:((f), ) Et(xl ,agt)), oo by (x(L) 1 a(Lt) 1)

For a policy 7 we define its total expected loss with respect to loss function ¢ and transition function

P as
Zé Th, Qg ’PTI'

where action ay, is chosen using 7(-|xy) and state xj1 is drawn from distribution P(:|z, ag).

L(P,m,?)

At the beginning of each episode ¢ the learner picks a policy 7, and its goal is to minimize its total
expected loss. Its performance will be measured by comparison to the best stationary policy. This is
defined using the regret,

T T
Rur(PAt}{Zy) = Y L(P.my, ) —miny  L(P,m,t)

t=1 t=1

where the minimum is taken over all stationary stochastic policies.

3 Occupancy Measures

The O-REPS [[13] and UC-O-REPS [4] algorithms showed that the OSSP problem can be reformulated
as an online convex optimization problem, using occupancy measures on the space X x A x X. For
a policy 7 and a transition function P the occupancy measure g™ is defined as follows:

qP’”(a:,a,x') =Prlzy =z,a; = a, 101 = 2’| P, 7]

where © € X}, and 2’ € Xj41. We also introduce the notation k(z) for the index of the layer that x
belongs to, and the two following notations,

qP’”(x,a) =Pr [{Ek =,q = a|P, 71'] = Z qP’ﬂ—(CC,a,J]/)
' €Xpy1
¢ (@) = Prlay = 2|Pw] = Y ¢ (z,a).

a€A

Notice that every occupancy measure ¢ induces a transition function P? and a policy 79, that can be
computed as follows:

q(z,a,2’)

Pz |z,a) = (.0)

;o ml(alz) =

The set of all occupancy measures of an MDP M is denoted as A(M ), and can be characterized with
the following lemma from [4]].

Lemma 3.1. For every q € [0, 1]IXIXIAXIX1 it holds that ¢ € A(M) if and only if:
LY exy 2oaed arexy,, AT a,2") =1 Vk=0,...,L -1

2. Zm/eXHl Yacad(@ a2’ ) =3 hex,  Daead@a,x) Vh=1,...,L-1Vz € X},
3. P9 = P (where P is the transition function of M)



Thus, the task of the learner becomes selecting an occupancy measure 7> at the beginning of each
episode, and the regret with respect to an occupancy measures ¢ can be easily reformulated as,
T
Ryr(q, P {l:} () = Z@Rm —q, )
t=1
def

where (¢,€) = > . cx Y aca d(%,a)l(x,a). Therefore the regret of the algorithm is,
T
Rir(P {6 ) = Ryr(q. P {0 T ) = P _ g g,
1 (P {le}—1) Jhax, 17(q, Pyl i) o t:1<q q,4;)

4 The UC-O-REPS Algorithm

Our algorithms are based on the recently proposed UC-O-REPS algorithm [4]]. The full details of the
algorithm can be found in the original paper, but here we give a brief description.

UC-O-REPS uses the framework of UCRL2 [5] that maintains confidence sets of occupancy measures
that contain A(M) with high probability of at least 1 — d, for some parameter 0 < § < 1. It
proceeds in epochs such that an epoch ends every time the number of visits to some state-action
pair is doubled, and the confidence set is recomputed in the beginning of every epoch. For every
(7,a,2") € X x A X Xjz)41 it keeps counters N;(z, a,z’) and N;(z, a) that count the number of
visits up to epoch ¢, and uses these counters to compute the empirical transition function in epoch ¢
defined as follows,

Ni(z,a,z)

Pi(x/kn,a) = max{1, N;(z,a)}’

The confidence set of epoch ¢ is denoted as A(M, i), and it contains all the occupancy measures
whose induced transition function has L -distance of at most ¢; from the empirical transition function,
where ¢€; is a parameter that determines the size of the confidence set and is defined as follows,

ei(ya) 1| Dbyl 5
s max{1, N;(z,a)}

Formally, A(M, i) contains all occupancy measures ¢©™ such that for every (z, a),

|P'(-|z,a) — Pi(-]z,a)[ly < e, a).
In each episode UC-O-REPS chooses an occupancy measure, from within the current confidence set,
that minimizes a trade-off between the current loss function and the distance to the previously chosen

occupancy measure. Formally, it performs the following steps in each episode given some parameter
n > 0,
Ge+1 = argminn{g, &) + Dgllge)
= g™ — gp min  D(q||¢
dt+1 =4 gqu(Mﬂ,(t)) (qllge+1)
where i(t) is the epoch that time step ¢ belongs to, and D(q||¢’) is the unnormalized KL divergence be-
q(z,a,2") q(x a Z‘/) +

q'(z,a,z")

tween two occupancy measures defined as D(ql|l¢') = >_, , . q(z,a,2") In
q'(x,a,2").

In [4] it is shown that all the confidence sets contain A(M) with probability at least 1 — ¢, that the
algorithm can be implemented efficiently, and that it achieves a regret bound of O(L|X|+/|A|T' InT).

S Our Algorithms

We define S(M) as the minimum probability to visit some state under the worst exploratory policy,
ie., B(M) = min, mingex ¢ (). Moreover, we define p,,;,, (M) as the minimal transition
probability, that is, ppin (M) = ming 4 .+ P(2'|z,a) where 2" € Xj(z)41-

Our first algorithm, "Bounded Bandit UC-O-REPS", is aimed for MDPs where there is a known
positive lower bound on 3(M). Our second algorithm, "Shifted Bandit UC-O-REPS", works in
general episodic loop-free MDPs and makes use of the first algorithm.



5.1 Bounded Bandit UC-O-REPS

The "Bounded Bandit UC-O-REPS" algorithm runs UC-O-REPS but with two crucial changes.

Firstly, instead of using ¢; (which we do not have) we use ft which is our estimate of ¢; defined as
follows,

. Li(z,a) )
ft(x,a) = qi(z,a)’ if (l‘,a) ceU .
0, otherwise

Notice that this is a biased estimator since P; may be different from P,
E {gt(x,a)’U(l), cee U(tfl)] = ¢P™ (z,a)

P,ﬂ't(

Secondly, because of the bandit feedback we want to ensure that our algorithm performs enough
exploration. For this purpose we constrain the confidence sets to contain only occupancy measures
that visit every state with probability of at least o, where 0 < o < 1 is a parameter. That is, we define
our confidence set for epoch ¢ as A, (M,7) = A(M,i) N{q: q(x) > a Va}.

Thus our algorithm performs the following steps in each episode,
i1 = arg mqin (g, &) + D(qllqr)

— gFr+umt1 — gy min D(qllq .
G+1=¢ 8 eAnihi(r) ()

If A,(M,i(t)) = 0, then g1 is chosen to be an arbitrary occupancy measure. The efficient
implementation of this algorithm is similar to the one of the original UC-O-REPS algorithm, and is
described in details in the supplementary material (together with full pseudo-code).

5.2 Shifted Bandit UC-O-REPS

The "Shifted Bandit UC-O-REPS" algorithm runs "Bounded Bandit UC-O-REPS" with o = ﬁ

(where 0 < p < 11is a parameter) but it makes the following change in order to handle the unknown
B(M) (which may be zero). It shifts the confidence sets by changing the empirical transition function.
That is, instead of using P; as the empirical transition function for epoch i it uses P which is defined
as follows forevery k = 0,...,L — 1 and for every (z,a,2') € Xp x A X X1,

Pi(@/|z,a) = (1 = p)Pi(e’ |, 0) + .

| X k1]

To sum up, the new confidence sets are denoted as A% (M, i) and they contain all occupancy measures
¢""™ such that ¢©" () > « for every z, and for every (z, a),

1P (|2, a) = P (|2, a) |1 < €(w,a).

Clearly this algorithm can be implemented efficiently, given the efficient implementation of "Bounded
Bandit UC-O-REPS" (full pseudo-code can be found in the supplementary material for completeness).

6 Regret Analysis - Bounded Bandit UC-O-REPS

In this case we assume that 5(M) > 0 and it is known to the learner (or some positive lower bound
on it). This assumption is quite strong but it holds if, for example, the minimum transition probability
is not zero, i.e., Pmin (M) > 0. In this case (M) > ppin(M).

Notice that if we run "Bounded Bandit UC-O-REPS" with o = (M), then A(M) = A, (M) =
A(M)Nn{q:q(x) >« Vz}. Therefore, using the proof of UC-O-REPS, we have that all the
confidence sets contain A(M) with probability at least 1 — 0.



Let ¢ € A(M) = A, (M), and partition the regret into two terms as follows,

T T T
Rir(q, PALY ) =D (a7 —q.b) = <Z<qP”” — th’”t,€t>> + <Z(qp“’” - q,€t>>
t=1

t=1 t=1

The first term includes the error that comes from the estimation of the unknown transition function and
will be denoted as R{:EX. The second term includes the error that comes from choosing sub-optimal

policies and will be denoted as RON
Sections[6.1]and [6.2]bound these two terms and give us the following regret bound.

Theorem 6.1. Let M = (X A, P, {Et}tT:l) be an episodic loop-free adversarial MDP, and assume
that B(M) > 0. Then, "Bounded Bandit UC-O-REPS" with o = 3(M) obtains the following regret

bound,
B [Rur (P {0}0)] < 0 (W)

6.1 Bounding R{\L”

Recall that RAP P is the difference between the loss of the learner’s chosen policies in M and the
loss of these pohcles in the “optimistic” MDPs (the ones induced by the occupancy measures ¢;).
The algorithm minimizes this difference through shrinking of the confidence sets. Notice that,

T T T
RAEP = SO(gPme — qPom 4y < 3 g™ — gPom [y oo < S llgP™ — gFo 1.

t=1 t=1 t=1

Since the algorithm uses the same framework of confidence sets as the original UC-O-REPS (and all
the confidence sets contain A (M) with high probability), we can use the following theorem from [4]
to bound this difference.

Theorem 6.2. Let {m;}L_ | be policies and let { P;}I_, be transition functions such that g™ €
A(M,i(t)) for every t. Then, when setting § = M,

E|RiF7] <E [an”t —¢""

PON
RI:T

<0 (L|X|«/|A|T1nT>

6.2 Bounding

Recall that ]:210¥ is the regret for the performance of the online algorithm’s chosen occupancy
measures. Notice that the learner performs the original UC-O-REPS algorithm with respect to the

sequence of loss functions {ét}thl and the set of occupancy measures A, (M ). Therefore, we can
use the regret analysis of the original algorithm to obtain the following result (full proof in the
supplementary material).

Lemma 6.3. Let M = (X VA, P, {Zt}thl) be an episodic loop-free adversarial MDP. Then, for
every q € Ay (M), "Bounded Bandit UC-O-REPS" obtains,

T | X||A]
. LIAIT Lln——
E[E <qpt,7rt7q7£t> §0<n |a| + L )

t=1 N

Now we show that the sequence of occupancy measures chosen by the algorithm performs similarly
on {¢;}I_, and {¢;}]_, in expectation, and therefore we can derive a bound on R

Lemma 6.4. Let M = (X, A, P, {Et}thl) be an episodic loop-free adversarial MDP. Then, for
every g € Ay (M), "Bounded Bandit UC-O-REPS" obtains,

T
E lZ@Pt,m _ q’gt _ lz Pyymy
t=1 t=1

<0 <L|X|\/|ATlnT>



Proof. First we use the linearity of expectation and the fact that ¢; = ¢**™ to obtain,

T T T
E lZ@Ptm —q.l)| —E lZ@Pt’m - q7£t>] | =|E Z(% —q, b — €t>] ‘ .
t=1 t=1 t=1
From the law of total expectation we have,
T T
E D (@ —a.b - m] ‘ = |E [ZJE (e = .0~ )0, U“‘UH ’ o
t=1 —

Now for every ¢ we can use the definition of ¢, and (T) to obtain,

E [(a - 0.6~ [0, 0] = Y (ae) — alo ) o () HED — b))
Substituting this back into (Z)) we get,
£l P l(x,a)
E[> (@ -0l - )= |E ZZ w(e,0) = g, @)™ @) g 2 — bea)
t=1 t=1 z,a
T P,y ) — Py, T
SE[Zzet<x,a><qt<x7a>—q(x,a»q g “]
t=1 z,a
|qP7rt Pf 7rf
<k [zz DS o) >>H
t=1 =x
<le [zqum Pwn]
t=1 =z

where the last inequality follows because ¢©™ (z) > «a, 0 < Yoatt(x,a)li(xz,a) < 1and 0 <
> . q(x,a)li(x,a) < 1. Finally, we use Theorem |[6.2{to conclude that

T [ T
E lz<qt — q;gt — €t>] ‘ < éE ZZ qu’ﬂ—t(w,CLZL'/) _ thﬂTt(x’a7x/)

t=1 t=1 x= |a,x’

T
1
o Z Z |qP’ﬂ-t (l’,a, xl) - th’ﬂ-t (l’,a, xl)‘

t=1 z,a,x’

r T
LIX|\W/|ATInT
> g - q”“”tnll <0 ('J) .

IN
\
=

O
Corollary 6.1. Let M = (X A, P, {Et}z;l) be an episodic loop-free adversarial MDP. Then, when

[X]1A|

setting n = ln‘Tﬁ, and 6 = %, "Bounded Bandit UC-O-REPS" obtains,

. [R?:ﬂ <0 <L|X|\/|O:4TlnT>

7 Regret Analysis - Shifted Bandit UC-O-REPS

We remove the assumption that 5(M) > 0, and for this case will use the "Shifted Bandit UC-O-
REPS" algorithm. Notice that the key insight for the regret analysis of "Bounded Bandit UC-O-REPS"



is that by setting « = 3(M ), we get that all the confidence sets contain A(M) with high probability.
The idea behind "Shifted Bandit UC-O-REPS" is to work on an imaginary MDP M * that is close to
M but has the property S(M*) > 0.

The transition function for the MDP M* = (X ,A, P {ét}thl) is defined as follows for every
k=0,...,L —1andforevery (z,a,z') € X x A X Xp11,
P*(&|z,a) = (1 — p)P(a'|z,a) + —L—.
| X1
This means that the minimal transition probability is positive, i.e., Ppin (M*) > I )l;l > 0. Therefore,
B(M*) > B X‘ > 0 and we can run "Bounded Bandit UC-O-REPS" on M*. The problem is that our

data is sampled from M, but we need to build confidence sets that contain A(M™*) and not A(M).
The following lemma shows that shifting the confidence sets obtains this desired property: all the
confidence sets contain A(M™*) with probability at least 1 — 4.

Lemma 7.1. If A(M) C A(M, i), then A(M*) C A%(M, ).

Proof. Let "™ € A(M*). First of all, since 5(M*) > |X‘ = a we have that ¢©" 7 (2) > « for
every x. Now, Since A(M) C A(M, i) we have that for every (z, a),

1P;(-z,a) = P(-|z,a)ll1 < €i(z,a).
By the definition of P and P* we have that,
1P} (-|z,a) = P*(-|z,a)|x —Z|P* |z, a) — P*(a/|z, a)|

P / P
= 1—-p z,a —(1=p)P(z'|z,a) —
Z| ol a) 4 = (1= )P ) —

A Y|P o) = Pl&'la)

=(1 —p)IIPi(-Ix,a) — P(lz,a)l1 < €i(z,a)
and therefore ¢©"™ € A (M, i) and A(M*) C A% (M, ). O

Now we divide the regret into two parts: the regret of "Bounded Bandit UC-O-REPS" in M* and the
difference in the performance of policies in M and M*. Formally, the regret of any ¢ = ¢©"™ € A(M)
is partitioned as follows,

T
Ry.r(¢™™, P, (e E, :Z P g7 oay)
=1

T T T
= <Z<qP,m . qp*,m’gt>> + <Z<qp*7m . qp*jr’gt>> + (Z@p*m _ qP,ﬂ"€t>> )

t=1 t=1 t=1

Since || P(-|x,a) — P*(-|z,a)||x < 2p for every (z,a), we can use Corollary E.2 in the supple-
mentary material to bound the first and third terms as O(pL?T). The second term includes the
regret of "Bounded Bandit UC-O-REPS" in M™* so according to Theorem we can bound it as

/ 2 /
0] <L|X |AIT mT) (mpATlnT) . Thus we get the following regret bound.

p/1X]
Theorem 7.2. Let M = (X VA P {0 1) be an episodic loop-free adversarial MDP. Then,

"Shifted Bandit UC-O-REPS" with p = l\Xf‘ IA‘;’ L obtains the following regret bound,

E [RLT(P, {&}t:l)} <0 <L3/2|X||A\1/4T3/4 I T)

Remark 7.1. One might wonder if a regret of O(T %/ 3) is achievable by an algorithm that first explores
to estimate the transition function and then runs a known algorithm that assumes full knowledge of
the transition function. While this approach is possible in the classic online learning setting, it is
unclear how to implement it in our setting since estimating the transition function properly should
take about T*/* | B(M) episodes. This becomes even more complicated when B(M) = 0.



8 Conclusions and Future Work

In this paper we considered online learning in episodic loop-free adversarial MDPs where the losses
can change arbitrarily between episodes. We assumed the transition function is completely unknown
to the learner and that it only observes bandit feedback. Our algorithms are based on the recently
proposed UC-O-REPS algorithm and achieve O(L"?| X || A|"/*T*/*) regret for the general case, and
O(L| X |\/TA|T/B) regret for the case where any state is reachable under any policy with probability
at least 3 > 0.

Throughout the paper we assumed that the MDP is loop-free. However, it is important to mention
that any episodic MDP can be transformed into a loop-free MDP by duplicating the state space L
times, i.e., a state = becomes states (x, k) where k = 0, ..., L. Therefore, our algorithms work in
any episodic MDP but the regret bound has a worse dependence on L.

The algorithms we proposed are the first to handle the setting of both an unknown transition function
and a bandit feedback, but our results are still far from the known lower bound of Q(\/L| X || A|T).
Future work should be done to find algorithms with stronger regret bounds and specifically ones that
remove the loop-free assumption and still get good dependence on L.

Another line of work to be considered is finding tighter lower bounds for this specific problem. Since
this problem is much more difficult than the usual reinforcement learning setting and techniques that
involve the value function cannot be implemented here naturally, it might be the case that the lower
bound of [5]] cannot be achieved in this setting.
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