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To R#1: Transformer latency: For MNIST experiments, TensorFlow reports that the LeNet-5 BNN requires2

10,906,677 FLOPS and the WGWIN-GP generator requires 9,292,938 FLOPS. The additional cost of the rejec-3

tion loop is then ~20.2 million FLOPS. The NVIDIA Titan X (Pascal) is rated at 11.0 TFLOPS, so the latency of4

rejection is ~0.02 milliseconds on our devices.5

To R#3: Additional WGWIN-GP architecture and concatenation details: The architecture of the WGWIN-GP6

generator closely follows that described in the WGAN-GP paper, adding conditioning via the concatenation method7

referenced in Section 2.1. The conditioning image is flattened and concatenated with a noise vector and passed to the8

standard WGAN-GP generator as input. The critic architecture also follows the WGAN-GP paper. We concatenate the9

corresponding one-hot class label to the generated image and, similarly to [*1], to the output of each hidden convolution10

layer. We clarified the concatenation process in our paper and have added the missing hidden-layer citation. We also11

added detailed architecture diagrams for each network to our appendix. Thank you for pointing this out.12

To R#3: Bayesian neural network and rejection function interaction: We use Monte Carlo sampling to determine13

the BNN’s predicted class and uncertainty metric. We first sample the model ten times for the given input xi, effectively14

ensembling ten different networks. We calculate the mean of the given class probabilities and treat the argmax as the15

class prediction y′i. We treat the median of the probabilities for this predicted class as the certainty metric ci. These two16

metrics are passed to the rejection function. We did not see a significant difference in WGWIN-GP performance when17

treating the mean as the certainty metric. Alternative approaches may consider the variance in the predicted class across18

models. Since uncertainty is represented by the difference in prediction across models, a single network prediction does19

not provide uncertainty information and thus should not be used alone.20

To R#3: Baseline models: We reevaluate the WGWIN-GP using a stronger baseline (expanded LeNet-5 with batch-21

norm, dropout, and more convolution layers/filters; the exact architecture will be included in the paper) while the22

rejection function and WGWIN-GP are unchanged. The GWIN continues to have a positive impact. Results are shown23

in Table 1. CIFAR10 experiments are in progress.24

To R#4: Denoising methodologies: A key distinction between our work and the papers mentioned by R#4 is that25

those papers and their related works focus on using GANs to increase the robustness of a classifier during training by26

generating out-of-distribution training data (similar to hallucination methods in the few-shot learning domain) while27

our method assumes a fixed, pretrained classifier and uses generative methods to translate novel, out-of-distribution28

examples to the confident distribution during inference. Since the GWIN framework learns representations that the29

classifier labels correctly with high confidence, these generative denoising methods can easily be paired with our30

framework: a classifier is trained using the aforementioned techniques and the GWIN is then used to transform any31

novel examples that the new classifier is not entirely robust to. Similarly to DefenseGAN, the flexibility and additive32

nature of our framework means that we can easily build atop these existing denoising methodologies. Since noise33

only represents a subset of out-of-distribution observations, we cannot rely entirely on denoising techniques to address34

classifier robustness. GWINs take a step towards a generalizable, principled framework for “rethinking” uncertain35

examples and leveraging classifier uncertainty. For completeness, we will add a more detailed Related Works section to36

the appendix describing how these methodologies address out-of-distribution robustness during the training process.37

To R#4: False positive rate: Fig.5 shows the change in rejected sample certainty of the ground truth label for varying38

rejection thresholds. The WGWIN-GP increases confidence in the correct class more often than not. Depending on the39

classifier’s accuracy on the rejected subset, the threshold can be tuned to maximize the expected number of correct40

classifications. Typically, a classifier is required to predict so higher accuracy implies fewer misclassifications and41

therefore fewer false positives. If true rejection is allowed, a model can still use the GWIN to perform a transformation42

and reject the original observation if the transformed observation is below some arbitrarily high threshold.43

Table 1: Test set accuracy for Digits (top) and Fashion (bottom) on rejected observations using GWIN transformation
for the given certainty threshold τ averaged over 10 runs. For τ = 0, acc. is 99.2% (Digits) and 91.0% (Fashion).

τ % Reject BNN Acc. BNN+GWIN Acc. Rejected Acc. ∆ Overall Acc. ∆ % Error ∆
0.70 0.25 46.44 ± 12.30 59.96 ± 7.28 13.53 ± 15.54 0.03 ± 0.04 −3.42 ± 4.15
0.80 0.41 51.79 ± 7.93 66.13 ± 8.39 14.34 ± 11.08 0.06 ± 0.05 −6.39 ± 4.90
0.95 0.81 53.44 ± 3.91 68.60 ± 4.50 15.16 ± 4.85 0.12 ± 0.04 −12.64 ± 3.66
0.99 1.26 60.11 ± 4.53 67.63 ± 3.62 7.52 ± 3.07 0.10 ± 0.04 −9.77 ± 3.69

0.70 2.54 45.24 ± 2.20 57.10 ± 2.75 11.85 ± 3.26 0.30 ± 0.09 −3.17 ± 0.93
0.80 4.04 46.49 ± 2.16 57.49 ± 2.67 11.00 ± 2.60 0.45 ± 0.11 −4.64 ± 1.09
0.95 8.18 52.23 ± 1.44 59.18 ± 1.31 6.95 ± 2.15 0.57 ± 0.19 −5.99 ± 1.93
0.99 12.33 57.04 ± 1.22 61.61 ± 0.86 4.56 ± 1.23 0.56 ± 0.15 −5.88 ± 1.48

[*1] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, H. Lee, arXiv preprint arXiv:1605.05396, 2016.44


