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Abstract

Despite the exciting progress in image captioning, generating diverse captions
for a given image remains as an open problem. Existing methods typically ap-
ply generative models such as Variational Auto-Encoder to diversify the captions,
which however neglect two key factors of diverse expression, i.e., the lexical di-
versity and the syntactic diversity. To model these two inherent diversities in im-
age captioning, we propose a Variational Structured Semantic Inferring model
(termed VSSI-cap) executed in a novel structured encoder-inferer-decoder schema.
VSSI-cap mainly innovates in a novel structure, i.e., Variational Multi-modal In-
ferring tree (termed VarMlI-tree). In particular, conditioned on the visual-textual
features from the encoder, the VarMI-tree models the lexical and syntactic diver-
sities by inferring their latent variables (with variations) in an approximate poste-
rior inference guided by a visual semantic prior. Then, a reconstruction loss and
the posterior-prior KL-divergence are jointly estimated to optimize the VSSI-cap
model. Finally, diverse captions are generated upon the visual features and the
latent variables from this structured encoder-inferer-decoder model. Experiments
on the benchmark dataset show that the proposed VSSI-cap achieves significant
improvements over the state-of-the-arts.

1 Introduction

Image captioning has recently attracted extensive research attention with broad application prospects.
Most state-of-the-art image captioning models adopt an encoder-decoder architecture [1, 2, 3], which
encodes the image into a feature representation via Convolutional Neural Network (CNN) and then
decodes the feature into a caption via Recurrent Neural Networks with Long-Short Term Memory
units (LSTM). Despite the exciting progress, one common defect is that the generated captions
are semantically synonymous and syntactically similar, which goes against the inherent diversity
delivered by the image, i.e., “A picture is worth a thousand words”. Nevertheless, generating diverse
captions from a given image remains as an open problem. As shown in Fig. 1 (Left-Top), it is quite
intuitive to derive heterogeneous understanding from human being, while the traditional models
typically tend to generate homogeneous sentences due to the limited variation in the maximum
likelihood objective [4].

Several recent works have been proposed to investigate diverse image captioning [5, 6, 7, 8, 9], which
typically employed a Generative Adversarial Network (GAN) or Variational Auto-Encoder (VAE) as
the generative model. For example, [5] designed an adversarial model trained with an approximate
sampler to implicitly match the generated distribution to the human caption. For another instance,
[8] proposed a conditional VAE based captioning model guided by an object-wise prior, as roughly
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Figure 1: Illustration of diverse image captioning. Left: Captions generated by traditional image captioning
model (Left-Top), state-of-the-art generative model (Left-Middle), and our scheme that explicitly models lexi-
cal and syntactic diversities (Left-Bottom) for diverse image captioning. Right: Captions with higher diversity
are generated when the lexical (light blue) and syntactic (purple) diversities are considered.

shown in Fig. 1 (Left-Middle). However, all these methods treated diverse image captioning as a
blackbox without explicitly modeling the key factors to diversify the expression, i.e., the lexical and
syntactic diversities, as revealed in the natural language research [10, 11, 12], which in principle
involves identifying content entities and then expressing their relationships. Fig. 1 (Left-Bottom
and Right) shows an example of the lexical and syntactic diversities, both of which should be taken
into account for generating diverse image captions.

In this paper, we aim at explicitly modeling the lexical and syntactic diversities from the visual
content towards diversified image caption generation. To this end, we tackle two fundamental chal-
lenges, i.e., diversity modeling and diversity embedding. For diversity modeling, we infer the lex-
ical and syntactic variables from the visual content by leveraging the visual parsing tree (VP-tree)
[13, 14, 15, 16], which predicts the probability distributions of the lexical and syntactic categories
to weight the latent variables in variational inferences. For diversity embedding, we advance the
commonly-used encoder-decoder scheme into a new structured encoder-inferer-decoder scheme,
where the aforementioned variational inference is treated as an inferer and its outputs, i.e., the lexi-
cal and syntactic latent variables (with variations), are sampled together with visual features to feed
a LSTM-based caption generator.

In particular, we propose a novel Variational Structured Semantic Inferring model for diverse image
captioning, termed VSSI-cap as illustrated in Fig. 2, which is deployed over VAE? to model and
embed the lexical and syntactic diversities. In general, towards diversity modeling, such diversities
are inferred in the designed variational multi-modal inferring tree (termed, VarMI-tree). Towards
diversity embedding, such diversities are integrated into diverse image captioning in a new structured
encoder-inferer-decoder scheme. In particular, the proposed model contains three components: 1)
encoder: Given an image and its corresponding caption, the visual and textual features are extracted
by CNN and a word embedding model, respectively. 2) inferer: Inspired by the recent work in visual
semantic parsing [13], a VarMI-tree is proposed to infer the latent variables with variations for the
lexical and syntactic diversities. 3) decoder: The visual feature, the inferred lexical and syntactic
variables (from posterior/prior inference), are decoded to output the caption by using LSTM.

The contributions of this paper are as follows: 1) We are the first to explicitly model diverse im-
age captioning based on the lexical and syntactic diversities. We address two key issues in diverse
captioning, i.e. diversity modeling and diversity embedding. 2) For diversity modeling, we pro-
pose a novel variational multi-modal inferring tree (VarMI-tree) to model the lexical and syntactic
diversities. 3) For diversity embedding, we propose a structured encoder-inferer-decoder scheme
which explicitly integrates the lexical and syntactic diversities in caption generation. 4) The pro-
posed VSSI-Cap beats the state-of-the-arts [5, 8] on the MSCOCO benchmark dataset in terms of
both accuracy metrics and diversity metrics.

2 Preliminary

Image Captioning. We adopt an encoder-decoder architecture as the basic image captioning
model, where CNN is employed to encode an image I into a deep visual feature v and LSTM
is used to decode this visual feature into a caption S. Many state-of-the-art methods [2, 3]
adopt a maximum likelihood principle to train the models by using the image-caption pair set

2Compared to other generative models, VAE can represent richer latent variables, which can also be trained
more easily.
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Figure 2: Overview of the proposed VSSI-cap model for diverse image captioning, which consists of encoder,
inferer, and decoder. Given an image and its corresponding caption during training, visual feature v and
textual feature e are extracted from CNN and word embedding model respectively in encoder (brief in Sec.
3.2). In inferer (Sec. 3.2), to represent the lexical/syntactic diversity, a VarMI-tree is designed to infer the
latent lexical/syntactic variable RIS upon an additive Gaussian distribution in each node, where the means
M. and the square deviations (sds) o 1.k over different lexical/syntactic components are parameterized upon
the node feature h, and subsequently weighted by the corresponding probability distributions ci.x from the
VP-tree (Sec. 3.1) for the additive Gaussian parameters p and o. In decoder (Sec. 3.3), z is sampled from the
posterior inference and is used for training while Z’ is sampled from the prior inference (similar to the posterior
inference but with 4, and o1.x initialized randomly, detailed in Sec. 3.2) and is used to generate captions.
Finally, v and Z/Z’ are fed into LSTM for the sequential caption outputs.

= {1 (B, 80 = { S( )}T(l) i—0» Where NV, and T' denote the pair number and the caption length,
respectively. The correspondmg objective functlon can be formulated as follows:
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However, the above schemes are unsuitable for generating multiple diverse caption candidates due
to the certainty of encoding in Eq. 1. Therefore, generative models, such as GAN and VAE, are
typically exploited to handle diverse image captioning [5, 6, 7, 8]. Other related topics include:
personalized expression [17, 18], stylistic description [19, 20], online context-aware heuristic search
[21, 22], and word-specific discriminative captioning [15] efc.

Variational Auto-Encoder (VAE). We briefly present the variational auto-encoder (VAE) [23, 24]
and its conditional variant [25, 26], which serves as the fundamental framework of the proposed
structured encoder-inferer-decoder scheme. Given an observed variable x, VAEs aim at modeling
the data likelihood p(z) based on the assumption that x is generated from a latent variable z, i.e.,
the decoder p(x|z), which is typically estimated via deep nets. Since the posterior inference p(z|z)
is not computably tractable, it is approximated with a posterior inference ¢(z|x) that is typically a
diagonal Gaussian A (y, diag(c?)), where the mean g and the square deviation o can be parameter-
ized in deep nets and serve as the encoder>. Thus, the encoderlinferer and decoder can be optimized
by maximizing the following lower bound:

ﬁVAE(ea ¢; z, C) = Eqd,(z\z,c) [Ing0($|Z, C)] - DKL(q¢(2|x7 C)||p9(z|c)) < Inge(x)a 2

where E and Dy, are the approximate expectation and Kullback-Leibler (KL) divergence, respec-
tively. ¢ denotes the condition, which exists in the case of conditional VAE (CVAE). ¢ and 6 denote
the parameters of the inferer and the decoder (e.g., LSTM), respectively. For diverse image cap-
tioning, it’s a straightforward thinking to represent the visual feature and the caption with ¢ and x
respectively in a VAE model. However, the latent variable z in such VAE model has a very gen-
eral prior (standard Gaussians), which does not consider any domain-specific knowledge. We argue
that it may waste model capacity, and one should consider the unique problem structures of image
captioning instead of using the VAE as is.



Table 1: Main notations and their definitions.

Notation [ Definition

1 an image

S a caption

v the visual feature

€e; the j-node word embedding feature

h; the feature of the j-th node in VarMI-tree

2D9/2z(*)3 | the j-node lexical/syntactic latent variable

cWifet)i | the j-node lexical(word’s)/syntactic(POS’s) probability distribution in VP-tree
[L(e)j /u(s)j the additive mean of the j-node lexical/syntactic posterior Gaussian distribution

o Wijg()I| the additive squ. dev. of the j-node lexical/syntactic posterior Gaussian distribution
,ugf)j /[L,(:) 7| the k-component mean of the j-node lexical/syntactic posterior Gaussian distribution
o'gf)j /a',(f)j the k-component squ. dev. of the j-node lexical/syntactic posterior Gaussian distribution

0 the parameter set of the decoder
¢ /e the lexical/syntactic parameter set of the inferer
P the parameter set of VarMI-tree trunk

!

the mark for the prior

3 The Proposed VSSI-Cap Model

The framework of the proposed VSSI-Cap model is illustrated in Fig. 2. Following Eq. 2, the model
is in principle optimized by maximizing the lower bound on the log-likelihood of py(S) as below:

L£(0,61, ) ;S v, e ) =E [log po(S|z'?),2'), v, e, ()]

Z(Z)qui)(g)‘w’Z(S) Nq¢(3) o

= D (490,(2 5, v, D) [|p(21e)) = Dir. (4900 (215, v, ) [p(zV[c)),  (3)

which consists of two components, i.e., the approximate expectation E and the KL divergence Dy, .
The former is maximized to reduce the reconstruction loss of the caption generation in decoder as Eq.
1, while the later measures the difference between the distributions of the posterior gy ., (2|S, v, c)
and the prior p(z|c) for the prior guidance (detailed in Sec. 3.3). Firstly, we define the variables
and parameters as following: “(¢)” and “(s)” are the marks for the variables and parameters of the
lexicon and the syntax respectively. v, z, and c denote the visual feature of the image I, the lexi-
cal/syntactic latent variable, and the lexical(word’s)/syntactic(POS’s) probability distribution from
VP-tree (see Fig. 3), respectively. S denotes the caption, which is parsed and embedded into the
textual feature e.* @ is the parameter set in the decoder, while ¢ and 1/ are the parameter sets of the
lexical/syntactic posterior inference and the VarMI-tree trunk, respectively, in the inferer. Secondly,
we introduce the posterior/prior (Sec. 3.2) based on the above definitions: we adopt an additive Gaus-
sian distribution for the posterior/prior to infer the latent variables. As shown in the middle of Fig.
2, the additive parameters, i.e., the mean u/p’ and the square deviation (sd) o/o”’, are derived from
multiple component parameters (means and sds of multiple Gaussian distributions, corresponding
to different word’s and POS’s components and weighted by the probability distributions). Thirdly,
we describe the posterior/prior inference (Sec. 3.2): In the posterior inference, the additive and
component parameters are both parameterized by a linear function, while the component parameters
are initialized randomly in the prior inference as shown in the middle of Fig. 2. Here we omit the
prior inference due to the similarity to the posterior inference. The corresponding lexical-syntactic
latent variable z/z’ is sampled from the posterior/prior inference by reparameterizating z/z’. Finally,
during training/generation (detailed in Sec. 3.3), the visual feature v and the latent variable z/z’ are
fed into LSTM to generate sequential caption outputs.

In the following, we briefly introduce the lexicon-syntax based VP-tree in Sec. 3.1. We then give the
details about the proposed VarMI-tree in Sec. 3.2. Finally, in Sec. 3.3, we introduce the proposed
structured encoder-inferer-decoder schema. For clarity, the main notations and their definitions
throughout the paper are shown in Tab. 1.

3In some complex tasks, e.g., image captioning, q(z|z) is commonly termed as inferer to differ from the
visual encoder CNN.
*Textual parsing and pruning preprocesses are conducted by following [13] to obtain the tree structure.



3.1 Visual Parsing Tree

Visual parsing tree (VP-tree) is firstly pro- -
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mantic mapping, Node combining, and Clas-

sifying, where the first two adopt normal linear mapping and concatenating operations upon visual
feature v to obtain the node feature h. In Classifying, the feature h of each node is mapped into the
word’s and POS’s category spaces, respectively according to their vocabularies. For the j-th node,
we obtain its word and POS probability distributions, i.e., c¢®J and ¢(®)7 as follows:

el = fEDWh; + b[), eV = W, + b)), @
st(j:r)ef{(1:E),(3:E),(5:E),(7T:E),(2:R),(6:R),(4: R)},

where f(¢) is a Softmax function with parameters V_ng) and l_)gd) for the entity (r =“E”) or the
relation (r =“R”) classifications. We unify ci (r =“E”,“R”) into ¢’ for simplification. During
training, ¢’ is used to compute the cross entropy loss with the lexical/syntactic category labels*. The
parameter set is finally optimized for automatical tree construction given an image feature, where
each node provides the optimal word’s and POS’s probability distributions ¢'©) and ¢(*). Note that
one can replace VP-Tree with other alternative visual structured representations for the lexicon and
syntax. However, in order to directly demonstrate the effectiveness of the core idea, we intentionally
chose the straightforward assistance of VP-Tree.

3.2 Variational Multi-modal Inferring Tree

The major challenge of VSSI-cap is to model the posterior inference of both the lexical and syntactic
latent variables, i.e., gy (295, v, ¢(¥) and g, (2|5, v, c*)), in the tree structure. To this
end, we design a variational multi-modal inferring tree (VarMI-tree) to further innovate the VP-tree
as illustrated in Fig. 3 (b) and Fig. 2 (Middle). VarMI-tree consists of three operations, i.e., Semantic
mapping, Node combining, and Inferring. We itemize them as follows:

Semantic Mapping. In the encoder, the visual feature v is extracted from the last fully-connected
layer of CNN [27] while the j-th word’s feature e; (j € {1,..., M} corresponds to the j-th tree
node) of the caption S is extracted by textual parsing and word embedding as aforementioned. In the
inferer, these features are mapped into different semantic spaces, i.e., subjects, objects, and relations
in VarMI-tree as shown in Fig. 3 and Fig. 2, which can be formulated as:

hy = 7 (W™ [v ej] + b)), )
s.t.(j:r) e {(1:Subjl),(3:0bjl),(5: Subj2),(7: Obj2)},

where r represents one of four semantic entity items, i.e., subject 1, object 1, subject 2, and object 2
as set up in VP-tree. [;-] is the concatenation operation. f (sm) denotes a non-linear function with
the parameters W,*™ and b\*™ for Semantic mapping in the j-th node (j = 1,3,5, 7). For the
non-leaf nodes (5 = 2,4, 6), similar operation is conducted as above, where, however, v is replaced
with the combination features (computed in next part) as shown in Fig. 3.

Node Combining. The Node combining operation of VarMI-tree is the same as the one of VP-tree.
Correspondingly, we denote the parameters with W ("¢) and b("¢),



Inferring. For clarity, we define the function H; as a unified operation of the above Semantic
mapping and Node combining for the j-th node feature i.e,h; = H;(v,e;v). In the j-th node, the
lexical and syntactic posterior inferences can be approximated upon an addltlve Gaussian distribu-
tion. For clarity, we only formulate it on the lexicon below:

Gy (2 29|, v, ey = (é J|Zk ) J' f)J Hj)72(€)j2]1)7 (6)

where £72] is the spherical covariance matrix with »i2 ZkK:i c,(f)J ,(f)] (Hj)?% K ) ge-
notes the length of the word’s vocabulary. The component Gaussian parameters can be obtained:

P01 = WU, {0 ool () = Wil b ()

To enable the differentiability in the end-to-end manner, we reparameterize z(“)7 into z(©)7 via the
reparameterization trick [23] as:

207 = i 4 5O 0, (8)
where e(©) obeys a standard Gaussian distribution to introduce noise for the lexical diversity. © is
an element-wise product. Similar to the posterior the prior p(z(97|c(¥)7) can be formulated as:

K®

(z(“|c(4 (£)J|Zk e J /'([)J7<Zk:1 cg)jag@ﬂ)ﬂ), 9)

1(€) 1(€)

where p,,; "’ and o), are randomly initialized. z’ (©)7 is reparameterized into z'(“)7 as Eq. 8.

3.3 Structured Encoder-inferer-decoder

The structured encoder-inferer-decoder schema aims at integrating the lexical/syntactic latent vari-
ables in a tree structure to diversify the generated captions. Following Eq. 3, we give the final
objective function as follows:

Lyssicap(0, ¢ @ ) ;S v, e, (5)) =Eq(6; S, v, c® C(S))
-y {DKL(Q(;&(())'I/)( z(09)8, v, c(O)i )||p(z<” 1€O9)) + Dy (g0, (23], v, €7 | p(2* )]|C(9)]))}7

where most of the above notations are defined in Eq. 3. Dy can be approximated following [28] (see
algorithm flow in supplementary material). [E; is the approximate expectation on the log-likelihood
of pg(S|I) in decoder. For the reconstruction loss, we use Monte Carlo method to approximate the
expectation E4 in Eq. 10 after sampling z(¥)7 and z(®)7, which is formulated as:

(10)

1 N T o o
= N Zi:l Zt:(} logp(St|SO:t—1; {Z(Z)j(Z) };‘vila {Z(S)J @ }jlvih v, C(E)v C(S))7 (11)
s.t. Vi, j 7(0i@) (J¢<e>’¢(z(z)j|5,V, C(l)j), 7z(3)3@) q¢(s)’¢(z(5)j|57v’ C(S)j)7

where N and T denote the sample number of z(*) (sampled by Eq. 8) and the length of the caption,
respectively. Since the objective function in Eq. 10 is differentiable, we optimize the model param-
eter set 6, (9, $(*), and 1) jointly using stochastic gradient ascent method. To generate captions,
we use the above optimal parameters and choose the ¢-th word S, over the dictionary according to
S, = arg maxg, p(St|So:t—1,2'?),2'(*), v), where v and 2" are concatenated to feed the decoder.

4 Experiments

Dataset and Metrics. We conduct all the experiments on the MSCOCO dataset® [30], which is
widely used for image captioning [1, 3] and diverse image captioning [5, 8]. There are over 93K
images in MSCOCO, which has been split into training, testing and validating sets®. Each image
has at least five manual captions. The quality of captioning results lies in both accuracy (a basic
evaluation of captioning quality and has been used together with the subsequent diversity metrics in
[8, 5, 6]) and diversity. For accuracy, we use the MSCOCO caption evaluation tool’ by choosing

http://cocodataset .org/#download
®https://github.com/karpathy/neuraltalk
"https://github.com/tylin/coco-caption



Table 2: Performance comparisons on accuracy of diverse image captioning. All values are in %. The first and

the second places are marked with the bold font and *“__” respectively.
Metric Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor Rouge-L  CIDEr  Spice
ErDr-cap [29] 69.9 51.8 36.6 25.6 23.1 50.3 84.3 16.4
Up-Down [3] 79.8 - - 36.3 27.7 56.9 120.1 214
G-GAN [6] - - 30.5 20.7 224 47.5 79.5 18.2
Adv [5] - - - - 239 - - 16.7
CAL [9] 66.5 48.4 332 21.8 22.6 47.8 75.3 16.4
GMM-CVAE [8] 70.0 52.0 37.1 26.0 232 50.6 85.4 16.3
AG-CVAE [8] 70.2 522 37.1 26.0 234 50.6 85.7 16.5
VSSI-cap-L 69.9 51.9 373 26.1 23.5 50.7 87.3 16.8
VSSI-cap-S 70.4 52.7 37.9 27.1 23.8 51.1 88.8 17.0
VSSI-cap 70.4 52.7 38.1 273 239 513 894 17.1

Table 3: Performance comparisons on diversity. “{}”” and “f}”” denote that lower and higher are better, respec-
tively. “n” denotes the number of generated captions (default 5). All values are in %. The first and the second

places are marked with the bold font and “__ respectively.

Metric Num. mB.| diviqf div24 Uni.f Nov.{
human n=5 51.0 34.0 48.0 99.8 -

ErDr-cap [29] n=5 78.0 28.0 38.0 - 34.18
Up-Down [3] n=5 80.9 27.1 35.8 - 63.60
G-GAN [6] n=5 - - - - 81.52
Adv [5] n=5 70.0 34.0 44.0 - 73.92
CAL [9] n=5 - 32.5 40.7 - -

AG-CVAE [8] n=5 70.2 33.1 429 66.9 79.67
AG-CVAE [8] n=10 77.3 22.7 31.3 70.8 79.68
VSSI-cap-L n=5 68.7 343 45.6 80.2 79.30
VSSI-cap-S n=5 63.0 33.8 46.3 82.4 80.26
VSSI-cap n=5 62.4 33.9 47.2 83.0 85.20
VSSI-cap n=10 74.2 223 33.2 80.7 80.34

the best-performing one from the top-5 outputs, including Bleu, Meteor, Rouge-L, CIDEr [30] and
Spice [31]. For diversity, we use the benchmark metrics in [5, 8]: 1) Divl, the ratio of unique
unigrams to words in the generated captions. Higher divl means more diverse. 2) Div2, the ratio
of unique bigrams to words in the generated captions. Higher div2 means more diverse. 3) mBleu
(mB.), the mean of Bleu scores, which are computed between each caption in the generated captions
against the rest. Lower mB. means more diverse. 4) Unique Sentence (Uni.), the average percentage
of unique captions in candidates generated for each image. 5) Novel Sentence (Nov.), the percentage
of the generated captions that do not appear in the training set. For uniformity, each output caption
corresponds to a sample of z.

Preprocessing, Parameter Settings, and Implementation Details. In the proposed VarMI-tree,
we set the feature dimension of each node as 512. The dimensions of each mean, each sd, and each
latent variable are set as 150. We parse the captions by using the Stanford Parser [32] as well as
pruning the textual parsing results by using the pos-tag tool and the lemmatizer tool in NTLK [33],
where the dynamic textual parsing trees are converted to a fixed-structured, three-layer, complete
binary tree as designed in [13]. Only the words (including entities and relations) and the POSs (i.e.,
NOUN, VERB, PREP, and CONJ) with high frequency are left to form the vocabularies. Nouns are
regarded as entities and used as leaf nodes in the textual parsing tree, while others (verbs, coverbs,
prepositions, and conjunctions) are taken as relations for non-leaf nodes. The sizes of the entity’s,
relation’s and POS’s vocabularies, are 840, 248, and 4, respectively.8 We extract the visual features
from VGG-16 network [25]. In LSTM, we use the same vector dimensions of the hidden states as
[29], which is set as 512. We set the word vector dimension as 256 during word embedding. We
implement our model training based on the public code® with the standard data split and the separate
z samples. KL annealing method [34] is adopted to reduce the KL vanishing (see the supplementary
material for the training details). All networks are trained with SGD with a learning rate 0.005 for
the first 5 epochs, and is reduced by half every 5 epochs. On average, all models converge within 50
epochs. The overall process takes 37 hours on a NVIDIA GeForce GTX 1080 Ti GPU with 11GB
memory.

$https://github.com/cfh3c/NeurIPS19_VPtree_Dics
‘https://github.com/yiyang92/vae_captioning



Baselines and Competing Methods. We compare the proposed VSSI-cap with four baselines: 1)
ErDr-cap: a caption generator trained based on encoder-decoder (beam search) [29] that represents
the mainstream of general image captioning. 2) AG-CVAE [8]: a recent generative model consider-
ing the variation over detected objects for diverse image captioning. 3) VSSI-cap-L: an alternative
version of VSSI-cap, which omits the syntax. 4) VSSI-cap-S: an alternative version of VSSI-cap,
which omits the lexicon. We also compare VSSI-cap with the state-of-the-art method Adv [5] and
AG-CVAE [8] (evaluated on the aforementioned universal split). Besides, we compare VSSI-cap
with 1) other recent diverse image captioning methods, including G-GAN [6], GMM-CVAE [8], and
CAL [9], 2) the state-of-the-art image captioning method, i.e., Up-Down (beam search) [3], and 3)
Human: a sentence randomly sampled from ground-truth/manually-labeled annotations of each im-
age is used as the output of this method. Note that comparing to pure image captioning methods
(only aiming at accuracy) seems far-fetched due to the mutual interference between accuracy and di-
versity (a more diverse caption tends to be more inconsistent with the ground truth caption) [9, 6, 5],
where, therefore, the pure image captioning methods are taken as extraessential references.

Evaluation on Accuracy. Tab. 2 presents the accuracy comparisons of our VSSI-cap to the base-
lines and state-of-the-arts. Compared to others (except the state-of-the-art image captioning method),
VSSI-cap achieves the best performance under most metrics. Specially, VSSI-cap outperforms AG-
CVAE under all metrics, e.g., 89.4% vs. 85.7% on CIDEr, which reflects the superiority of visual
semantic representation in the proposed VarMI-tree. Additionally, the propsoed structured encoder-
inferer-decoder schema also contributes to the improvement of accuracy according to the comparison
with ErDr-cap. Particularly, the gaps become larger from Bleu-1 to Bleu-4 (from 1-gram to 4-gram),
manifesting the superiority of the structured semantic representation in VSSI-cap. In summary, al-
though VSSI-cap is designed for diverse captioning, the various but accurate visual semantic is well
captured in the lexical and syntactic parsing results, which promotes the accuracy of VSSI-cap in
the task of general image captioning.

60 60
Evaluation on Diversity. We compare the 50
proposed VSSI-cap to the baseline and state- 40
of-the-art methods on the diversity metrics in =~ @30
Tab. 3 shows. Despite there is a gap on the di- 20 / -
versity when compared to the human captions, 10 ety = Ve
VSSI-cap achieves the best performance com- s * 10 s % 10

pared to other learning methods under most Fjgure 4: The recalls of image rankings for different
metrics, e.g., the best 62.4% on mBleu (lower methods. Given the generated caption queries, R@k is
is better), which reflects the effectiveness of the ratio of correct images being ranked within the top k
considering both the lexical and syntactic di- results. The left is based on the similarity (Left) between
versities in diverse image captioning, as well the generated caption S and each image I, while the right
as the superiority of the proposed VarMI-tree is based on the log-likelihoods (Right) P(S|I), computed
based inferer on modeling these diversities. in different methods.

Specially, VSSI-cap-L and VSSI-cap-S also achieve competitive performance. This manifests the
significant roles of the lexical and syntactic diversities respectively. We conduct additional compar-
isons on the results with 10 generated captions (5 is default), where VSSI-cap (n=10) also outper-
forms AG-CVAE (n=10). We further retrieve the images of the generated captions in 5,000 images
(randomly selected) by taking the captions as queries. The recalls of the ranking results are shown
in Fig. 4, where our VSSI-cap is shown to provide more discriminative descriptions, outperforming
others by a large margin across all cases. To qualitatively compare the performances on diversity,
we output the results of VSSI-cap and the baselines of ErDr-cap and AG-CVAE (also a state-of-the-
art) in Fig. 5. Clearly, VSSI-cap generates more diverse captions, which further demonstrates the
superiority of the proposed VSSI-cap.

Model Analysis. It’s a challenge to analyze the internal mechanism of the VAE-based structured
encoder-inferer-decoder due to different vector spaces among 1) different node features, 2) differ-
ent Gaussian functional parameters, and 3) different lexical/syntactic variables over different nodes.
Fortunately, the parsing results of VP-tree can be assigned with different probability distributions
(inputs of VarMI-tree) in each node to indirectly verify the effectiveness of the VarMI-tree, as shown
in Fig. 6. Highly diverse captions are generated derived from different visual parsing trees with
different lexical/syntactic probability distributions. This demonstrates the effectiveness of VarMI-
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Figure 5: Visualization of diverse captions (top 3) generated by ErDr-cap (blue), AG-CVAE (green), and our
VSSI-cap (red). More results are presented in the supplementary material.
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Figure 6: Internal view on the effectiveness of the VarMI-tree by changing its inputs explicitly, i.e., assigning
different lexical/syntactic probability distributions of each node from VP-tree (refer to Fig. 3 for the node index).
The histograms of each example reflect different visual parsing trees with different probability distributions
assigned in each node, where the middle is for the original parsing results (best-in-top3 is shown in each node)
from VP-tree, while the left/right is for the parsing results partly changed from the middle mainly on word/POS.
Captions are generated according to different visual parsing trees at the bottom.

tree on modeling the lexical/syntactic diversity and embedding them into caption generation in the
proposed structured encoder-inferer-decoder.

5 Conclusion

In this paper, we exploit the key factors of diverse image captioning, i.e., the lexical and syntactic
diversities. To model these two diversities into image captioning, we propose a variational structured
semantic inferring model (VSSI-cap) with a novel variational multi-modal inferring tree (VarMI-
tree) on a structured encoder-inferer-decoder schema. Specially, conditioned on the visual-textual
features from encoder, VarMI-tree models the lexicon and the syntax, as well as inferring their latent
variables in approximate posterior inference guided by the visual prior. Reconstruction loss and
KL-divergence are jointly estimated to optimize the VSSI-cap model to generate diverse captions.
Experiments on benchmark dataset demonstrate that the proposed VSSI-cap achieves significant
improvements over the state-of-the-arts.
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