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Abstract

A recent trend in optimizing maps such as dense correspondences between objects
or neural networks between pairs of domains is to optimize them jointly. In this
context, there is a natural cycle-consistency constraint, which regularizes composite
maps associated with cycles, i.e., they are forced to be identity maps. However,
as there is an exponential number of cycles in a graph, how to sample a subset
of cycles becomes critical for efficient and effective enforcement of the cycle-
consistency constraint. This paper presents an algorithm that select a subset of
weighted cycles to minimize a condition number of the induced joint optimization
problem. Experimental results on benchmark datasets justify the effectiveness of
our approach for optimizing dense correspondences between 3D shapes and neural
networks for predicting dense image flows.

1 Introduction

Maps between sets are important mathematical quantities. Depending on the definition of sets, maps
can take different forms. Examples include dense correspondences between image pixels [28 23],
sparse correspondences between feature points [27], vertex correspondences between social or
biological networks [13]], and rigid transformations between archaeological pieces [16]. In the
deep learning era, the concept of maps naturally extends to neural networks between different
domains. A fundamental challenge in map computation is that there is only limited information
between pairs of objects/domains for map computation, and the resulting maps are often noisy and
incorrect, particularly between relevant but dissimilar objects. A recent trend in map computation
seeks to address this issue by performing map synchronization, which jointly optimizes maps among
a collection of related objects/domains to improve the maps between pairs of objects/domains in
isolation [29, 24, 15} (14,1391 19, (17, [11} 19} 145! 34]]. In this context, there is a natural constraint called
cycle-consistency, which states that composite maps along cycles should be the identity map. When
maps admit matrix representations, state-of-the-art techniques [14, 41} 9} 141,136} 36, 5, 4] formulate
map synchronization as recovering a low-rank matrix, where the pairwise maps computed between
pairs of objects are noisy measurements of the blocks of this matrix. This paradigm enjoys tight exact
recovery conditions as well as empirical success (e.g.,[[14, 41} 9,41} 136} [36L 15, 14]]).

In this paper, we focus on the case where maps between objects/domains do not admit matrix
representations (c.f. [45]]), which is a popular setting for neural networks between domains. To jointly
optimize neural networks in this context, one has to enforce the original cycle-consistency constraint.
The technical challenge, though, is that the number of cycles in a graph may be exponential in the
number of vertices. In other words, we have to develop a strategy to effectively sample a subset
of cycles to enforce the cycle-consistency constraint. The goal for cycle selection is three-fold:
completeness, conciseness, and stability. Completeness stands for the fact that enforcing the cycle-
consistency constraint on the selected cycles induces the cycle-consistency property among all cycles
in the graph. Conciseness means both the size of the cycle-set and the length of each cycle should
be small. Stability concerns the convergence behavior when solving the induce joint optimization
problem, e.g., joint learning of a network of neural networks. In particular, stability is crucial for
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cycle-set selection as many cycle sets satisfy the first two objectives, yet the numerical behavior of the
induced optimization problem turns out drastically different. To date, cycle selection is mostly done
manually or uses approaches that only consider the first two objectives. In contrast, we introduce an
automatic approach that takes all three objectives into account for cycle selection.

Our cycle selection approach first establishes a stability score based on a condition number of the
Hessian matrix of the induced optimization problem. This condition number dictates the local
convergence rate as well as the convergence radius of the induced optimization problem. Our
approach then combines semidefinite programming and importance sampling to select a small subset
of cycles from an over-complete set of cycles to minimize the condition number.

We have evaluated our approach on a variety of settings of optimizing cycle-consistent maps, including
dense correspondences across hundreds of shapes and neural networks for predicting dense flows
across natural images. Example results show that cycle selection not only improves the convergence
rate of the induced optimization problem but also leads to maps with improved map quality.

2 Related Works

Optimizing maps among a collection of objects/domains is a fundamental problem across many
different scientific domains. In the following, we review works that focus on various optimization
techniques, which are most relevant to the context of this paper.

Cycle-consistency constraint. The foundation for joint map computation is the so-called cycle-
consistency constraint [20}14], which states that the composition of correct maps along cycles should
be the identity map. There are two widely used formulations of the cycle-consistency constraint.
Low-rank based techniques utilize matrix representations of maps and the equivalence between cycle-
consistent maps and the fact that the matrix that stores pair-wise maps in blocks is low-rank and/or
semidefinite (c.f.[14]]). This equivalence leads to a simple formulation of joint map computation via
low-rank matrix recovery [41} 24} [15, 14} 17, 110,48} 136, 26} 118} 13} 133,32} [1} |6 [2]]. Such techniques
enjoy both empirical success and exact recovery conditions. However, a fundamental limitation of
such techniques is that there must exist matrix map representations, and such assumptions are not
always true, e.g., when neural networks encode maps.

Another category of methods utilizes spanning trees [20, [16]. In a modern context of joint map
computation, i.e., recovering accurate maps from maps computed between pairs of objects in isolation,
one can seek to recover the correct maps by computing the minimum spanning tree where the induced
maps agree with the input maps as much as possible. Most recent combinatorial optimization tech-
niques are based on sampling inconsistent cycles [44}29,/47]. They formulate map synchronization
as removing maps so that each inconsistent cycle contains at least one removed map. However,
both techniques are most suited for the task of pruning incorrect maps. They are not suitable for
optimizing maps continuously. In contrast, the approach described in this paper combines the strength
of both formulations. Precisely, we still formulate map synchronization by minimizing an objective
function that combines an observation term and a prior term. The observation term evaluates the
quality of each map based on the training data. The difference is in the regularization term, where
we directly enforce the consistency of maps along cycles. This approach is suitable for diverse map
representations. However, a fundamental challenge is to obtain a concise and effective cycle-basis,
which is the main focus of this paper.

Cycle-basis. Cycle-basis is a well studied topic on undirected graphs (c.f.[22]). In the standard
setting, a cycle-basis consists of a minimum set of cycles of a graph, where all other cycles in this
graph are linear combinations of the cycles in this graph. In this paper, we extend this notion to cycle-
consistency bases. The goal is to compute a minimum set of cycles, where enforcing consistency
along these cycles induces consistency along all cycles of the input graph. Although cycle-consistency
bases are equivalent, enforcing them for map computation exhibits different behavior. The primary
goal of this paper is to properly define the condition number of cycle-consistency basis and develop
efficient ways to optimize in the space of cycle-consistency bases to minimize the condition number.

3 Cycle-Consistency Bases

In this section, we define map graphs and cycle-consistency bases. In Section[d we discuss how to
optimize cycle-consistency bases for joint map optimization. Note that due to the space constraint,
we defer the proofs to the supplemental material.



We first define the notion of a map graph along an undirected graph G = (V, ). Since parametric
maps (e.g., neural networks) are oriented, we let the edges in £ be oriented. We say G is undirected if
and only if V(¢, 5) € &, (j,1) € €.

Definition 1 We define a map graph F as an attributed undirected graph G = (V,E) where V =
{v1,..., vy }. Each vertex v; € V is associated with a domain D;. Each edge e = (i,j) € £ is
associated with a map f;; : D; — Dj. In this paper, we assume G is connected. Note that when
defining cycle-consistency bases later, we always assume f;; is an isomorphism between D; and D;;,

-1
and fji = fi g
To define cycle-consistency bases on G, we introduce composite maps along cycles of G.

Definition 2 Consider a cycle ¢ = (i1,--- ,iyi1) along G. We define the composite map along c
induced from a map graph F as
fc:fik.il O"'Ofi1i2~ (D

In this paper, we are talking about a cycle. We always assume it has no repeating edges.

Definition 3 Given a map graph F associated with a graph G, let C be a cycle set of G. We say F is
cycle-consistent on C, if
fe=1Idp, , Ye=(i1---ixi1) €C. 2)

Here Idx refers to the identity mapping from X to itself. Let C collects all cycles of G. We say F is

cycle-consistent, if it is cycle-consistent on C.

Remark 1 Note that due to the bi-directional consistency in Def. is independent of the starting
vertex 1. In fact, it induces

firivivis = Idp,, 1 <1<k

Since C contains an exponential number of cycles, a natural question is whether we can choose a
small subset of cycles C so that for every map graph F that is cycle-consistent on C, it induces the
cycle-consistency of F. To this end, we need to define the notion of induction:

Definition 4 Consider a cycle set C and a cycle ¢ ¢ C. We say C induces c if there exists an ordered
cycle set cq,- -+ ,cx € C and intermediate simple cycles c(k), 1< k<K sothat (1) V) = c1, (2)
B = ¢ and (3) ¢®) = =1 @ ¢y, ie., ¥ is generated by adding new edges in ¢, to ¢F—1)
while removing their common edges.

An immediate consequence of Def. |4|is the following:

Fact 1 Given a map graph F, a cycle set C and another cycle c. If (1) F is cycle-consistent on C,
and (2) C induces c. Then F is cycle-consistent on {c}.

Remark 2 [t is necessary for Def. t0 require that ¢®) |1 < k < K are simple cycles. We provide a
counter example in the supplemental material.

The following proposition shows that Def. []is complete.

Proposition 1 Suppose a map graph F is cycle-consistent on a cycle set C. If a cycle c can not be
induced from C using the procedure described in Def. 4| then F may not be cycle-consistent on {c}.

Now we define the notion of cycle-consistency basis:

Definition 5 We say a cycle set C is a cycle-consistency basis if it induces all other cycles of C.

The following proposition characterizes the minimum size of cycle-consistency bases and a procedure
for constructing a category of cycle-consistency bases with minimum size.

Proposition 2 The minimum size of a cycle-consistency basis on a connected graph G is |E| — |V|+ 1.
Moreover, we can construct a minimal cycle-consistency basis from a spanning tree T C £ of G, i.e.,
by creating a cycle c. for each edge pair e = (i,j) € E\ T, where ce = (i, j) ~ pji, where pj; is
the unique path from j to i on T.



Remark 3 A difference between cycle-consistency bases on undirected graphs and path-invariance
bases on directed graphs is that the minimum size of cycle-consistency bases is known and is upper
bounded by the number of edges. In contrast, computing the minimum size of path-invariance bases
of a given directed graph remains an open problem (c.f.[45)]).

Connections to cycle bases [22]. When talking about cycles of an undirected graph, there exists a
related notion of cycle bases [22]. The difference between cycle-consistency bases and cycle bases
lies in the induction procedure. Specifically, cycle bases utilize a vector that collects edge indicators,
i.e., each edge has an orientation, and each cycle corresponds to a sparse vector whose elements are
in {1, 0}, which represent edges in ¢ and the other edges. The induction procedure takes the form of
linear combinations of indicator vectors. Depending on the weights for linear combination, cycle
bases fall into zero-one cycle bases, integral cycle bases and general cycle-bases, which correspond
to {—1,0, 1}, integer and real weights, respectively. Please refer to [22]] for more details.

It is easy to see that one can use linear combinations of vectors with binary weights to encode the
induction procedure of cycle-consistency bases. On the other hand, the reverse is not true.

Proposition 3 A cycle-consistency basis is a zero-one cycle basis. A zero-one cycle basis may not be
a cycle-consistency basis.

Remark 4 Unlike the situation that we can verify a zero-one cycle basis by checking independence
within polynomial time (c.f. [22|]), we conjecture that verifying whether a cycle set forms a cycle-
consistency basis is NP-hard. In light of this, when optimizing a cycle set we enforce its cycle-
consistency property by adding cycles to a minimum cycle-consistency basis.

4 Cycle Consistency Basis Optimization for Joint Map Optimization

In this section, we present an approach that optimizes a cycle-consistency basis for a given joint map
optimization task. Specifically, we assume each edge (4, j) € £ is associated with a parametric map
f7;9?-7 : D; — Dj, where 0;; denotes the parameters of this map. We also assume we have a subset
of edges & C £. For each edge e € &, we have a loss term denoted as [;;(6;;) (e.g., we may only

have training data among a subset of edges). We assume Gy = (V, &) forms a connected graph.
Otherwise, we have insufficient constraints to determine all parametric maps.

Our main idea is to pre-compute a super set of cycles Cy,p (See Section [4.2]for details) and formulate
cycle-consistency basis optimization as determining a cycle set C, where Cyyin, € C C Cyyp, and a
weight w,. > 0 of each cycle ¢ € C, for solving the following joint map optimization problem:

Moo+ > weli (£, 1dp,)) (3)

(i,j)egg C:(il---ikil)ec
0.
o _ i 0. :
Here f = f; 5" oo f;,, is the composite map along c and /;(-,-) denotes a loss-term for

comparing self-maps on D;. For example, l;(f, f') := Ez~pd}, (f(2), f'(x)), where dp, (-, -) is
a distance metric of D;, and where p is an empirical distribution on D;. Note that (3)) essentially
enforces the cycle-consistency constraint along C.

In the reminder of this section, Section-T]introduces a condition number of (3)); Section[4.2]describes
how to minimize this condition number by selecting and weighting cycles.

4.1 A Condition Number for Cycle-Consistency Map Optimization

We begin with a simple setting of translation synchronization [[18]], where pairwise parametric maps
are given by translations. We then discuss how to generalize this definition to neural networks. Note
that for the particular task of translation synchronization, there exist many other formulations, e.g.,
[21L[18]]. Our goal here is simply to motivate the definition of the condition number. Specifically,
consider a pre-computed translation t?j € R for each edge e = (i, ) € &. Our goal is to recover

translations ¢;;, (i, ) € € by solving the following quadratic minimization problem:
. 01\2 2
T D D D D @
(,7)€&0 c=(11--+ipi1)EC
where we set .1 := l1. Given an ordering of the edge set £, let v, € {0, 1}‘5‘ be the indicator vector
for edge e. With v, = Zle V(i i,,,) We denote the indicator vector for cycle ¢ = (iy - - - iyi1). Let



to = D (i jyeeo Yty and t = 30 oo V(i jytij. We can rewrite (4) in the matrix form as

min t7HE - 26780 + 7, Hi= ) veol +) weov! (5)
e€&0 ceC

When solving (5) using gradient-based techniques (which is the case for neural networks), their
convergence rates are generally relevant to the condition number x(H) := Amax(H)/Amin (H ). For
example, steepest descent with exact line search admits a linear convergence rate of (x(H) — 1)/
(k(H) + 1), and this argument also applies to the local convergence behavior of non-linear objective
functions (c.f. Sec.1.3 of [7]). In addition, the deviation between the optimal solution t* and the
ground truth solution ¢9* is ||t* — t9'| = ||[H 'e|| < /\%(H)HeH, where e = t; — tJ' is the vector

that encodes the error in the input. Minimizing the «(H ) usually leads to an increased value of A\yin,
which reduces the error in the output. Thus, we proceed with the following definition:

Definition 6 We define the condition number of (3)) as the condition number x(H).
Def. [f] also generalizes to other parametric maps:

Theorem 4.1 (Informal) Under mild conditions, the condition number of the Hessian matrix at a
local optimal of (3)) is O(sk(H)), where s depends on quantities of individual ffj”.

Another factor related to an efficient optimization of is the size of C. As there is some fixed
overhead for implementing the constraint associated with each cycle, we favor that the size of C
is small. In summary, our goal for cycle-consistency basis optimization is to reduce the condition
number of H while simultaneously to minimize the size of the resulting cycle-consistency basis.

4.2 Algorithm for Cycle-Consistency Basis Construction

Our approach for cycle-consistency basis optimization proceeds in three steps. The first step generates
the super cycle set Cq,,. The second step solves a semi-definite program to optimize weights
We, ¢ € Csyp to minimize the condition number of H. The final setup controls the size of the resulting
cycle-consistency basis via importance sampling.

Csup generation. We construct Cy,p by computing the breadth-first spanning tree 7 (v;) rooted at
each vertex v; € V. For each spanning-tree 7 (v;), we use the procedure described in Prop. 2| to
construct a minimum cycle-consistency basis C(v;). We define Cyup 1= Uy, cvC(v;). We set Crin as
the cycle-consistency basis with minimum depth.

The resulting Cy,, has two desired properties. First, the cycles in Cy,, are kept as short as possible.
For example, if G is a clique, then Cy,, only contains the desired 3-cycles. Second, if G is sparse,
then Cy,p, contains a mixture of short and long cycles. These long cycles can address the issue of
accumulated errors if we only enforce the cycle-consistency constraint along short cycles.

Weight optimization. As the condition number of H is minimized if it is a scalar multiple of the
identity matrix, we formulate the following semidefinite program for optimizing cycle weights:
min sy — S
we>0,81,52
subjectto  (C1) : 511 =< Z veveT + Z vaCvCT < 89l

ec&O c€Cqyp

(C2): > |welwe=2A  (C3):we>6,Yc € Conin (6)

Cecsup

Here A characterizes the trade-off between the loss terms and the regularization terms and « is a super
parameter. To figure out the motivation of introducing such a parameter, recall that the definition of

condition number is ’/\\“—“‘ where Amax, Amin are maximal and minimal eigenvalues of the weighted

matrix sum respectively. But optimizing the ratio of two eigenvalues is non-convex in terms of
variables {w,}, thus we in turn try to reduce the gap between Ay ax and Apin. Different o’s would

provide different outcomes of eigen-ratio. Hence we test over a set of a’s and look for the one with
optimal eigen-ratio. In fact it is easy to see that as o = max 2=z the objective function a*sy — 51

Amax

would have minimum O at the point which minimizes % as well. In most cases where the optimal

ratio is in the order of magnitude near 1, so that the sgt‘tning a = 1 would provide a good enough
approximation.



Moreover, (C3) ensures that edges in the minimum cycle consistency basis Cp,in are also selected. In
our experiments, we set A = 8|&|/|€| and § = A/(8|€]). We solve (6) using alternating direction
method of multipliers (See the supplemental material for details)

As the cycle indicators, which are sparse vectors, tend to be orthogonal to each other. The solution to
(6) typically turns a matrix with small condition number.

Theorem 4.2 (Informal) Let s} and s5 be the optimal solution to (6). Then max. w. < s3, and both
55 and s5 — s} are upper bounded by quantities that are related to an uniform score of the spherical
Voronoi diagram of copies of {v.,e € &} U {”:—°H, ¢ € Cup}.

Importance sampling. Although the semidefinite program described in (6)) controls the condition
number of H, it does not control the size of the cycle sets with positive weights. Thus we seek to
select a subset of cycles Csmple C Cactive *= Csup \ Cmin and compute new weights @, ¢ € Csample, SO

that
— T — T
Z WUV, R Z WV, - (7
c€Csample c€Cactive
We achieve this goal through sampling. Specifically, consider a desired size L for Ceumpie. Let
Wmax = MAX W Choose the maximum o < 1sothat L < Y (we/wmax)®. We define an
c€Cactive c€Cuctive

independent random variable x. and a modified weight . for each cycle ¢ € Cyciive:

] 1 with probability p, . L o o
Te = { 0 with probability 1 — p. We = we/pe,  pe:=L-wg/ Z We - (®)
c€Cuctive
To generate Csample, We simply sample Cyciive according ... It is easy to check that
ElCampie] = L, E[ Y Wwevl]= Y wevv!.

Cecsample c€Cactive

In the following, we provide concentration inequalities on both quantities:

Theorem 4.3 Given the sampling procedure described in (8) with standard deviation

o1 = lzpc(l _pc)7 02 = " /ch(l —pc)ﬁz

0% =Q(1), ag = Q((max@c)z),

and condition

we have with probability at least 1 — O(1/poly(n)),

||Csample‘ - L| < O(log n)Ul 9)
I Z Wevvl — Z w. L] < O(logn)os (10)
Cecsamplc c€Cactive

Note that (@), which utilizes rank(v.vl) = 1, is sharper than general concentration bounds [38]].
To be more precise, the known bound contains an extra multiplicative term O(log d) where d is the
dimension of matrices involved. In our case d = O(|€|).

5 Experimental Evaluation

In this section, we present an experimental evaluation of our joint map optimization approach in two
application settings: consistent shape maps (c.f. [24} 14,17, [11]]) and dense image correspondence
using neural networks (c.f. [46]45]).

5.1 Consistent Shape Correspondences

Experimental setup. Similar to [39] [40| [17], we encode the map from one shape S; and another
shape \S; as a function map X;; : F(S;) — F(5;) [31]]. The same as [17]], we choose each functional
space F(.5;) as the linear space spanned by smallest m = 30 eigenvectors of the co-tangent mesh
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Figure 1: The top and bottom rows show quantitative evaluations on the ShapeCoSeg [42] and the PAS-
CAL3D [43]], respectively. (a) Cumulative distributions of geodesic errors (ShapeCoSeg) and Euclidean errors
(PASCALS3D) of predicted feature correspondences of our approach and baseline approaches. (b) Distributions
of cycle weights. (c) Distributions of cycle weights per cycle-length

Laplacian. A functional map X;; € R™>™ essentially encodes a linear map from F(S;) to F(S;).
We refer to [31] for more details about functional maps.

The evaluation considers two shape collections from ShapeCoSeg [42]: Alien (200 shapes) and Vase
(300 shapes). For each shape collection, we construct G by connecting every shape with k& = 25
randomly chosen shapes. The edge set & collects for each shape the ky = 9 closest shapes among
the neighbors specified by £ via the GPS descriptor [33]. For each edge e = (i, j) € &, we compute
dense correspondences from S; to .S; using Blended Intrinsic Maps [25]. We then convert this map

into the corresponding functional map X ?j using [31].

For joint map computation, we obtain improved functional maps X, (4, j) € £ by minimizing
1
€]

For numerical optimization, we start from the identity map X;; = I, (¢, ) € £ and apply steepest
descent with exact line search [30]. We run 3000 iteration on each dataset. After optimization, we
generate maps between all pairs of shapes by composing maps along shortest paths on G.

> IXi = X2IE+ A > Well Xiy iy - - Xiviz — Il (11)
(i,j)eé’ C:(il""i|c|i1)ec

Analysis of results. To evaluate the quality of shape maps, we report the cumulative distribution (or
CD) of normalized geodesic error e, of predicted feature correspondences (c.f [25]. We compare our
approach with three state-of-the-art joint shape matching approaches: Huang14 [17]], Cosmo17 [11]
and Zhang19 [45]]. As shown in Figure[I|a), our approach leads to noticeable performance gains
from Huang14 and Cosmo17 that leverage low-rank relaxations of the cycle-consistency constraint
(c.f. [14]). An explanation is that when the observations are sparse, these low-rank relaxations become
loose. In contrast, enforcing the cycle-consistency constraint exactly offers strong regularization.
Our approach also outperforms [43] (i.e., by 4.9% when ey, = 0.1), which employs a relevant
path-invariance constraint by treating G as a directed graph. As we will discuss immediately, the
improvement comes from weighted cycles.

Analysis of cycle weighting. As show in Figureweighting the cycles has a significant impact on
the quality of the optimized maps. When solving (11) with equal weight A/|Cqyp|, the CD percentage
drops by 5.2% (when eg4., = 0.15). Note that using more iterations does not close the gap, as there is
still a 2.4% difference even after 30000 iterations. This gap also justifies the argument that reducing
the condition number alleviates the amplified errors in the solution of ll that are caused by X ?]

Figure[T[b) plots the distribution of cycle weights returned by the SDP formulation. We can see that
the SDP formulation leads to sparse and relatively uniform cycle weights, indicating the effectiveness



of our approach for selecting important cycles. Moreover, most cycles with positive weights are short
(See Figure c)). This behavior coincides with the intuition that G is a dense graph, and utilizing
short cycles for optimizing (IT) is sufficient.

5.2 Consistent Neural Networks among Multiple Domains

Experimental setup. In this setting, we consider the task of predicting dense flows between image
objects using a neural network (c.f. [12} 46]. We perform experimental evaluation on 12 rigid
categories from PASCAL3D [43]]. For each category, we construct a map graph G = (V, £), where
each vertex v € V represents image objects viewed from similar camera poses, and where each edge
represents a dense flow neural network between some adjacent vertex pairs (to be discussed shortly).
In our experiments, we generate V by first picking the dom-
inant view of each category [43] and then sampling a grid
of 5 x 5 camera poses. This grid is centered at the domi-
nant view, its two axes align with the latitude and longitude,
and its spacing is 22.5°. Similar to ([46]]), we consider both
real images from PASCAL3D [43] and synthetic images from
ShapeNet [8] for training. For each training image, we allo-
cate it to four closest vertices in terms of camera poses. We
connect an edge between two vertices if the angular distance
between their camera poses is less than 35°. All edges use the
same network architecture [46]. However, we allow them to
take different weights to learn specific features associated with
each camera pose pair. Moreover, we set £ = &.

We apply (@) to jointly learn the neural networks associated )

with each edge. Inspired by [12], we use synthetic images Figure 2: Map graph for image flow.
to define the loss term associated with each edge. In contrast,

the cycle-consistency constraint is enforced on real images. To initialize the neural networks, we
first pre-train a single network using synthetic images. We then pass the pre-trained weights for all
networks. The same as joint shape matching, we generate dense image flows between all pairs of
images by composing neural networks along shortest paths on G.

During testing time, we use [37] to predict a camera pose for each image and associate it with
the closest vertex of G. Given two images, we extract the corresponding network to predict dense
correspondences.

Analysis of results. For experimental evaluation, we report cumulative distributions of normalized
Euclidean error e, (With respect to the max(width, height)) of predicted feature correspondences
(c.f [47]. We compare our approach with four state-of-the-art data-driven dense image flow ap-
proaches: Zhoul5 [47], Dosovitskiy15 [12],Zhoul6 [46], Zhang19 [45]]. As shown in Figure Eka),
our approach leads to noticeable performance gains from Zhoul5, which only utilizes real images.
Likewise, our approach also significantly outperforms Dosovitskiy15 trained on synthetic data alone
(i.e., by 8.1% when e, = 0.1. This encouraging result shows the potential of leveraging the
self-supervision constraint on real images. In addition, our approach is also superior to [46] and [45]].
Such improvements are attributed to allowing network parameters to vary across different edges —
enforcing identical network parameters results in a 3.2% drop in the CD percentage.

Analysis of cycle weighting. Similar to the case of joint shape matching, using uniform weights to
solve (3)) leads to a 4.3% drop in the CD percentage, which again shows the advantages of weighing
the cycles for both the convergence behavior and the robustness of the solution. Moreover, the
distribution of cycle weights is similar to that of joint shape matching (See Figure[I(b)), where the
solution of SDP returns sparse and uniform cycle weights.

A unique characteristic of this application is that with a relatively sparse graph, the selected cycles
contain a few long cycles (See Figure[T|c)). One explanation is that if all selected cycles are short, then
the composite networks along long cycles may suffer from accumulated errors. As a consequence,
the composite networks between non-adjacent vertices may drift.
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