
We thank all reviewers for their constructive feedback and for their time in creating well thought out reviews.1

Below we address all raised concerns, namely we perform ablation studies of adding (i) 2nd-order ODEs and (ii) BNNs;2

(iii) address more complex experiments and comparisons; and (iv) discuss the role of the KL and regularisation.3

A new 1st-order baseline: We tested a new ODE1VAE variant where the latent space is governed by 1st-order ODE4

system. ODE1VAE is similar to the NeuralODE [Chen et al 2018], except for having BNNs, and for NeuralODE placing5

a variational distribution on initial value q(x0), while ODE1VAE models the posterior over full trajectory q(x0:T ).6

Table 1: Comparison of neural network (NN) and Bayesian neural network
(BNN) ODE’s with different latent dimensionalities on BOUNCING BALL
experiment. Adding 2nd order momentum achieves superior performance,
while BNN’s have a smaller impact.

Latent dimensions d Test MSE

Model 1st-order state 2nd-order momentum NN BNN

ODE1VAE 25 - 45 43
50 - 36 35

ODE2VAE 25 25 26 27

[R1,R3] ODE1VAE vs ODE2VAE: We7

performed a new comparison study of8

ODE1VAE against ODE2VAE on bounc-9

ing balls dataset. The experimental setup10

is kept the same, except that the number11

of convolutional filters is reduced so that12

the impact of differential function choice13

becomes more apparent. Table 1 shows the14

resulting MSE over 10 frame ahead pre-15

dictions. Note that ODE2VAE models the16

acceleration v̇t = f(st,vt) : R2d → Rd17

whereas 1st-order systems learn żt = f(zt) : Rd → Rd. Results show that the 2nd-order dynamics results in far better18

accuracy, even if the first order dynamics has more flops (d = 50). We will include ablation studies in the paper.19

[R1,R2] NN vs BNN: Table 1 shows comparable performance of BNNs and NNs on bouncing balls. In order to20

demonstrate the benefit of using a BNN, we repeat the CMU walking experiment with a NN differential function. The21

MSE achieved by ODE2VAE-NN over three test sequences is 9.96, whereas ODE2VAE-BNN error improves to 9.43.22

[R2] Learning of BNNs: Learning BNN is performed via mean-field variational approximation (simultaneously with23

variational inference of the whole ODE2VAE model), where each weight and bias component has its own mean and24

shares a global variance parameter. The ODE solver used in our experiments is fixed step Runge-Kutta for both NN and25

BNN systems; hence NFEs are also the same.26

[R1] Comprehensive experiments: Our model is suitable for sequential datasets, of which we demonstrated good27

performance on motion capture data, bouncing balls experiments and on rotating MNIST. Conventional image datasets28

such as CIFAR-10 or Celeb are not directly applicable for our model as they do not have an immediate dynamic29

dimension. In this work we proposed the theoretical foundations of latent differential equations, and in future we intend30

to explore video prediction application as separate work due to its daunting scope and complexity.31

[R2] Comparison to moving MNIST: Moving MNIST is a dataset of digits bouncing off the walls of a box. Physical32

interaction rules in bouncing balls dataset is more complicated because balls collide with each other, as well. In that33

sense, inferring the dynamics in bouncing balls dataset is more challenging. On the other hand, MNIST dataset possibly34

requires more powerful decoders, which we will consider as part of future work on video prediction.35

[R3] Missing NeuralODE baseline in rotating MNIST and bouncing balls: While the public NeuralODE imple-36

mentation worked as expected in the CMU walking experiments, we were unable to get NeuralODE model to work in37

BOUNCING BALLS and ROTATING MNIST datasets. We included ConvNet architectures and tried these experiments38

numerous times with different encoder/decoder hyperparameters and initialisations; however we always got fully black39

frames as reconstructions. We believe the ODE1VAE results instead to be informative enough to demonstrate inherent40

limitations of 1st-order models, such as NeuralODE.41

[R1] Regularisation parameters: The β and γ parameters weigh the regularising KL terms to be comparable to the42

weight of the likelihood term (see e.g. "Fixing the Broken ELBO" paper). We choose to fix β = |q|/|W| to the ratio43

between the latent space dimensionality q and number of weight parameters of the differential function |W|, in order to44

counter-balance the penalties. We chose γ = 0.001 by cross validation from [0,0.1,0.01,...0.00001].45

[R2] ODE2VAE-KL variant: As correctly pointed out by the reviewer, all consecutive triplets in a sequence are46

encoded. We then compute the KL divergence between encoder distributions and the state distributions induced by47

ODE integration. This way, the entire sequence (rather than only the initial values) is utilized for encoder training.48

[R3] Long-term forecasting: Long-term forecasting of non-linear dynamical systems requires an almost perfect49

underlying dynamics model for the trajectories not to deviate. We regard "long-term" forecasting to be up around50

20 frames ahead in bouncing balls, multiple cycles of walking, or a full rotation of MNIST numbers. We found out51

empirically that NeuralODE can not forecast sufficiently, while the GPPVAE model interpolates states over time with52

an RBF kernel with little extrapolation capability.53


