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Abstract

We study high-dimensional sparse estimation tasks in a robust setting where a
constant fraction of the dataset is adversarially corrupted. Specifically, we focus
on the fundamental problems of robust sparse mean estimation and robust sparse
PCA. We give the first practically viable robust estimators for these problems. In
more detail, our algorithms are sample and computationally efficient and achieve
near-optimal robustness guarantees. In contrast to prior provable algorithms which
relied on the ellipsoid method, our algorithms use spectral techniques to iteratively
remove outliers from the dataset. Our experimental evaluation on synthetic data
shows that our algorithms are scalable and significantly outperform a range of
previous approaches, nearly matching the best error rate without corruptions.

1 Introduction

1.1 Background

The task of leveraging sparsity to extract meaningful information from high-dimensional datasets
is a fundamental problem of significant practical importance, motivated by a range of data analysis
applications. Various formalizations of this general problem have been investigated in statistics and
machine learning for at least the past two decades, see, e.g., [HTW15] for a recent textbook on the
topic. This paper focuses on the unsupervised setting and in particular on estimating the parameters
of a high-dimensional distribution under sparsity assumptions. Concretely, we study the problems
of sparse mean estimation and sparse PCA under natural data generating models.

The classical setup in statistics is that the data was generated by a probabilistic model of a given
type. This is a simplifying assumption that is only approximately valid, as real datasets are typically
exposed to some source of contamination. The field of robust statistics [Hub64, HR09, HRRS86]
aims to design estimators that are robust in the presence of model misspecification. In recent years,
designing computationally efficient robust estimators for high-dimensional settings has become a
pressing challenge in a number of applications. These include the analysis of biological datasets,
where natural outliers are common [RPW+02, PLJD10, LAT+08] and can contaminate the down-
stream statistical analysis, and data poisoning attacks [BNJT10], where even a small fraction of fake
data (outliers) can substantially degrade the learned model [BNL12, SKL17].

This discussion motivates the design of robust estimators that can tolerate a constant fraction of
adversarially corrupted data. We will use the following model of corruptions (see, e.g., [DKK+16]):
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Definition 1.1. Given 0 < ε < 1/2 and a family of distributionsD on Rd, the adversary operates as
follows: The algorithm specifies some number of samples N , and N samples X1, X2, . . . , XN are
drawn from some (unknown) D ∈ D. The adversary is allowed to inspect the samples, removes εN
of them, and replaces them with arbitrary points. This set of N points is then given to the algorithm.
We say that a set of samples is ε-corrupted if it is generated by the above process.

Our model of corruptions generalizes several other robustness models, including Huber’s contami-
nation model [Hub64] and the malicious PAC model [Val85, KL93].

In the context of robust sparse mean estimation, we are given an ε-corrupted set of samples from an
unknown mean Gaussian distributionN (µ, I), where µ ∈ Rd is assumed to be k-sparse, and the goal
is to output a hypothesis vector µ̂ that approximates µ in `2-norm. In the context of robust sparse
PCA (in the spiked covariance model), we are given an ε-corrupted set of samples fromN (0, ρvvT ),
where v ∈ Rd is assumed to be k-sparse and the goal is to approximate v. In both settings, we would
like to design computationally efficient estimators with sample complexity poly(k, log d, 1/ε), i.e.,
close to the information theoretic minimum, that achieve near-optimal error guarantees.

Until recently, even for the simplest high-dimensional parameter estimation settings, no polynomial
time robust learning algorithms with dimension-independent error guarantees were known. Two
concurrent works [DKK+16, LRV16] made the first progress on this front for the unsupervised set-
ting. Specifically, [DKK+16, LRV16] gave the first polynomial time algorithms for robustly learning
the mean and covariance of high-dimensional Gaussians and other models. These works focused on
the dense regime and as a result did not obtain algorithms with sublinear sample complexity in
the sparse setting. Building on [DKK+16], more recent work [BDLS17] obtained sample efficient
polynomial time algorithms for the robust sparse setting, and in particular for the problems of robust
sparse mean estimation and robust sparse PCA studied in this paper. These algorithms are based the
unknown convex programming methodology of [DKK+16] and in particular inherently rely on the
ellipsoid algorithm. Moreover, the separation oracle required for the ellipsoid algorithm turns out
to be another convex program — corresponding to an SDP to solve sparse PCA. As a consequence,
the running time of these algorithms, while polynomially bounded, is impractically high.

1.2 Our Results and Techniques

The main contribution of this paper is the design of significantly faster robust estimators for the
aforementioned high-dimensional sparse problems. More specifically, our algorithms are iterative
and each iteration involves a simple spectral operation (computing the largest eigenvalue of an ap-
proximate matrix). Our algorithms achieve the same error guarantee as [BDLS17] with similar sam-
ple complexity. At the technical level, we enhance the iterative filtering methodology of [DKK+16]
to the sparse setting, which we believe is of independent interest and could lead to faster algorithms
for other robust sparse estimation tasks as well.

For robust sparse mean estimation, we show:

Theorem 1.2 (Robust Sparse Mean Estimation). LetD ∼ N (µ, I) be a Gaussian distribution on Rd

with unknown k-sparse mean vector µ, and ε > 0. Let S be an ε-corrupted set of samples from D of
size N = Ω̃(k2 log(d)/ε2). There exists an algorithm that, on input S, k, and ε runs in polynomial
time returns µ̂ such that with probability at least 2/3 it holds ‖µ̂− µ‖2 = O(ε

√
log(1/ε)).

Some comments are in order. First, the sample complexity of our algorithm is asymptotically the
same as that of [BDLS17], and matches the lower bound of [DKS17] against Statistical Query
algorithms for this problem. The major advantage of our algorithm over [BDLS17] is that while
their algorithm made use of the ellipsoid method, ours uses only spectral techniques and is scalable.

For robust sparse PCA in the spiked covariance model, we show:

Theorem 1.3 (Robust Sparse PCA). Let D ∼ N (0, I + ρvvT ) be a Gaussian distribution on Rd

with spiked covariance for an unknown k-sparse unit vector v, and 0 < ρ < O(1). For ε > 0,
let S be an ε-corrupted set of samples from D of size N = Ω(k4 log4(d/ε)/ε2). There exists an
algorithm that, on input S, k, and ε, runs in polynomial time and returns v̂ ∈ Rd such that with
probability at least 2/3 we have that ‖v̂v̂T − vvT ‖F = O (ε log(1/ε)/ρ).
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The sample complexity upper bound in Theorem 1.3 is somewhat worse than the information theo-
retic optimum of Θ(k2 log d/ε2). While the ellipsoid-based algorithm of [BDLS17] achieves near-
optimal sample complexity (within logarithmic factors), our algorithm is practically viable as it only
uses spectral operations. We also note that the sample complexity in our above theorem is not known
to be optimal for our algorithm. It seems quite plausible, via a tighter analysis, that our algorithm in
fact has near-optimal sample complexity as well.

For both of our algorithms, in the most interesting regime of k �
√
d, the running time per iter-

ation is dominated by the O(Nd2) computation of the empirical covariance matrix. The number
of iterations is at most εN , although it typically is much smaller, so both algorithms take at most
O(εN2d2) time.

1.3 Related Work

There is extensive literature on exploiting sparsity in statistical estimation (see, e.g., [HTW15]).
In this section, we summarize the related work that is directly related to the results of this paper.
Sparse mean estimation is arguably one of the most fundamental sparse estimation tasks and is
closely related to the Gaussian sequence model [Tsy08, Joh17]. The task of sparse PCA in the spiked
covariance model, initiated in [Joh01], has been extensively investigated (see Chapter 8 of [HTW15]
and references therein). In this work, we design algorithms for the aforementioned problems that
are robust to a constant fraction of outliers.

Learning in the presence of outliers is an important goal in statistics studied since the 1960s [Hub64].
See, e.g., [HR09, HRRS86] for book-length introductions in robust statistics. Until recently, all
known computationally efficient high-dimensional estimators could tolerate a negligible fraction
of outliers, even for the task of mean estimation. Recent work [DKK+16, LRV16] gave the first
efficient robust estimators for basic high-dimensional unsupervised tasks, including mean and co-
variance estimation. Since the dissemination of [DKK+16, LRV16], there has been a flurry of
research activity on computationally efficient robust learning in high dimensions [BDLS17, CSV17,
DKK+17, DKS17, DKK+18a, SCV18, DKS18b, DKS18a, HL18, KSS18, PSBR18, DKK+18b,
KKM18, DKS19, LSLC18a, CDKS18, CDG18, CDGW19].

In the context of robust sparse estimation, [BDLS17] obtained sample-efficient and polynomial
time algorithms for robust sparse mean estimation and robust sparse PCA. The main difference
between [BDLS17] and the results of this paper is that the [BDLS17] algorithms use the ellipsoid
method (whose separation oracle is an SDP). Hence, these algorithms are prohibitively slow for
practical applications. More recent work [LSLC18b] gave an iterative method for robust sparse
mean estimation, which however requires multiple solutions to a convex relaxation for sparse PCA
in each iteration. Finally, [LLC19] proposed an algorithm for robust sparse mean estimation via iter-
ative trimmed hard thresholding. While this algorithm seems practically viable in terms of runtime,
it can only tolerate 1/(

√
k log(nd)) – i.e., sub-constant – fraction of corruptions.

1.4 Paper Organization

In Section 2, we describe our algorithms and provide a detailed sketch of their analysis. In Section 3,
we report detailed experiments demonstrating the performance of our algorithms on synthetic data in
various parameter regimes. Due to space limitations, the full proofs of correctness for our algorithms
can be found in the full version of this paper.

2 Algorithms

In this section, we describe our algorithms in tandem with a detailed outline of the intuition behind
them and a sketch of their analysis. Due to space limitations, the proof of correctness is deferred to
the full version of our paper.

At a high-level, our algorithms use the iterative filtering methodology of [DKK+16]. The main idea
is to iteratively remove a small subset of the dataset, so that eventually we have removed all the
important outliers and the standard estimator (i.e., the estimator we would have used in the noiseless
case) works. Before we explain our new ideas that enhance the filtering methodology to the sparse
setting, we provide a brief technical description of the approach.
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Overview of Iterative Filtering. The basic idea of iterative filtering [DKK+16] is the following:
In a given iteration, carefully pick some test statistic (such as v · x for a well-chosen v). If there
were no outliers, this statistic would follow a nice distribution (with good concentration properties).
This allows us to do some sort of statistical hypothesis testing of the “null hypothesis” that each
xi is an inlier, rejecting it (and believing that xi is an outlier) if v · xi is far from the expected
distribution. Because there are a large number of such hypotheses, one uses a procedure reminiscent
of the Benjamini-Hochberg procedure [BH95] to find a candidate set of outliers with low false
discovery rate (FDR), i.e., a set with more outliers than inliers in expectation. This procedure looks
for a threshold T such that the fraction of points with test statistic above T is at least a constant
factor more than it “should” be. If such a threshold is found, those points are mostly outliers and can
be safely removed. The key goal is to judiciously design a test statistic such that either the outliers
aren’t particularly important—so the naive empirical solution is adequate—or at least one point will
be filtered out.

In other words, the goal is to find a test statistic such that, if the distribution of the test statistic is
“close” to what it would be in the outlier-free world, then the outliers cannot perturb the answer too
much. An additional complication is that the test statistics depend on the data (such as v · x, where
v is the principal component of the data) making the distribution on inliers also nontrivial. This
consideration drives the sample complexity of the algorithms.

In the algorithms we describe below, we use a specific parameterized notion of a good set. We
define these precisely in the supplementary material, briefly, any large enough sample drawn from
the uncorrupted distribution will satisfy the structural properties required for the set to be good.

We now describe how to design such test statistics for our two sparse settings.

Notation Before we describe our algorithms, we set up some notation. We define hk : Rd → Rd

to be the thresholding operator that keeps the k entries of v with the largest magnitude and sets the
rest to 0. For a finite set S, we will use a ∈u S to mean that a is chosen uniformly at random from
S. For M ∈ Rd ×Rd and U ⊆ [d], let MU denote the matrix M restricted to the U ×U submatrix.

Algorithm 1 Robust Sparse Mean Estimation via Iterative Filtering
1: procedure ROBUST-SPARSE-MEAN(S, k, ε, τ )

input: A multiset S such that there exists an (ε, k, τ)-good set G with ∆(G,S) ≤ 2ε.
output: Multiset S′ with smaller fraction of corrupted samples or a vector µ̂ with ‖µ̂ − µ‖2 ≤

ε
√

log(1/ε).
2: Compute the sample mean µ̃ = EX∈uS [X] and the sample covariance matrix Σ̃ , i.e.,

Σ̃ = (Σ̃i,j)1≤i,j≤d with Σ̃i,j = EX∈uS [(Xi − µ̃i)(Xj − µ̃j)].
3: Let U ⊆ [d]× [d] be the set of the k largest magnitude entries of the diagonal of Σ̃− I and

the largest magnitude k2 − k off-diagonal entries, with ties broken so that if (i, j) ∈ U then
(j, i) ∈ U .

4: if ‖(Σ̃− I)(U)‖F ≤ O(ε log(1/ε)) then return µ̂ := hk(µ̃).

5: Set U ′ = {i ∈ [d] : (i, j) ∈ U}.
6: Compute the largest eigenvalue λ∗ of (Σ̃− I)U ′ and a corresponding unit eigenvector v∗.
7: if λ∗ ≥ Ω(ε

√
log(1/ε)) then: Let δ` := 3

√
ελ∗. Find T > 0 such that

PrX∈uS [|v∗ · (X − µ̃)| ≥ T + δ`] ≥ 9 · erfc(T/
√

2) +
3ε2

T 2 ln(k ln(Nd/τ))
.

8: return the multiset S′ = {x ∈ S : |v∗ · (x− µ̃)| ≤ T + δ`}.
9: Let p(x) =

(
(x− µ̃)T (Σ̃− I)T(U)(x− µ̃)− Tr((Σ̃− I)(U))

)
/‖(Σ̃− I)(U)‖F .

10: Find T > 4 such that

PrX∈uS [|p(X)| ≥ T ] ≥ 9 exp(−T/4) + 3ε2/(T ln2 T ) .

11: return the multiset S′ = {x ∈ S : |p(x)| ≤ T}.
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Robust Sparse Mean Estimation. Here we briefly describe the motivation and analysis of Algo-
rithm 1, describing a single iteration of our filter for the robust sparse mean setting.

In order to estimate the k-sparse mean µ, it suffices to ensure that our estimate µ′ has |v · (µ′ − µ)|
small for any 2k-sparse unit vector v. The now-standard idea in robust statistics [DKK+16] is that
if a small number of corrupted samples suffice to cause a large change in our estimate of v · µ, then
this must lead to a substantial increase in the sample variance of v · x, which we can detect.

Thus, a very basic form of a robust algorithm might be to compute a sample covariance matrix Σ̃,
and let v be the 2k-sparse unit vector that maximizes vT Σ̃v. If this number is close to 1, it certifies
that our estimate µ′ — obtained by truncating the sample mean to its k-largest entries — is a good
estimate of the true mean µ. If not, this will allow us to filter our sample set by throwing away the
values where v · x is furthest from the true mean. This procedure guarantees that we have removed
more corrupted samples than uncorrupted ones. We then repeat the filter until the empirical variance
in every sparse direction is close to 1.

Unfortunately, the optimization problem of finding the optimal v is computationally challenging,
requiring a convex program. To circumvent the need for a convex program, we notice that vT Σ̃v −
1 = (Σ̃−I)·(vvT ) is large only if Σ̃−I has large entries on the (2k)2 non-zero entries of vvT . Thus,
if the 4k2 largest entries of Σ̃ − I had small `2-norm, this would certify that no such bad v existed
and would allow us to return the truncated sample mean. In case these entries have large `2-norm,
we show that we can produce a filter that removes more bad samples than good ones. Let A be the
matrix consisting of the large entries of Σ̃ (for the moment assume that they are all off diagonal, but
this is not needed). We know that the sample mean of p(x) = (x−µ′)TA(x−µ′) = Σ̃ ·A = ‖A‖2F .
On the other hand, if µ′ approximates µ on the O(k2) entries in question, we would have that
‖p‖2 = ‖A‖F . This means that if ‖A‖F is reasonably large, an ε-fraction of corrupted points
changed the mean of p from 0 to ‖A‖2F = ‖A‖F ‖p‖2. This means that many of these errors must
have had |p(x)| � ‖A‖F /ε‖p‖2. This becomes very unlikely for good samples if ‖A‖F is much
larger than ε (by standard results on the concentration of Gaussian polynomials). Thus, if µ′ is
approximately µ on these O(k2) coordinates, we can produce a filter. To ensure this, we can use
existing filter-based algorithms to approximate the mean on these O(k2) coordinates. This results
in Algorithm 1. For the analysis, we note that if the entries of A are small, then vT (Σ̃− I)v must be
small for any unit k-sparse v, which certifies that the truncated sample mean is good. Otherwise, we
can filter the samples using the first kind of filter. This ensures that our mean estimate is sufficiently
close to the true mean that we can then filter using the second kind of filter.

It is not hard to show that the above works if we are given sufficiently many samples, but to obtain
a tight analysis of the sample complexity, we need a number of subtle technical ideas. The detailed
analysis of the sample complexity is deferred to the full version of our paper.

Robust Sparse PCA Here we briefly describe the motivation and analysis of Algorithm 2, de-
scribing a single iteration of our filter for the sparse PCA setting.

Note that estimating the k-sparse vector v is equivalent to estimating E[XXT − I] = vvT . In fact,
estimating E[XXT − I] to error ε in Frobenius norm allows one to estimate v within error ε in
`2-norm. Thus, we focus on he task of robustly approximating the mean of Y = XXT − I .

Our algorithm is going to take advantage of one fact about X that even errors cannot hide: that
Var[v · X] is large. This is because removing uncorrupted samples cannot reduce the variance by
much more than an ε-fraction, and adding samples can only increase it. This means that an adversary
attempting to fool our algorithm can only do so by creating other directions where the variance is
large, or simply by adding other large entries to the sample covariance matrix in order to make it
hard to find this particular k-sparse eigenvector. In either case, the adversary is creating large entries
in the empirical mean of Y that should not be there. This suggests that the largest entries of the
empirical mean of Y , whether errors or not, will be of great importance.

These large entries will tell us where to focus our attention. In particular, we can find the k2 largest
entries of the empirical mean of Y and attempt to filter based on them. When we do so, one of two
things will happen: Either we remove bad samples and make progress or we verify that these entries
ought to be large, and thus must come from the support of v. In particular, when we reach the second
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Algorithm 2 Robust Sparse PCA via Iterative Filtering

1: procedure ROBUST-SPARSE-PCA(S, k, Σ̃, ε, δ, τ )
input: A multiset S, an estimate of the true covariance Σ̃, a real number δ ∈ R.
output: A multiset S′ with smaller fraction of corrupted samples or a matrix Σ′ with ‖Σ′−Σ‖F ≤

O(
√
εδ + ε log(1/ε))

2: For any x ∈ Rd define γ(x) := vec(xxT − I) ∈ Rd2

.
3: Compute µ̃ := ES [γ(x)], µ̂ = hk2(µ) and Q := Supp(µ̂).
4: Compute

MQ := ES [(γ(x)− µ̃)(γ(x)− µ̃)T ]Q×Q ∈ Rk2

× Rk2

5: Let λ, v∗ be the maximum eigenvalue and corresponding eigenvector of MQ −
CovX∼N (0,Σ̃)(γ(x)Q).

6: if λ < C · (δ + ε log2(1/ε)), where C is a sufficiently large constant then
7: Compute w, the largest eigenvector of mat(µ̃)Q. return wwT + I .
8: Let µ̂ = median ({γ(x) · v∗ | x ∈ S}). Find a number T > log(1/ε) satisfying

PrS [|γ(x)Q · v∗ − µ̂| > CT + 3] >
ε

T 2 log2(T )
.

return S′ = {x ∈ S | |(γ(x)Q · v∗)− µ̂| < T}.

case, since the adversary cannot shrink the empirical variance of v · X by much, almost all of the
entries on the support of v must remain large, and this can be captured by our algorithm.

The above algorithm works under a set of deterministic conditions on the good set of samples that
are satisfied with high probability with poly(k) log(d)/ε2 samples. Our current analysis does not
establish the information-theoretically optimal sample size of O(k2 log(d)/ε2), though we believe
that this plausible via a tighter analysis.

We note that a naive implementation of this algorithm will achieve error poly(ε) in our final estimate
for v, while our goal is to obtain Õ(ε) error. To achieve this, we need to overcome two difficulties:
First, when trying to filter Y on subsets of its coordinates, we do not know the true variance of Y ,
and thus cannot expect to obtain Õ(ε) error. This is fixed with a bootstrapping method similar to that
in [Kan18] to estimate the covariance of a Gaussian. In particular, we do not know Var[Y ] a priori,
but after we run the algorithm, we obtain an approximation to v, which gives an approximation to
Var[Y ]. This in turn lets us get a better approximation to v and a better approximation to Var[Y ];
and so on.

3 Experiments

For every experiment, we run 10 trials and plot the median value of the measurement. We shade the
interquartile range around each measurement as a measure of the confidence of that measurement.

Each experiment was run on a computer with a 2.7 GHz Intel Core i5 processor with an 8GB 1867
MHz DDR3 RAM.

3.1 Robust Sparse Mean Estimation

The performance of robust estimation algorithms depend heavily on the noise model. The “hard”
noise distributions for one algorithm may be easy for a different algorithm, if that one can identify
and filter out the outliers. We therefore consider three different synthetic data distributions: two that
demonstrate the ε

√
k worst-case performance of other algorithms, and one that demonstrates the

ε
√

log(1/ε) performance of our full algorithm.

The algorithms we consider are RME sp, our algorithm; RME sp L, a version of our algorithm with
only the linear filter and not the quadratic one; NP, the “naive pruning” algorithm that drops samples
with obviously-outlier coordinates, then outputs the empirical mean; oracle, which is told exactly
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Figure 1: Constant-bias noise is easy for our algorithm, since it is caught by the linear filter.
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Figure 2: The linear-hiding noise model shows that the quadratic filter is necessary.
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Figure 5: Runtimes for robust mean estimation.

which coordinates are inliers and outputs their empirical mean; RME, which applies the non-sparse
robust mean estimation algorithm of [DKK+17]; and RANSAC, which computes the mean of a ran-
domly chosen set of points, half the size of the entire set. One mean is preferred to another if it has
more points in a ball of radius

√
d+
√
d around it. For algorithms that have non-sparse outputs, we

sparsify to the largest k coordinates before measuring the `2 distance to the true mean.

Our distributions are:

• Constant-bias noise. Noise that biases every coordinate consistently (e.g., if the outliers
add 2 to every coordinate, or set every coordinate to µi + 1) is difficult for naive algorithms
(such as coordinate-wise median, NP, RANSAC) to deal with, but ideal for the linear filter. In
Figure 1 we consider the noise that adds 2 to every coordinate.

• Linear-hiding noise. To demonstrate that the quadratic filter in our algorithm is necessary,
we use the following data distribution. The inliers are drawn from N (0, I). The outliers
are evenly split between two types: N (1S , I) for some size-k set S, and N (0, 2I − IS).
The diagonal of the empirical covariance does not reveal S, so our linear filter fails to prune
anything, leading to ε

√
k error for RME sp L; the quadratic filter successfully removes all

the outliers. This is shown in Figure 2.
• Flipping noise. For both those types of noise, with sufficiently many samples our final

algorithm will prune out essentially all the outliers; there also exist noise models where
Ω(ε
√

log(1/ε)) noise will remain at all times. In Figure 3 we demonstrate this for the
noise model that picks a k-sparse direction v, and replaces the ε fraction of points furthest
in the −v direction with points in the +v direction. In fact, for this noise even the oracle
method also has Ω(ε

√
log(1/ε)) error from the missing points, but our algorithm has twice

the error from the unfilterable added points.

Discussion. Matching our theoretical results, with sufficiently many samples the worst-case per-
formance of RME sp seems to be within a constant factor of the O(ε

√
log(1/ε)) worst-case per-

formance of oracle. This is not true for the naive algorithms NP, RANSAC, or the simplification
RME sp L of our algorithm, which all have an ε

√
k dependence. While our theoretical results show
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Figure 6: Sample complexity of RSPCA is better than RDPCA for smaller sparsity.

that Õ(k2) samples suffice, the empirical results given in Figure 4 are consistent with Õ(k) being
sufficient.

Our algorithm runs much faster than the ellipsoid based approach. For instance for k = 10, d =
300,m = 50 for the case of constant-biased noise our algorithm takes time 0.015 seconds to finish.
In comparison the very first iteration for the SDP-based solution takes 10 seconds to solve with
CVXOPT; the full ellipsoid-based algorithm, if implemented, would take many times that.

3.2 Robust Sparse PCA

In Figure 6 we compare our robust sparse PCA algorithm RSPCA to a dense algorithm RDPCA for
robust PCA. RDPCA looks at the empirical covariance matrix and then in the direction of maximum
variance robustly estimates standard deviation. The algorithm then filters points using a modified
version of the linear filter from [DKK+17] and hence requires a sample complexity of Õ(d). For this
algorithm, we only consider a single simple noise model. We draw outlier samples from N (0, I +
uuT ) where u has disjoint support from the true vector v.

The sparse algorithm seems to perform better than the dense algorithm for k up to roughly
√
d; this

is better than what we can prove, which is that it should be better up to at least d1/4.

4 Conclusions

In this paper, we have presented iterative filtering algorithms for two natural and fundamental robust
sparse estimation tasks: sparse mean estimation and sparse PCA. In both cases, our algorithms
achieve near-optimal Õ(ε) error with sample complexity primarily dependent on the sparsity k,
and only logarithmically on the ambient dimension d. Our theoretical guarantees are comparable
to those of [BDLS17], with the significant advantage that our algorithms only use simple spectral
techniques rather than the ellipsoid algorithm. This makes our algorithms practically viable and
easy to implement. Our implementations perform essentially as expected: in sparse settings they
require significantly fewer samples than dense robust estimation, and have accuracy avoiding the√
k dependence of common benchmark techniques like RANSAC.
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