- Thanks to all of the reviewers for the time spent reading and commenting on our work.
- **General Comments:** Our main contributions are efficient outlier-robust algorithms for sparse recovery problems
- 3 (sparse mean estimation and sparse PCA) that rely on a novel spectral filtering method. Previous polynomial time
- algorithms for these problems inherently relied on convex optimization and in particular required solving a large
- 5 SDP polynomially many times. In more detail, as mentioned in our introduction (lines 53–57), prior work gave an
- 6 ellipsoid-based method whose separation oracle is an SDP. As a result, this prior method is extremely impractical (and,
- 7 unsurprisingly, has not been implemented). One could also construct polynomial time algorithms for our problems that
- 8 iteratively filter outliers using an SDP in each iteration. (For sparse mean estimation, this algorithm is briefly described
- 9 in lines 151–157.) However, even this filter-based approach is quite slow, and in particular is very different than the
- algorithms we design. As pointed out by the first reviewer, we are able to use the problem structure to eliminate the
- 11 need for any SDP. Ours are the first potentially practical robust algorithms for the problems considered.
- 12 **Reviewer 1:** We thank the reviewer for their careful reading of the paper and their positive feedback.
- 13 **Reviewer 2:** Runtime and Comparison: In the revised version of our paper we will include a plot of the running time.
- For reference, we give a few numbers for robust sparse mean estimation here: (a) For k = 1, d = 10, m = 50: 0.005
- 15 seconds; (b) For k = 10, d = 300, m = 50: 0.014 seconds; (c) For k = 40, d = 1000, m = 8000: 1.4 seconds.
- We would like to be able to directly compare to the prior published work on robust sparse mean estimation, but that
- algorithm is quite complicated and has never been implemented. It also will surely be much worse: it uses the ellipsoid
- algorithm and requires a large SDP as a separation oracle. For the same k = 10, d = 300, m = 50 case that our
- algorithm solves in 0.014 seconds, the very first SDP takes 10 seconds to solve with CVXOPT; the full ellipsoid-based
- $\,$ 20 $\,$ algorithm, if implemented, would take many times that.
- 21 Overview of our Algorithms. Here we expand upon the intuition for our robust sparse mean algorithm, in particular
- 22 lines 167–170. The goal is to produce a filter if the Frobenius norm of the difference between the empirical covariance
- 23 $(\tilde{\Sigma})$ and the true covariance (I) is large on the largest k^2 entries otherwise, if the difference is small, we don't need to
- 24 filter at all.
- 25 We use the terminology "good samples" (as in previous works in the area) to mean a set of samples satisfying certain
- deterministic conditions that an uncorrupted Gaussian dataset will satisfy with high probability for a large enough
- 27 sample size. Our algorithms succeed under these deterministic conditions, which are described in the supplementary
- material (e.g., Definition A.2 for the sparse mean case). One such condition is that the empirical expectation of every
- degree-2 homogeneous polynomial p(x) with k^2 nonzero coefficients is close to its true value. If $\|(\tilde{\Sigma} I)_U\|_F$ is too large, then we show that there exists such a polynomial p that takes a large value in expectation, and hence on a
- too large, then we show that there exists such a polynomial p that takes a large value in expectation, and hence on a
- reasonable fraction of the sample points. But p(x) is not large on average over a good set, so most of the points x with
- large p(x) must be outliers. Therefore, we can remove the points with large p(x) to filter out a set of mostly corrupted
- points. (Notation clarification: As defined in the Appendix, $h_k(\cdot)$ is the thresholding operator which zeros out all but
- the k largest-magnitude entries of a vector.)
- 35 Comments on Related Work: The Cheng et al. [CDG19] robust mean estimation algorithm works for the dense case. In
- particular, it has sample complexity $N = \tilde{\Omega}(d/\epsilon^2)$. That algorithm has no implications for the k-sparse setting studied
- 37 here, where we are interested in algorithms with sample complexity $N = \text{poly}(k, \log d)/\epsilon^2$.
- 38 While recent literature has developed robust mean estimation algorithms under more general distribution families, this is
- 39 not the case for the sparse setting studied here. The only previous algorithm for the sparse setting is the ellipsoid-based
- method from [BDLS17] working under the same Gaussian assumptions as ours.
- 41 **Reviewer 3:** Sample Complexity optimality: The claim we make in lines 72–73 is that our $O(k^2 \log d/\epsilon^2)$ sample
- 42 complexity matches existing Statistical Query lower bounds, which hold for $k < \tilde{\Omega}(\sqrt{d})$. As the reviewer notes, above
- 43 this threshold, dense mean estimation algorithm performs better (and matches the SQ lower bound).
- 44 Novelty of Our Filtering Algorithm: The idea of filtering out outliers is of course not new. The question is how to find a
- 45 filter that removes the outliers. This is a problem-specific task that can be highly non-trivial.
- 46 As the reviewer seems to be suggesting, there is a similarity between ellipsoid-based methods and filtering methods.
- But the existing ellipsoid-based method for robust sparse mean estimation relies on an SDP for its separation oracle.
- 48 The key contribution of our paper is to avoid convex programming entirely, producing a faster filter. To get such a filter
- 49 for robust sparse mean estimation, we actually need two filters: one linear and one quadratic. The quadratic filter has no
- 50 analog in prior work, yet (as we demonstrate in our experiments) is necessary for our approach. Analogous comments
- apply for the robust sparse PCA setting.